全等三角形重点题型

合集下载

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。

由于 BC=ED,CF=DF,∠ BCF=∠ EDF。

因此三角形 BCF 全等于三角形 EDF(边角边 )。

因此 BF=EF,∠ CBF=∠ DEF。

连结 BE。

在三角形BEF 中 ,BF=EF。

因此∠ EBF=∠ BEF。

又由于∠ ABC=∠AED。

因此∠ABE=∠AEB。

因此 AB=AE。

在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。

因此三角形 ABF 和三角形 AEF全等。

因此∠ BAF=∠ EAF (∠ 1=∠ 2)。

A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。

三角形全等的判定方法5种例题+练习全面

三角形全等的判定方法5种例题+练习全面

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。

初二数学上册:全等三角形常考题型+解题思路

初二数学上册:全等三角形常考题型+解题思路

初二数学上册:全等三角形常考题型+解题思路全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。

寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

(3)有公共边的,公共边常是对应边。

(4)有公共角的,公共角常是对应角。

(5)有对顶角的,对顶角常是对应角。

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。

【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。

全等三角形的判定方法(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等。

(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等。

(3)边边边定理(SSS):三边对应相等的两个三角形全等。

(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。

(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等。

全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。

【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。

而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。

找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1.3 全等三角形-重难点题型【苏科版】【题型1 全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB【分析】由全等三角形的性质可得S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,∴S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠F AE=∠BAC,∴∠F AE﹣∠F AB=∠BAC﹣∠BAF,即∠BAE=∠F AC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2 利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3 利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .【分析】根据全等三角形的性质可得方程组{3x −2y =5x +2y =7,或{x +2y =53x −2y =7,解方程组可得答案. 【解答】解:由题意得{3x −2y =5x +2y =7,或{x +2y =53x −2y =7, 解得:{x =3y =2或{x =3y =1, x +y =5或x +y =4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4 与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC ≌△ADE ,点E 在边BC 上,求证:∠BED =∠BAD .【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC ≌△ADE ,∴∠C =∠AED ,∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠CAE =∠BAD ,∵∠AEB =∠AED +∠DEB =∠CAE +∠C ,∴∠CAE =∠BED ,∴∠BED =∠BAD .【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF ≌△DCE ,E 与F 是对应顶点.证明AF ∥DE .【分析】根据全等三角形的性质得出∠B =∠C ,∠BAF =∠CDE ,根据三角形外角性质求出∠AFE =∠DEF ,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5 与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6 与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QP A两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QP A时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt △ABC 中,∠C =90°,BC =9cm ,AC =12cm ,AB =15cm ,现有一动点P ,从点A 出发,沿着三角形的边AC →CB →BA 运动,回到点A 停止,速度为3cm /s ,设运动时间为ts .(1)如图(1),当t = 时,△APC 的面积等于△ABC 面积的一半;(2)如图(2),在△DEF 中,∠E =90°,DE =4cm ,DF =5cm ,∠D =∠A .在△ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB →BC →CA 运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,求点Q 的运动速度.【分析】(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P 在AC 上,AP =4,AQ =5,②当点P 在AB 上,AP =4,AQ =5,分别求出P 移动的距离和时间,进而求出Q 的移动速度.【解答】解:(1)①当点P 在BC 上时,如图①﹣1,若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒, ②当点P 在BA 上时,如图①﹣2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm ,移动的时间为:572÷3=192秒, 故答案为:112或192;(2)△APQ ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②﹣1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm /s ,②当点P 在AB 上,如图②﹣2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15﹣4=32cm ,点Q 移动的距离为9+12+15﹣5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm /s , 综上所述,两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,点Q 的运动速为154cm /s 或9332cm /s .【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。

