第二节二一个总体参数的假设检验tt
第五章假设检验
Hypothesis test
(二)P值假设检验的步骤 值假设检验的步骤
14
Hypothesis test
(一)假设检验中的两类错误 实际情况
决策结果 不拒绝H0 拒绝H0
H0为真 √ type I error
H0为伪 type II error √
•第Ⅰ类错误:指原假设为真,却拒绝原假设而犯的 类错误:指原假设为真,
错误, 错误,即弃真错误 发生概率为α 发生概率为α •第Ⅱ类错误:原假设为假时,未拒绝原假设而犯 第 类错误:原假设为假时, 的错误, 的错误,即取伪错误 发生概率为β 发生概率为β 15
27
Hypothesis test
3、利用P值决策的优点: 利用P 决策的优点: 直接给出了拒绝原假设犯第一类错误的真实概率; 直接给出了拒绝原假设犯第一类错误的真实概率; 避免了不同检验问题用同一个显著性水平; 避免了不同检验问题用同一个显著性水平; 当前计算机软件通常可以直接输出检验统计量的P值, 当前计算机软件通常可以直接输出检验统计量的P 免于查表, 免于查表,可直接判定
例如,针对特效药治愈率假定 例如,针对特效药治愈率假定H0 :θ≥97% 医疗周期假定H0 :t≤2个月 个月 服药后病情稳定情况H0 :d=2人 人
7
Hypothesis test
(2)备择假设(alternative hypothesis) 备择假设(alternative
★研究者收集证据想予以支持的假设 研究者收集证据想予以支持 予以支持的假设 ★表示为H1 ★表示形式:≠, >或<某一假定数值 表示形式:
Hypothesis test
4、决策规则 给定显著性水平α 给定显著性水平α,查统计量的对应分布表得出相 应的临界值。 应的临界值。 临界值通常取正值, 临界值通常取正值,应结合假设形式准确确定分布 中的临界值和拒绝域。 中的临界值和拒绝域。 将检验统计量的值与临界值进行比较 给出决策结果。 给出决策结果。 双侧检验: 统计量的值| 临界值, 双侧检验:|统计量的值|>临界值,则拒绝H0 左侧检验:统计量的值<临界值, 左侧检验:统计量的值<临界值,则拒绝H0 右侧检验:统计量的值>临界值, 右侧检验:统计量的值>临界值,则拒绝H0
医学统计学-t检验
P
0.05
t
1.860
2021年9月30日星期四
0.01 0.005 P<0.005 2.896 3.355 4.86
30
三、两个样本均数比较
两个小样本均数的比较——t检验
t
x1 x2 Sx1 x2
假设检验的目的就是判断差异的原因:
求出由抽样误差造成此差异的可能性(概率P)有多大! 若 P 较大(P>0.05),认为是由于抽样误差造成的。
原因(1),实际上 = 0 若 P 较小(P≤0.05),认为不是由于抽样误差造成的
原因(2),实际上 > 0
2021年9月30日星期四
5
第二节 假设检验的基本思想和基本步骤
2021年9月30日星期四
12
第二节 假设检验的基本思想和基本步骤
❖ 3、确定P值,作出推断结论
▪ P值是指由H0所规定的总体作随机抽样,获得等于及大于 (或等于及小于)现有样本获得的检验统计量值的概率。
▪ 将计算得出的概率P,与事先规定的概率—进行比较,
看 其是否为小概率事件而得出结论。 例如 求得t=1.833,v=24,α=0.05,查附表其相应 的t界值为2.064,根据t分布特征,可得出P>0.05.
正确,X ≠μ0是由于抽样引起。
如同法官判定一个人是否犯罪,首先是假定他“无罪” (H0),然后通过侦察寻找证据,如果证据充分则拒绝 “无罪”的假定(H0),判嫌疑人有罪;否则只能暂且 认为“无罪”的假定(H0)成立。
2021年9月30日星期四
6
第二节 假设检验的基本思想和基本步骤
假设检验的基本思想—利用反证法的思想
概率论与数理统计72正态总体的均值和方差的假设检验
( = 0.05)?
解 以X表示物品在处理前的含脂率,Y表示物品在
处理后的含脂率,且 X ~ N ( μ1,σ12 ),Y ~ N ( μ2,σ22 )
样本(Y1,Y2, ,Yn2 )来自总体Y .
1. 已知方差时两个正态总体均值的检验
σ12,σ22为已知, μ1, μ2未知的检验(U检验法)
1 假设 H0 : 1 2 , H1 : 1 2;
2 取检验统计量为
U (X Y)/
σ12 σ22 n1 n2
~ N (0,1)
(当H0成立时)
3 取显著性水平为 α. P{ U u/2 } ,
~
t(n1 n2
2),
(当H0成立时)
其中 Sw2
( n1
1)S1*n21 (n2 1)S2*n22 n1 n2 2
.
3° 给定显著水平 ( 0< < 1)
P{ | T | t /2(n1 n2 2) } ,
查表可得 tα / 2(n1 n2 2). 拒绝域:
W1 {( x1, x2,, xn1; y1, y2,, yn2 ) :| t | t/2(n1 n2 2)}
X
~
N
(
1
,
2 1
),Y
~
N
(
2
,
2 2
),
为了考察温度对材料断裂强力的影响,在70 C与80 C
下,分别重复作了8次试验,得数据如下:
选择统计量
U X 800 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函
多元线性回归模型的各种检验方法
ˆ ˆ对多元线性回归模型的各种检验方法对于形如Y = β 0 + β1 X 1 + β 2 X 2 + L L + β k X k + u(1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设 H 0 : β j = a j ,做出具有统计意义(即带有一定的置信度)的检验,其中 a j 为某个给 定的已知数。
特别是,当 a j =0 时,称为参数的(狭义 意义上的)显著性检验。
如果拒绝 H 0 ,说明解释变量X j 对被解释变量 Y 具有显著的线性影响,估计值 β j 才敢使用;反之,说明解释变量 X j 对被解释变量 Y 不具有显著的线性影响,估计值 β j 对我们就没有意义。
具体检验方法如下:(1) 给定虚拟假设 H 0 : β j = a j ;ˆˆˆˆˆˆˆ ˆ ((2) 计算统计量t =β j - E ( β j )Se ( β j )=β j - a jSe ( βj ) 的数值;Se ( β j ) = σC jj ,其中C jj = (X T X) -1 j +1j +1(3) 在给定的显著水平 α 下( α 不能大于 0.1 即10%,也即我们不能在置信度小于 90%以下的前提下做结论),查出双尾 t ( n - k - 1 )分布的临界值 t α / 2 ;(4) 如果出现t > t α / 2 的情况,检验结论为拒绝H 0 ;反之,无法拒绝 H 0 。
t 检验方法的关键是统计量t =β j - β j Se (βj ) 必须服从已 知的 t 分布函数。
什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。
我们有一个含 n 次观测的随机样 { X i 1 , X i 2 ,L , X ik , Y i ): i = 1,2,L , n }。
假设检验PPT课件
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?
第七章假设检验
引言
结论:企图肯定什么事情很难, 结论:企图肯定什么事情很难,而否定就容 易得多。 还记得上次那个例子吗? 易得多。 (还记得上次那个例子吗?两个人 住一起,其中有一个人病了, 住一起,其中有一个人病了,另一个人天天 给他熬药还端到他床前,三个月过去了, 给他熬药还端到他床前,三个月过去了,突 然有一天那个人忙得很, 然有一天那个人忙得很,把药熬好了就对卧 病在床的人说,你自己去喝吧, 病在床的人说,你自己去喝吧,卧病的人心 里想: 这个人怎么这么坏呢? 里想:“这个人怎么这么坏呢?”,他倒忘 了这个人对他的好, 了这个人对他的好,记住一个人的好总比记 住一个人的坏好,有时候想想, 住一个人的坏好,有时候想想,老师就像端 药的人,学生就是喝药的人,良药苦口, 药的人,学生就是喝药的人,良药苦口,我 也许一直是你们背后说你们的那个烂人, 也许一直是你们背后说你们的那个烂人,老 师也是弱势群体啊!!) 师也是弱势群体啊!!)