全等三角形必考题型

全等三角形必考题型

全等三角形必考题型
在数学中,判断两个三角形是否全等是一种常见的题型。

以下是几种常见的全等三角形必考题型:
1. SSS判定法:如果两个三角形的三条边分别相等,则可以判定这两个三角形全等。

2. SAS判定法:如果两个三角形的一个角相等,且它们所夹的两边分别相等,则可以判定这两个三角形全等。

3. ASA判定法:如果两个三角形的两个角分别相等,且它们的夹角所对的边也相等,则可以判定这两个三角形全等。

4. RHS判定法:如果两个三角形的一个直角相等,且它们的斜边相等,则可以判定这两个三角形全等。

这些判定法是基于全等三角形的性质和定义来推导的。

学生在解答全等三角形的题目时,通常需要根据提供的条件进行分析,并利用这些判定法来做出判断。

此外,还存在一些需要应用多种判断法的复合题型,考察学生对不同判定法的理解和运用能力。

为了顺利解答全等三角形的必考题型,学生需要掌握三角形的性质和各种判定法的条件,以及具备逻辑思维和推理能力。

平时的课堂学习和练习中,应注重对这些知识点的理解和掌握,并通过大量的练习题来提高解题能力。

三角形全等的经典题型

三角形全等的经典题型

1.下列哪个条件不能单独用来证明两个三角形全等?A.SSS(三边相等)B.SAS(两边及夹角相等)C.AAA(三角相等)(答案)D.ASA(两角及夹边相等)2.已知三角形ABC和三角形DEF,AB=DE,BC=EF,∠B=∠E,则这两个三角形全等吗?A.是(答案)B.否3.若两个三角形有两对相等的角和一对相等的边,且相等的边不是这两个相等角的夹边,则这两个三角形全等吗?A.是B.否(答案)4.在证明两个三角形全等时,至少需要几个元素对应相等?A.1个B.2个C.3个(答案)D.4个5.下列哪组条件可以证明三角形ABC和三角形DEF全等?A.AB=DE,BC=EF,∠A=∠DB.AB=DE,BC=DF,∠B=∠E(答案)C.∠A=∠D,∠B=∠E,∠C=∠FD.AB=DE,AC=DF,∠B=∠E6.已知三角形ABC和三角形DEF中,AB=DE,∠A=∠D,若证这两个三角形全等,还需要什么条件?A.∠B=∠EB.∠C=∠FC.BC=EF(答案)D.AC=DF7.在三角形ABC和三角形DEF中,如果AB=DE,BC=EF,且∠A=∠D,那么这两个三角形一定全等吗?A.是(答案)B.否8.下列哪个不是三角形全等的判定定理?A.HL定理(直角三角形的斜边和一条直角边相等)B.SSS定理(三边相等)C.AAA定理(三角相等)(答案)D.SAS定理(两边及夹角相等)9.已知三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E,若证这两个三角形全等,还需要什么条件?A.AB=DE(答案)B.BC=EFC.AC=DFD.∠C=∠F10.在证明两个三角形全等时,如果已知两对相等的角和一对非夹边的相等边,那么这两个三角形一定全等吗?A.是B.否(答案)。

全等三角形经典题型50题带答案

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案)1.已知:AB二4, AC=2, D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=ΛC=2 在三角形ABE 中,AB-BE<ΛE<ΛB+BE即rl0-2<2ΛD<10+2 4<AD<6又AD是整数,则AD二52.已知:D 是AB 中点,ZACB二90°,求证:CD = -AB从D做辅助线3.已知:BC二DE, ZB=ZE, ZC=ZD, F 是CD 中点,求证:Z1=Z2证明:连接BF 和EF。

因为BC=ED,CF=DF, ZBCF=ZEDFO 所以三角形BCF全等于三角形EDF(边角边)。

所以BF=EF, ZCBF=ZDEFo连接BE。

在三角形BEF 中,BF=EF0所以ZEBF=ZBEFO 又因为ZABC二ZAED。

所以ZABE=ZAEBO 所以AB=AE o 在三角形ABF 和三角形AEF 中,ΛB-AE,BF=EF, ZABF=ZΛBE÷ZEBF=ZΛEB÷ZBEF=ZAEF o所以三角形ABF和三角形AEF全等。

所以ZBΛF= ZEΛF (ZI=Z2)o4.已知:Z1=Z2, CD二DE, EF//AB,求证:EF二AC 证明:过E点,作EG//AC,交AD延长线于G则ZDEG=ZDCA, ZDGE=Z2 又VCD-DEΛZ1ΛDC^ ZJGDE( AAS )ΛEG=ACVEF∕∕ΛBΛ ZDFE=Zr? Z1=Z2.∖ ZDFE=ZDGEΛEF=E G ∙∙∙ EF=AC5.已知:AD 平分ZBΛC, AC=AB÷BD,求证:ZB=2ZC证明:在AC 上截取AE 二AB,连接EDVAD 平分ZBΛC Λ ZEΛD-ZBAD 又TAE 二AB,AD=AD Λ ZlAED^ ZIABD ( SΛS ) ?. ZAED=ZB ,DE=DBVΛC=ΛB+BDΛC=AE÷CEΛCE=DEΛ ZC=ZEDCV ZΛED=ZC÷ZEDC=2ZCΛ ZB二2ZC6.已知:AC平分ZBAD, CE丄AB,ZB+ZD=180o,求证:AE=AD+BE证明:在AE上取F,使EF=EB, 连接CF因为CE丄AB所以ZCEB= ZCEF=90°因为EB=EF, CE=CE, 所以∕∖CEB9ZkCEF 所以ZB = ZCFE 因为ZB+ ZD = 180° , ZCFE + ZCFA = 180°所以ZD = ZCFA因为AC平分ZBAD所以ZDΛC=ZFΛC又因为AC=AC所以∆ΛDC^∆ΛFC (SAS) 所以AD=AF 所以AE=AF+FE=AD+BE12.如图,四边形ABCD中,AB〃DC, BE. CE分别平分ZΛBC. ZBCD,且点E在AD上。

人教版初中数学全等三角形笔记重点大全

人教版初中数学全等三角形笔记重点大全

人教版初中数学全等三角形笔记重点大全单选题1、图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A答案:A解析:根据全等三角形的判定即可解决问题.解:观察图象可知△MNP≌△MFD.故选:A.小提示:本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.2、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C解析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.3、如图,在△ABC中,∠ABC=50∘,∠ACB=60∘,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A.∠BAC=60∘B.∠DOC=85∘C.BC=CD D.AC=AB答案:B解析:由∠ABC=50°,∠ACB=60°,可判断出AC≠AB,根据三角形内角和定理可求出∠BAC的度数,根据邻补角定义可求出∠ACE度数,由BD平分∠ABC,CD平分∠ACE,根据角平分线的定义以及三角形外角的性质可求得∠BDC的度数,继而根据三角形内角和定理可求得∠DOC 的度数,据此对各选项进行判断即可得.∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB ,∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠DBC=12∠ABC=25°,∠DCE=∠ACD=12∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD ,故选B.小提示:本题考查了三角形内角和定理,等腰三角形判定,角平分线的定义等,熟练掌握角平分线的定义以及三角形内角和定理是解本题的关键.4、已知∠AOB =60°,以O 为圆心,以任意长为半径作弧,交OA ,OB 于点M ,N ,分别以点M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在∠AOB 内交于点P ,以OP 为边作∠POC =15°,则∠BOC 的度数为( )A .15°B .45°C .15°或30°D .15°或45°答案:D解析:根据题意作图,可得出OP 为∠AOB 的角平分线,有∠AOP =∠BOA =30°,以OP 为边作∠POC =15°,则∠BOC 的度数有两种情况,依据所作图形即可得解.解:(1)以O 为圆心,以任意长为半径作弧,交OA ,OB 于点M ,N ,分别以点M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在∠AOB 内交于点P ,则OP 为∠AOB 的平分线,∴∠AOP =∠BOA =30°(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC=15°或45°,故选:D.小提示:本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.5、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°答案:C解析:根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE-∠DAC代入数据进行计算即可得解.解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选C.小提示:本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.6、如图,已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°答案:D解析:根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,又∵两个三角形全等,∴∠α的度数是50°.故选:D.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.7、如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6B.5C.4D.3√3答案:D解析:根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =3√3,故选D.小提示:本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.8、下列各组的两个图形属于全等图形的是()A.B.C.D.答案:D解析:根据全等图形的定义,逐一判断选项,即可.解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D.小提示:本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.填空题9、如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.答案:45°解析:根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:tan∠3=BCAB =12,tan∠1=CFEF=12∴∠1=∠3,∵tan∠FAM=FM AM=1∴∠1+∠2=∠2+∠3=∠FAM=45°所以答案是:45°.小提示:本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.10、如图,∠ADC=∠DCF=120°,AD=DC=2CF,若AE=24,则线段CE长为______.答案:8解析:过点D作DH⊥AC于H,由等腰三角形的性质可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性质可证DH=CF,由“AAS”可证△DHE≌△FCE,可得EH=EC,即可求解.解:如图,过点D作DH⊥AC于H,∵∠ADC=∠DCF=120°,AD=DC,DH⊥AC,∴AH=HC,∠DAC=∠DCA=30°,∴∠ACF=90°,AD=2DH,∵AD=2CF,∴DH=CF,在△DHE和△FCE中,{∠DEH=∠FEC∠DHE=∠FCE,DH=CF∴△DHE≌△FCE(AAS)∴EH=EC,EC=EH=12CH=12AH∵AE=24,∴EH=EC=8.故答案为8.小提示:本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.11、如图,△ABC中,∠B=30°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC的度数为________.答案:75°解析:本题先通过三角形内角和求解∠BAC与∠BCA的和,继而利用邻补角以及角分线定义求解∠EAC与∠ECA的和,最后利用三角形内角和求解此题.∵∠B=30°,∴∠BAC+∠BCA=150°,又∵∠BAC=180°−∠DAC,∠BCA=180°−∠FCA,∴∠DAC+∠FCA=210°.∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∴∠EAC+∠ECA=105°,即∠AEC=180°−105°=75°.故填:75°.小提示:本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可.12、如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=____cm.答案:3解析:直接根据角平分线的性质进行解答即可.解:∵OC平分∠AOB,点P在OC上,且PD⊥OA于D,PE⊥OB于E,PD=3cm,∴PE=PD=3.所以答案是:3.小提示:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.13、如图,△ABC≌△DEF,BE=5,BF=1,则CF=_____.答案:3解析:先利用线段和差求EF=BE﹣BF=4,根据全等三角形的性质BC=EF,再结合线段和差求出FC 可得答案.解:∵BE=5,BF=1,∴EF=BE﹣BF=4,∵△ABC≌△DEF,∴BC=EF=4,∴CF=BC﹣BF=4-1=3,所以答案是:3.小提示:本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.解答题14、如图,在△ABC中,∠ACB=90°,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等.(保留作图痕迹,不写作法)答案:详见解析解析:先作∠ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PD∥BC得到∠PDB=∠CBD,于是可证明∠PDB=∠CBD,所以PB=PD.解:如图,点P为所作.小提示:此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.15、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,猜想DE、AD、BE之间的关系,并请给出证明.答案:(1)①见解析;②见解析;(2)AD−BE=DE,证明见解析.解析:(1)①利用“AAS”证明△ADC≌△CEB全等即可;②根据△ADC≌△CEB即可得到AD=CE,BE=CD,即可得到AD+BE=CE+CD=DE;(2)同(1)证明△ADC≌△CEB得到AD=CE,BE=CD,即可推出AD−BE=CE−CD=DE.证明(1)①∵AD⊥MN,BE⊥MN,∠ACB=90∘∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴AD=CE,BE=CD,∴AD+BE=CE+CD=DE;(2)关系:AD−BE=DE;证明:∵AD⊥MN,∠ACB=90∘,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90∘,∠ECB+∠ACD=90∘,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,BE=CD,∴AD−BE=CE−CD=DE.小提示:本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题摘要:1.全等三角形的判定方法概述2.边边边(SSS)判定法3.边角边(SAS)判定法4.角边角(ASA)判定法5.角角边(AAS)判定法6.斜边,直角边(HL)判定法7.经典题型一:已知三边长度,判断全等8.经典题型二:已知两边和夹角,判断全等9.经典题型三:已知两角和夹边,判断全等10.经典题型四:已知两边和等角对边相等,判断全等11.经典题型五:已知斜边和直角边,判断全等12.经典题型六:综合运用判定法,判断全等13.解题技巧与注意事项14.巩固练习:50道经典题解答与解析正文:全等三角形的判定方法是数学中非常重要的内容,掌握判定方法有助于解决许多实际问题。