α
H 0 : µ ≤ 2% ↔ H 1 : µ > 2%
5-10
二、两种类型的错误
两类错误发生的概率 α与β之间是此消彼长的关系 接受
H0
拒绝
H0
H0
真实
判断正确 (1-α) ) 取伪错误( 取伪错误(第二类 错误或β 错误或 错误)
弃真错误( 弃真错误(第一 类错误或α 类错误或 错误 ) 判断正确 (1-β) )
第七章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 卡方检验
参数估计是利用样本信息推断未知的总体参数, 参数估计是利用样本信息推断未知的总体参数, 而假设检验是先对总体参数提出一个假设, 而假设检验是先对总体参数提出一个假设,然后利 用样本信息判断这一假设是否成立。 用样本信息判断这一假设是否成立。
应用统计学7假设检验
应用统计学第九章假设检验朱佳俊博士Applied Statistics 第一节假设检验的基本问题一、假设检验的基本概念对总体的概率分布或分布参数作出某种“假设”,根据抽样得到的样本观测值,运用数理统计的分析方法,检验这种“假设”是否正确,从而决定接受或拒绝“假设”,这就是本章要讨论的假设检验问题。
1、假设定义为一个调研者或管理者对被调查总体的某些特征所做的一种假定或猜想。
是对总体参数的一种假设。
常见的是对总体均值或比例和方差的检验;在分析之前,被检验的参数将被假定取一确定值。
2、假设检验(hypothesis test)(1)概念–事先对总体参数或分布形式作出某种假设–然后利用样本信息来判断原假设是否成立(2)类型–参数假设检验–非参数假设检验(3)特点–采用逻辑上的反证法–依据统计上的小概率原理... 因此我们拒绝假设 =20... 如果这是总体的真实均值样本均值μ= 50抽样分布H0这个值不像我们应该得到的样本均值...203、假设检验的基本思想小概率原理是假设检验的基本依据,即认为小概率事件在一次试验中几乎是不可能发生的。
当进行假设检验时,先假设H 0正确,在此假设下,若小概率事件A出现的概率很小,例如P (A )=0.01,经过取样试验后,A 出现了,则违反了上述原理,我们认为这是一个不合理的结果。
4、小概率原理5、原假设和备择假设(1)原假设(null hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H 1–H 1 :μ<某一数值,或μ>某一数值–例如, H 1 :μ< 10cm ,或μ>10cm(2)备择假设(alternative hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H1–H1 :μ<某一数值,或μ>某一数值–例如, H1 :μ< 10cm,或μ>10cm6、双侧检验与单侧检验(1)备择假设没有特定的方向性,并含有符号“≠”的假设检验,称为双侧检验或双尾检验(two-tailed test)(2)备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailed test)–备择假设的方向为“<”,称为左侧检验–备择假设的方向为“>”,称为右侧检验双侧检验与单侧检验(假设的形式)单侧检验H1: μ> μ0H1:μ< μ0H1: μ≠μ0备择假设H: μ≤μ0H: μ≥μ0H: μ= μ0原假设右侧检验左侧检验双侧检验假设二、假设检验中的两类错误与显示性水平1、假设检验中的两类错误(1)第Ⅰ类错误(弃真错误)–原假设为真时拒绝原假设–第Ⅰ类错误的概率记为α•被称为显著性水平(2)第Ⅱ类错误(取伪错误)–原假设为假时未拒绝原假设–第Ⅱ类错误的概率记为β(Beta)2、显著性水平(significant level)(1)是一个概率值(2)原假设为真时,拒绝原假设的概率–被称为抽样分布的拒绝域(3)表示为α(alpha)–常用的α值有0.01, 0.05, 0.10(4)由研究者事先确定三、检验统计量与拒绝域(一)检验统计量(test statistic)1、根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量2、对样本估计量的标准化结果–原假设H为真–点估计量的抽样分布点估计量的抽样标准差假设值—点估计量标准化检验统计量=3.标准化的检验统计量显著性水平和拒绝域(双侧检验)抽样分布临界值临界值α/2α/2 样本统计量拒绝H 0拒绝H 01 -α1 -置信水平显著性水平和拒绝域(单侧检验)0临界值α样本统计量拒绝H 0抽样分布1 -α置信水平(二)决策规则1、给定显著性水平α,查表得出相应的临界值z α或z α/2,t α或t α/22、将检验统计量的值与α水平的临界值进行比较3、作出决策–双侧检验:I 统计量I > 临界值,拒绝H 0–左侧检验:统计量< -临界值,拒绝H 0–右侧检验:统计量> 临界值,拒绝H 0四、利用P 值进行决策(一)什么是P 值(P -value)1、在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率–双侧检验为分布中两侧面积的总和2、反映实际观测到的数据与原假设H 