本文将详细介绍全等三角形的判定方法,并通过50道经典题进行巩固练习。

1.全等三角形的判定方法概述全等三角形判定方法有六种,分别为:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边,直角边(HL)。

2.边边边(SSS)判定法当两个三角形的三条边分别对应相等时,这两个三角形全等。

例如,若给出三条线段长度ABc,BCa,ACb,我们可以通过以下步骤确定全等三角形:步骤一:确定一边AB。

步骤二:分别以AB为圆心,做半径为b,a长的圆,交于点C。

步骤三:连接AC,BC。

这样,三角形的大小和形状就都被确定出来。

3.边角边(SAS)判定法当两个三角形的两边和它们的夹角分别相等时,这两个三角形全等。

例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:画射线AE,并在射线AE上截取ACc。

步骤二:在射线AD上截取ABc。

步骤三:连接BC。

这样,三角形的大小和形状就都被确定出来。

4.角边角(ASA)判定法当两个三角形的两个角和它们的夹边分别相等时,这两个三角形全等。

例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:先确定一边ABc。

步骤二:在AB同旁画DAB,EBA,AD,BE交于点C。

专题 全等三角形的应用---动点运动问题(30题)(解析版)

专题 全等三角形的应用---动点运动问题(30题)(解析版)

八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。

全等三角形经典题型

全等三角形经典题型

全等三角形经典题型全等三角形是几何学中的一个重要概念,它指的是具有相同形状和大小的两个三角形。

在解决全等三角形的经典题型时,我们通常会利用全等三角形的性质和一些几何定理来推导和证明。

以下是一些经典的全等三角形题型以及解题思路:1. SSS(边-边-边)判定法,当两个三角形的三条边分别相等时,可以判定两个三角形全等。

例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。

2. SAS(边-角-边)判定法,当两个三角形的两边和夹角分别相等时,可以判定两个三角形全等。

例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,∠BAC=∠EDF,那么可以得出三角形ABC 全等于三角形DEF。

3. ASA(角-边-角)判定法,当两个三角形的两角和一边分别相等时,可以判定两个三角形全等。

例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。

4. RHS(直角边-斜边-直角边)判定法,当两个直角三角形的一个直角边和斜边分别相等时,可以判定两个三角形全等。

例如,已知直角三角形ABC和直角三角形DEF,且∠BAC=∠EDF,AC=DF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。

5. AAS(角-角-边)判定法,当两个三角形的两角和一边的对应边分别相等时,可以判定两个三角形全等。

例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。

在解决全等三角形题型时,我们要注意使用合适的判定法,并根据题目给出的已知条件进行推导和证明。

同时,还要注意运用其他几何定理和性质,如平行线的性质、垂直线的性质、等腰三角形的性质等,来辅助解题。

以上是关于全等三角形经典题型的回答,希望对你有所帮助。

2024_2025学年八年级数学上学期期中核心考点专题06全等三角形的判定含解析新人教版

2024_2025学年八年级数学上学期期中核心考点专题06全等三角形的判定含解析新人教版

专题06 全等三角形的判定重点突破学问点一全等三角形的判定(重点)一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等备注:1.判定两个三角形全等必需有一组边对应相等。

2.全等三角形周长、面积相等。

学问点二证题的思路(难点)考查题型一利用SAS推断两个三角形全等典例1(2024惠州市期末)如图,点E、F分别是矩形ABCD的边 AB、CD上的一点,且DF=BE. 求证:AF=CE.【答案】证明见解析【分析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【详解】证明:∵四边形ABCD是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BCD B DF BE⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .变式1-1(2024·丹江口市期末)如图,点E,F 在AB 上,,,AD BC A B AE BF =∠=∠=.求证:ADF BCE ∆≅∆.【答案】详见解析【分析】 先将转化为AF =BE ,再利用证明两个三角形全等.【详解】证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BCA B AF BE=⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆变式1-2(2024·武汉市期中)已知:如图,点C 为AB 中点,CD=BE ,CD∥BE.求证:△ACD≌△CBE.【答案】证明见解析.【解析】证明:∵CD∥BE,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE,∴△ACD≌△CBE(SAS )变式1-3(2024·兰州市期末)如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【分析】(1)依据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)依据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再依据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.考查题型二 利用ASA 推断两个三角形全等典例2(2024·玉林市期中)如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;【答案】见解析【分析】依据全等三角形的判定即可推断△AEC≌△BED;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE.在△AOD 和△BOE 中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC≌△BED(ASA ).变式2-1(2024·楚雄州期末)如图,完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠3,∠E=∠C,AE =AC ,求证:△ABC≌△ADE.证明:∵∠E=∠C(已知),∠AFE=∠DFC( ),∴∠2=∠3( ),又∵∠1=∠3( ),∴∠1=∠2(等量代换),∴__________+∠DAC=__________+∠DAC(), 即∠BAC=∠DAE,在△ABC和△ADE中∵()()()E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩已知已知已证∴△ABC≌△ADE().【答案】对顶角相等;三角形内角和定理;已知;∠1;∠2;等式的性质;ASA 【详解】解:∵∠E=∠C(已知),∠AFE=∠DFC(对顶角相等),∴∠2=∠3(三角形内角和定理).又∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴∠1+∠DAC=∠2+∠DAC(等式的性质),即∠BAC=∠DAE.在△ABC和△ADE中,∵E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证),∴△ABC≌△ADE(ASA).变式2-2(2024·德州市期末)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE. 求证:BD=CE .【答案】见解析.【分析】先求出∠CAE=∠BAD再利用ASA证明△ABD≌△ACE,即可解答【详解】∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.考查题型三利用AAS推断两个三角形全等典例3(2024·黄石市期中)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.【答案】(1)见解析;(2)见解析.【分析】(1)依据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再依据垂线的性质可得∠CFB=∠AED=90°,再依据全等三角形的判定(角角边)来证明即可;(2)依据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,依据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.变式3-1(2024·兴义市期末)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1依据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论; ()2依据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 依据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.变式3-2(2024·温州市期中)如图,已知A ,F ,E ,C 在同始终线上,//AB CD ,ABE CDF ∠=∠,AF CE =.试说明:ABE CDF ∆≅∆.【答案】见解析;【分析】由AB ∥CD 可得∠BAC =∠DCA ,由AF =CE 可得AE =CF ,由AAS 可得△ABE ≌△CDF .【详解】证明∵AB CD ∕∕,∴BAC ACD ∠=∠∵AF CE =,∴AF EF CE EF +=+,即AE FC =.在ABE ∆和CDF ∆中,BAC ACD ABE CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE CDF ∆∆≌(AAS )考查题型四 利用SSS 推断两个三角形全等典例4(2024·德州市期中)已知:如图,AB =AC ,BD =CD ,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F .求证:DE =DF .【答案】见解析【分析】连接AD ,利用“边边边”证明△ABD 和△ACD 全等,再依据全等三角形对应边上的高相等证明.【详解】证明:如图,连接AD ,在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∵DE ⊥AB ,DF ⊥AC ,∴DE =DF (全等三角形对应边上的高相等).变式4-1(2024·阳泉市期末)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠2.【答案】证明见详解【分析】由AB=AC,AD=AD,BD=CD,可证得△ABD ≌△ACD,得到∠BAE=∠CAE,再证明△ABE≌△ACE,即可得到结论.【详解】证明:AB=AC,AD=AD,BD=CD,在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD, ∠BAE=∠CAE,在△ABE 和△ACE 中, ,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ACE∴∠1=∠2.变式4-2(2024·鄂州市期中)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.【答案】(1)证明见解析;(2)37°【解析】(1)∵AC=AD+DC , DF=DC+CF ,且AD=CF∴AC=DF在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS )(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B )=180°-(55°+88°)=37°∴∠F=∠ACB=37°变式4-3(2024·石家庄市期末)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能干脆测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC≌△DEF;(2)指出图中全部平行的线段,并说明理由.【答案】(1)详见解析;(2)∠ABC=∠DEF,∠ACB=∠DFE,理由见解析.【解析】(1)证明:∵BF=EC,∴BF+CF=CF +CE ,∴BC="EF"∵AB=DE,AC="DF"∴△ABC≌△DEF(SSS )(2)AB∥DE,AC∥DF,理由如下,∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.考查题型五 利用HL 推断两个直角三角形全等典例5(2024·云龙县期中)已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC【答案】见解析【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .变式5-1(2024·开封市期中)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)依据垂直的定义得到∠DEC=∠BFA=90°,推出Rt △DCE ≌Rt △BFA (HL ),由全等三角形的性质即可得到结论.(2)依据全等三角形的性质得到∠C=∠A ,依据平行线的判定即可得到AB ∥CD.【详解】证明: ∵ DE ⊥ AC , BF ⊥ AC∴ ∠DEC=∠BFA=90°在Rt △ DEC 和Rt △ BFA 中AB=CDDE=BF∴ Rt △ DCE ≌Rt △ BFA (HL )∴ AF=CE∴ ∠C=∠A∴ AB ∥ CD变式5-2(2024·开封市期末)如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =.求证:(1)ABC EDF ∆≅∆;(2)//AB DE .【答案】(1)见解析;(2)见解析.【分析】(1)由垂直的定义,结合题目已知条件可利用HL 证得结论;(2)由(1)中结论可得到∠D =∠B ,则可证得结论.【详解】证明:(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩, ∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .考查题型六 三角形全等判定的综合典例6(2024·保定市期末)下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙【答案】B【解析】 乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满意三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满意三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B .变式6-1(2024·武汉市期中)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【答案】C【解析】试题分析:依据全等三角形的判定方法分别进行判定:A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.变式6-2(2024·杭州市期末)如图所示,在下列条件中,不能推断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【答案】C【解析】解:A、符合AAS,能推断△ABD≌△BAC;B、符合ASA,能推断△ABD≌△BAC;C、符合SSA,不能推断△ABD≌△BAC;D、符合SSS,能推断△ABD≌△BAC.所以依据全等三角形的判定方C、满意SSA不能推断两个三角形全等.故选C.变式6-3(2024·虹桥区期中)如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法推断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.。