0之间不一致的程度3、被称为观察到的(或实测的)显著性水平4、决策规则:若p 值<α, 拒绝H 0双侧检验的P 值α/ 2α/ 2Z拒绝H 0拒绝H 0临界值计算出的样本统计量计算出的样本统计量临界值1/2 P 值1/2 P 值临界值α样本统计量拒绝H 0抽样分布1 -1 -α置信水平计算出的样本统计量P 值左侧检验的P 值临界值α拒绝H 0抽样分布 1 -1 -α置信水平计算出的样本统计量P 值右侧检验的P 值五、假设检验步骤1、陈述原假设和备择假设2、从所研究的总体中抽出一个随机样本3、确定一个适当的检验统计量,并利用样本数据算出其具体数值4、确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5、将统计量的值与临界值进行比较,作出决策–统计量的值落在拒绝域,拒绝H 0,否则不拒绝H 0–也可以直接利用P 值作出决策第二节一个总体参数的检验z 检验(单尾和双尾)z 检验(单尾和双尾)t 检验(单尾和双尾)t 检验(单尾和双尾)z 检验(单尾和双尾)z 检验(单尾和双尾)χ2 检验(单尾和双尾)χ2 检验(单尾和双尾)均值均值一个总体一个总体比率比率方差方差是z 检验x z nμσ−=否z 检验ns x z 0μ−=一、总体均值的检验σ是否已知小样本容量n大σ是否已知否t 检验ns x t 0μ−=是z 检验nx z σμ0−=(一)总体均值的检验(大样本)•1.假定条件–正态总体或非正态总体大样本(n ≥30)2.使用z 检验统计量σ2已知:σ2未知:)1,0(~0N nx z σμ−=)1,0(~0N nsx z μ−=1、总体均值的检验(σ2已知)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml 。
7-2正态总体参数的检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
第六章 假设检验
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
统计学基础与实务-ppt-第6章假设检验
总体均值的检验
(大样本)
STAT
1. 假定条件
– 正态总体或非正态总体大样本(n30)
2. 使用z检验统计量 2 已知:z x0 ~N(0,1) n
2 未知:z x0 ~N(0,1)
sn
6-50
总体均值的检验(大样本)
(决策规则)
STAT
1. 在双侧检验中,如果|z| z/2 ,则拒绝原 假设H0;反之,则不能
STAT
1. 研究者想收集证据予以反对的假设 2. 又称“0假设” 3. 总是有符号 , 或 4. 表示为 H0
– H0 : = 某一数值
– 指定为符号 =, 或
– 例如, H0 : 10cm
6-12
备择假设
(alternative hypothesis)
STAT
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
– 总体参数包括总体均值、 比率、方差等
– 分析之前必须陈述
6-6
什么是假设检验?
(hypothesis test)
STAT
1. 先对总体的参数(或分布形式)提出某种假 设,然后利用样本信息判断假设是否成 立的过程
2. 有参数检验和非参数检验 3. 逻辑上运用反证法,统计上依据小概率
原理
6-7
假设检验中的小概率原理
z 检验
z x 0 sn
z 检验
z x 0 n
t 检验
t x 0 sn
6-47
STAT
总体均值的检验
(大样本)
6-48
总体均值的检验
(提出假设)
统计学之总体参数的假设检验
在多数统计教科书中(除理 论探讨外)假设检验都是以 否定原假设为目标。
如否定不了,说明证据不 足,无法否定原假设。但 不能说明原假设正确。
就像一两次没有听过他骂 人还远不能证明他从来没 有骂过人。
§6.1 假设检验的过程和逻辑
先要提出个原假设,比如某正态总 体的均值等于5(m=5)。这种原假设 也称为零假设(null hypothesis),记 为H0。
§6.1 假设检验的过程和逻辑
在统计软件输出p-值的位置,有的用“pvalue”,有的用significant的缩写“Sig” 就是这个道理。
根据数据产生的p-值来减少a的值以展 示结果的精确性总是没有害处的。
这好比一个身高180厘米的男生,可能 愿意被认为高于或等于180厘米,而不 愿意说他高于或等于155厘米,虽然这 第二种说法数学上没有丝毫错误。
否则说“没有足够证据拒绝零假 设”,或者“该检验不显著。”
§6.1 假设检验的过程和逻辑
注意:在我们所涉及的问题中,零 假设和备选假设在假设检验中并不 对称。
因检验统计量的分布是从零假设导 出的,因此,如果发生矛盾,就对 零假设不利了。
不发生矛盾也不能说明零假设没有 问题。
§6.1 假设检验的过程和逻辑
在零假设下,检验统计量取其实现 值及(沿着备选假设的方向)更加 极端值的概率称为p-值(p-value) 。
如果得到很小的p-值,就意味着在 零假设下小概率事件发生了。
如果小概率事件发生,是相信零假 设,还是相信数据呢?