全等三角形常见题型5种

全等三角形常见题型5种

全等三角形是初中数学中的一个重要知识点,其常见题型主要有以下五种:
1. 已知两边及其夹角,求证全等:这是全等三角形最基本的题型,也是最常见的题型。

解题的关键在于理解全等三角形的定义,即两个三角形如果它们的三边分别相等,那么这两个三角形就是全等的。

在解答这类题目时,我们通常会使用SAS(边角边)或ASA(角边角)定理。

2. 已知一边及其对角,求证全等:这类题目的解题思路与第一种类似,但是需要用到的是AAS(角角边)定理。

在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用AAS定理进行证明。

3. 已知两角及其夹边,求证全等:这类题目的解题思路与前两种有所不同,需要用到的是HL(直角边边)定理。

在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用HL定理进行证明。

4. 已知一边及其高,求证全等:这类题目的解题思路与前三种有所不同,需要用到的是SSS (边边边)定理。

在解答这类题目时,我们需要先找出两个三角形的对应边,然后利用SSS 定理进行证明。

5. 已知一边及其中线或高线,求证全等:这类题目的解题思路与第四种相似,但是需要用到的是RHS(旋转、平移、缩放)定理。

在解答这类题目时,我们需要先找出两个三角形的对应边和对应的中线或高线,然后利用RHS定理进行证明。

以上就是全等三角形的五种常见题型,每种题型都有其特定的解题方法和技巧。

在解答这类题目时,我们需要灵活运用全等三角形的各种定理,同时也需要注意观察和分析题目中的条件,以便找到最合适的解题方法。

全等三角形常考题型及详细解答-很全面的保你满意

全等三角形常考题型及详细解答-很全面的保你满意

一、补充条件型试题[例1] (1)(06湖北宜昌课改)如图,AB=CD,AD 、BC 相交于点O ,要使△ABO ≌△DCO 。

应添加的条件为__________(添加一个条件即可)∠A=∠B,∠A=∠C ,∠B=∠C ,∠B=∠D ,AB ∥CD¥(2)(05重庆中考题) 如图,已知∠ACB=∠DBC ,要使△ABC ≌△DCB ,只需增加的一个条件是__________。

(只需填写一个你认为合适的条件即可)BD=CA,∠ABD=∠ACD,∠ABC=∠DCB,∠A=∠D ,S △ABO=S △CDO(3)(06深圳中考题) 如图,已知,在△ABC 和△DCB 中,AC=DB,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需要增加的一个条件是__________ AB=CD,或∠BCA=∠CBD(4)(04四川中考)如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍然无法判断△ABE ≌△ACD 的是( ) =AE B.∠AEB=∠ADC =CD =AC 补充两个三角形中任意一组对应边相等即可,选B 二、\三、组合条件型试题[例2] (05杭州中考)如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个座位题设,余下的一个作为结论,下一个真命题,加以ABOC DA DB C| A D B C A DBADE、证明:①AB=DE ②AC=DF ③∠ABC=∠DEF ④BE=CF【解析:若所选条件中含有③∠ABC=∠DEF ,则另外两个条件可选择①AB=DE ④BE=CF ,证明全等的理由是边角边定理。

此时的真命题是:在△ABC 和△DEF 中,B,E,C,F 在同一直线上,若∠ABC=∠DEF,AB=DE,BE=CF,则AC=DF.若所选条件中不含有③∠ABC=∠DEF ,则另外三个条件也可构成一个真命题,此时证明全等的理由是边边边定理。

全等三角形题型归纳(经典完整)

全等三角形题型归纳(经典完整)

一,證明邊或角相等方法:證明兩條線段相等或角相等,如果這兩條線段或角在兩個三角形內,就證明這兩個三角形全等;如果這兩條線段或角在同一個三角形內,就證明這個三角形是等腰三角形;如果看圖時兩條線段既不在同一個三角形內,也不在兩個全等三角形內,那麼就利用輔助線進行等量代換,同樣如果角不在同一個三角形內,也不在兩個全等三角形內,也是用等量代換(方法是:(1)同角(等角)の餘角相等(2)同角(等角)の補角相等,此類型問題一般不單獨作一大題,往往是通過得出角相等後用來證明三角形全等,而且一般是在雙垂直の圖形中)1.已知,如圖,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求證:BE =CD 。

2.如圖,在四邊形ABCD 中,E 是AC 上の一點,∠1=∠2,∠3=∠4,求證: ∠5=∠6.3.已知:如圖△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交於H 。

求證:HB=HC 。

2、如圖, 已知:AB ⊥BC 於B , EF ⊥AC 於G , DF ⊥BC 於D , BC=DF .求證:AC=EF .A ED C B654321E DCBAFGE D CBAFBC AMNE 1234EDC BA 二.證明線段和差問題 (形如:AB+BC=CD,AB=AD - CD)證明兩條線段和等於另一條線段,常常使用截長補短法。

①截長法即為在這三條最長の線段截取一段使它等於較短線段中の一條,然後證明剩下の一段等於另一條較短の線段。

②補短法即為在較短の一條線段上延長一段,使它們等於最長の線段,然後證明延長の這一線段等於另一條較短の線段。

證明兩條線段差等於另一條線段,只需把差化成和來解決即可。

1.如圖,已知AD ∥BC ,∠PAB の平分線與∠CBA の平分線相交於E ,CE の連線交AP 於D .求證:AD +BC =AB .2、如圖,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是過A 一直線,且點B 、C 在AE の異側,BD ⊥AE 於D ,CE ⊥AE 於E . 求證:BD =DE +CE ;3、如圖,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求證:AB=AD - CDP E D CB A三.證明線段の2倍或21關系 ( AB CE =2, MN BN =12) 1. 利用含30角の直角三角形の性質證明例1. 已知,如圖1,∆ABC 是等邊三角形,在AC 、BC 上分別取點D 、E ,且AD =CE ,連結AE 、BD 交於點N ,過B 作BM AE ⊥,垂足為M ,求證:MN BN =12(提示:先證∠=BNE 60)2. 利用等線段代換(充分利用中點)例1.如圖,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC の平分線,BD の延長線垂直於過C 點の直線於E ,直線CE 交BA の延長線於F . 求證:BD =2CE .3.轉化為線段和問題,利用截長補短法例5. 已知:如圖5,四邊形ABCD 中,∠=D 90,對角線AC 平分∠BAD ,AC BC =,FE DCB A求證:AD AB12四.證明二倍角關系利用三角形外角和定理和等量代換如圖,△ABC 中,AD 是∠CAB の平分線,且AB =AC +CD ,求證:∠C =2∠BD C BA。

(完整版)全等三角形题型归纳(经典完整)

(完整版)全等三角形题型归纳(经典完整)

1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。

求证:HB=HC 。

2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。

①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。

②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。

证明两条线段差等于另一条线段,只需把差化成和来解决即可。

1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。

(完整版)全等三角形题型总结

(完整版)全等三角形题型总结

全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC , 在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( ) (2)有两边和其中一边上的高对应相等的两个三角形全等.( ) (3)有两边和第三边上的高对应相等的两个三角形全等.( )(答案)(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.(答案与解析)证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BFDEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC. (点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt△CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线, 过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD . (2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN =又∵AC =BD ∴PM =PN又∵PM⊥OA,PN⊥OB ∴OP平分∠AOB(点评)观察已知条件中提到的三角形△PAC与△PBD,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.(答案)证明:在线段AD上取AF=AB,连接EF,∵AE是∠BAD的角平分线,∴∠1=∠2,∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°,又∵∠DFE+∠AFE=180°,∴∠C=∠DFE,∵DE是∠ADC的平分线,∴∠3=∠4,又∵DE=DE,∴△CDE≌△FDE,∴DF=DC,∵AD=DF+AF,∴AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.(答案)证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (SAS)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(答案)证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD. (1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD. ∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA. ∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM. ∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD. (3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCM G HDCBAEDC BA2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.(答案与解析)证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AECAM EAMAM AM=⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.(答案与解析)证明:作ME⊥AF于M,连接EF.∵四边形ABCD为正方形,∴∠C=∠D=∠EMA=90°.又∵∠DAE=∠FAE,∴AE为∠FAD的平分线,∴ME=DE.在Rt△AME与Rt△ADE中,()()AE AEDE ME=⎧⎨=⎩公用边,已证,∴Rt△AME≌Rt△ADE(HL).∴AD=AM(全等三角形对应边相等).又∵E为CD中点,∴DE=EC.∴ME=EC.在Rt△EMF与Rt△ECF中,()(ME CEEF EF=⎧⎨=⎩已证,公用边),∴Rt△EMF≌Rt△ECF(HL).∴MF=FC(全等三角形对应边相等).由图可知:AF=AM+MF,∴AF=AD+FC(等量代换).(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD=,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90°∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF2、如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS) ∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。

全等三角形题型归类及解析

全等三角形题型归类及解析

全等三角形题型归类及解析全等三角形难题题型归类及解析一、角平分线型角平分线具有轴对称性,因此我们可以充分利用这一特点,常用的辅助线有两种:一是利用截取的线段构造全等三角形,二是通过平分线上的一点作两边的垂线。

此外,还要掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

例如,在三角形ABC中,点D在边BC上,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC的长度。

又如,在图中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,要判断PM与PN的关系。

还有,在△ABC中,E在边AC上,且∠AEB=∠ABC,要证明∠ABE=∠C;如果∠BAE的平分线AF交BE于F,FD∥BC交AC于D,且AB=5,AC=8,要求DC的长度。

2、中点型由中点可产生以下XXX:1、中线、倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线例如,在△ABC中,BE⊥AC,CD⊥XXX于D,BE平分∠ABC,且∠ABC=45°,与CD相交于点F,H是BC边的中点,DH与BE相交于点G,要证明BF=AC和CE=BF/2.还有,在△ABC中,D是BC的中点,DE⊥DF,要判断BE+CF与EF的大小关系,并证明结论。

又如,在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F,要证明AF=EF。

3、多个直角型除了以上两种常见的题型,还有一些涉及多个直角的题目,需要运用勾股定理和全等三角形的性质来解决。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,要证明XXX。

要证明BE=CF,根据题目已知,AD是BC的中线,所以AD=DC,又因为DF=DE,所以三角形ADF和CED相等,所以∠A=∠C,即AB∥CF,同理可得BE∥AC,所以BE=CF,证毕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全的两个图形就是全等图形。