当然多半是相信数据,拒绝零假设 。
§6.1 假设检验的过程和逻辑
但小概率并不能说明不会发生,仅 仅发生的概率很小罢了。拒绝正确 零假设的错误常被称为第一类错误 (type I error)。
统计学之总体参数的假设检验(ppt 69页)
当然多半是相信数据,拒绝零假设。
§6.1 假设检验的过程和逻辑
但小概率并不能说明不会发生,仅 仅发生的概率很小罢了。拒绝正确 零假设的错误常被称为第一类错误 (type I error)。
在备选假设正确时反而说零假设正 确 的 错 误 , 称 为 第 二 类 错 误 ( type II error)。在本书的假设检验问题 中,由于备选假设不是一个点,所 以无法算出犯第二类错误的概率。
因检验统计量的分布是从零假设导出 的,因此,如果发生矛盾,就对零假 设不利了。
不发生矛盾也不能说明零假设没有问 题。
§6.1 假设检验的过程和逻辑
在零假设下,检验统计量取其实现值 及(沿着备选假设的方向)更加极端 值的概率称为p-值(p-value)。
如果得到很小的p-值,就意味着在零 假设下小概率事件发生了。
这样,拒绝零假设时犯错误的概率实际只 是千分之一而不是旧的a所表明的百分之 五。在这个意义上,p-值又称为观测的显 著性水平(observed significant level)。
这要看具体应用的需要。但在一般的统计 书和软件中,使用最多的标准是在零假设 下(或零假设正确时)根据样本所得的数 据来拒绝零假设的概率应小于0.05,当然 也可能是0.01,0.005,0.001等等。
这种事先规定的概率称为显著性水平 (significant level),用字母a来表示。
§6.1 假设检验的过程和逻辑
§6.1 假设检验的过程和逻辑
零假设和备选假设哪一个正确,是确 定性的,没有概率可言。而可能犯错 误的是人。
涉及假设检验的犯错误的概率就是犯 第一类错误的概率和犯第二类错误的 概率。
多元线性回归模型的各种检验方法
对多元线性回归模型的各种检验方法对于形如LL uYXXX??????????k11k220)(1的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、对单个总体参数的假设检验:t检验在这种检验中,我们需要对模型中的某个(总体)?a?:,做出具有统计意参数是否满足虚拟假设H jj0a义(即带有一定的置信度)的检验,其中为某个给ja=0定的已知数。
特别是,当时,称为参数的(狭义j意义上的)显著性检验。
如果拒绝,说明解释变量H0Y?X具有显著的线性影响,估计值对被解释变量才?j jX Y不具对被解释变量敢使用;反之,说明解释变量j??对我们就没有意义。
具有显著的线性影响,估计值j体检验方法如下:a?;:)给定虚拟假设1(H?jj01.??a??E()???j j jj?t???的数值;计算统计量)(2(Se)Se)(??j j??1T?中,其X)?(XSe()?CC??1j?1jj jj j?j??0.1即(3)在给定的显著水平下(不能大于以下的前提下做90%,也即我们不能在置信度小于10%t;)t(分布的临界值双结论),查出尾1k?n??2/t?t的情况,检验结论为拒绝4)如果出现(?2/H H。
;反之,无法拒绝00????jj?t必须服从已检验方法的关键是统计量t?(Se)?j t分布函数。
什么情况或条件下才会这样呢?这需知的:要我们建立的模型满足如下的条件(或假定)n次观测的随机)随机抽样性。
我们有一个含(1????LL,X,X,nX,:1,2,,Yi?样。
这保证了误i1i i2iku差2.自身的随机性,即无自相关性,Cov(u?E(u))(u?E(u))?0。
jiji (2)条件期望值为0。
给定解释变量的任何值,误差u的期望值为零。
即有L,X)?,X,0E(uX k21L,,XX,X这也保证了误差独立于解释变量,即21uE(u)?0模型中的解释变量是外生性的,也使得。
(3)不存在完全共线性。
第二节 正态总体参数的检验
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S
~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )
统计学原理-假设检验
两独立样本均值之差的抽样分布
(1)正态总体,总体方差已知
两个正态总体
和
中分别独立地抽取容
量为n1和n2的样本,x1、x2分别为其样本均值, 则x1-x2也服从正态分布,那么
第六章 假设检验
Excel操作
l运用函数NORMSDIST计算Z检验的P值 l运用函数TDIST计算t检验的P值
37*/6
第六章
第三节 两总体参数的假设检验 假设检验 学习要点
l 1. 两独立样本均值的抽样分布 l 2. 两独立总体均值之差的假设检验
38*/6