2.全等图形的性质:全等多边形的、分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。

同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。

二、全等三角形的判定:1.一般三角形全等的判定(1)三边对应相等的两个三角形全等(“边边边”或“”)。

(2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。

(3)两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“”)。

(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。

2.直角三角形全等的判定利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

3.性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

(以上可以简称:全等三角形的对应元素相等)三、角平分线的性质及判定:性质定理:角平分线上的点到该角两边的距离相等。

判定定理:到角的两边距离相等的点在该角的角平分线上。

四、证明两三角形全等或利用它证明线段或角相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

初二数学第十一章全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=o。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

求证:AB AC PB PC ->-。

同步练习一、选择题:1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =B. 4AB =,3BC =,30A ∠=oC. 60C ∠=o,45B ∠=o,4AB =D. 90C ∠=o,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个4. 如图,12∠=∠,C D ∠=∠,,AC BD 交于E 点,下列不正确的是( ) A. DAE CBE ∠=∠ B. CE DE =C. DEA ∆不全等于CBE ∆D. EAB ∆是等腰三角形5. 如图,已知AB CD =,BC AD =,23B ∠=o,则D ∠等于( )A. 67oB. 46oC. 23oD. 无法确定二、填空题:6. 如图,在ABC ∆中,90C ∠=o,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;7. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若100AEB ∠=o ,30ADB ∠=o ,则BCF ∠=____________;8. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;9. 如图,在等腰Rt ABC ∆中,90C ∠=o,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;10. 如图,点,,,D E F B 在同一条直线上,AB //CD ,AE //CF ,且AE CF =,若10BD =,2BF =,则EF =___________;三、解答题: 11. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

求AQN ∠的度数。

12. 如图,90ACB ∠=o,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。

求证:BF CE =。

答案例1. 思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。

还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。

由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=o,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。

解答过程:Q AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=o 在Rt ACE ∆与Rt BDF ∆中 Q AE BF AC BD =⎧⎨=⎩ ∴Rt ACE Rt BDF ∆≅∆(HL) ∴A B ∠=∠Q AE BF =∴AE EF BF EF -=-,即AF BE =在ACF ∆与BDE ∆中 Q AF BE A B AC BD =⎧⎪∠=∠⎨⎪=⎩ ∴ACF BDE ∆≅∆(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。

再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。

小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。

例2. 思路分析:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。

也可以看成将2∠“转移”到α∠。

那么α∠在哪里呢?角的对称性提示我们将AD 延长交BC 于F ,则构造了△FBD ,可以通过证明三角形全等来证明∠2=∠DFB ,可以由三角形外角定理得∠DFB=∠1+∠C 。

解答过程:延长AD 交BC 于F 在ABD ∆与FBD ∆中Q 90ABD FBD BD BD ADB FDB ⎧∠=∠⎪=⎨⎪∠=∠=⎩o ∴ABD FBD ∆≅∆(ASA ∴2DFB ∠=∠又Q 1DFB C ∠=∠+∠ ∴21C ∠=∠+∠。

解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。

例3. 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。

以线段AE 为边的ABE ∆绕点B 顺时针旋转90o到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。

解答过程:Q 90ABC ∠=o ,F 为AB 延长线上一点 ∴90ABC CBF ∠=∠=o 在ABE ∆与CBF ∆中 Q AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩ ∴ABE CBF ∆≅∆(SAS) ∴AE CF =。

解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。

小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。

这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。

例4. 思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。

解答过程:连接AC Q AB //CD ,AD //BC ∴12∠=∠,34∠=∠在ABC ∆与CDA ∆中 Q 1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴ABC CDA ∆≅∆(ASA) ∴AB CD =。

解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。

例5. 思路分析:要证明“BP 为MBN ∠的平分线”,可以利用点P 到,BM BN 的距离相等来证明,故应过点P 向,BM BN 作垂线;另一方面,为了利用已知条件“,AP CP 分别是MAC ∠和NCA ∠的平分线”,也需要作出点P 到两外角两边的距离。

解答过程:过P 作PD BM ⊥于D ,PE AC ⊥于E ,PF BN ⊥于FQ AP 平分MAC ∠,PD BM ⊥于D ,PE AC ⊥于E ∴PD PE =Q CP 平分NCA ∠,PE AC ⊥于E ,PF BN ⊥于F ∴PE PF =Q PD PE =,PE PF =∴PD PF =Q PD PF =,且PD BM ⊥于D ,PF BN ⊥于F ∴BP 为MBN ∠的平分线。

解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。

例6. 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。

因此,延长AE 至F ,使EF AE =。

解答过程:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中Q AE FE AEB FED BE DE =⎧⎪∠=∠⎨⎪=⎩ ∴ABE FDE ∆≅∆(SAS)∴B EDF ∠=∠Q ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠又Q ADB BAD ∠=∠ ∴ADF ADC ∠=∠ Q AB DF =,AB CD = ∴DF DC =在ADF ∆与ADC ∆中 Q AD AD ADF ADC DF DC =⎧⎪∠=∠⎨⎪=⎩ ∴ADF ADC ∆≅∆(SAS) ∴AF AC =又Q 2AF AE = ∴2AC AE =。

相关文档
最新文档