1. 两独立样本均值的抽样分布
第六章 假设检验
9*/6
2. 假设检验的步骤
第六章 假设检验
例6-3
分析:以前的产品废品率在1%以上,改进生产工艺可以使产 品废品率下降是需要支持的命题,故,
予以否定的命题 予以支持的命题
10*/6
2. 假设检验的步骤
第六章 假设检验
(2)检验统计量
检验统计量需要满足以下两个条件
l一是检验统计量中必须含有要检验的总体参数 l二是检验统计量的概率分布必须是明确可知的
31*/6
1. 总体均值的假设检验
检验规则:
条件 原假设与备择假设 检验统计量及其分布
第六章 假设检验
拒绝域
小样本 (n<30)σ2已
知
小样本 (n<30)σ2未
知
32*/6
1. 总体均值的假设检验
第六章 假设检验
例6-9 小样本,总体方差未知
设立原假设和备择假设分别为:H0:μ=5600; H1:μ≠5600 检验统计量为:
标准化检验统计量
11*/6
2. 假设检验的步骤
两个总体的假设检验
两个总体比例的比较
总结词
当需要对两个总体的比例进行比较时, 可以使用卡方检验或Fisher's精确检验。
详细描述
卡方检验用于比较两个总体的分类比 例,要求分类变量无序且样本量较大; Fisher's精确检验用于比较两个总体的 分类比例,要求分类变量有序或无序 且样本量较小。
两个总体方差的比较
总结词
两个总体的假设检验
目录
• 假设检验的基本概念 • 两个总体参数的假设检验 • 两个总体假设检验的实例 • 假设检验的注意事项 • 总结与展望
假设检验的基本概念
01
定义
假设检验是一种统计方法,用于根据样本数据对总体参数做 出推断。
它基于对总体分布的假设,通过样本数据来检验这些假设是 否成立。
目的
当需要对两个总体的方差进行比较时 ,可以使用Levene's检验或 Bartlett's检验。
详细描述
Levene's检验用于比较两组独立样本 的方差,要求样本相互独立; Bartlett's检验用于比较两组相关样本 的方差,要求样本之间存在配对关系 。
两个总体假设检验的
03
实例
实例一:两个总体均数的比较
样本代表性
除了样本量,样本的代表性也是 关键因素。如果样本不能代表总 体,那么基于样本的推断可能不 准确。
假设检验的局限性
假设检验的误判风险
假设检验存在一定的误判风险,即第一 类错误和第二类错误。第一类错误是指 拒绝了实际上成立的假设,第二类错误 是指接受了实际上不成立的假设。
VS
假设检验的适用范围
假设检验有一定的适用范围,超出这个范 围,检验的结果可能不准确。因此,在应 用假设检验时,需要确保其适用性。
第五章-假设检验
H0: 1500 H1: 1500
1-29
第二十九页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这 一结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
H0: 355 H1: 355
1-28
第二十八页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长)
假设其中真有99个白球,摸 出红球的概率只有 1/100 ,
这是小概率事件。
➢小概率事件在一次试验中竟然发生了,不能不 使人怀疑所作假设的正确性,因此可以认为这 个盒子应该不是装有99个白球的那个盒子。
这个例子中所使用的推理方法,称为“带概率性
质的反证法”,或“概率反证法”。
2022/8/9
1-11
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-26
第二十六页,编辑于星期五:十八点 三十四分。
双侧检验 (显著性水平与拒绝域)
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-27
第二十七页,编辑于星期五:十八点 三十四分。
单侧检验
第五章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 非参数检验
统计学第四版第7章假设检验(简)总结
~ 2 n 1
2 n 1 s 当H 为真时,统计量 2
2 n 1 s 20 10.0042 2 统计量的值 31.92
2
0.0025
2 0.10, 查 2分布表得 02.05 ( 19) 30.14, 0 19 10.12 .95
假设检验分为两类:参数检验、非参数检验/自
由分布检验
2
例1
消费者协会接到消费者投诉,指控品牌纸包装饮
料存在容量不足,有欺骗消费者之嫌。包装上标 明的容量为250毫升。消费者协会从市场上随机抽 取50盒该品牌纸包装饮品,测试发现平均含量为 248毫升,小于250毫升。这是生产中正常的波动, 还是厂商的有意行为?消费者协会能否根据该样 本数据,判定饮料厂商欺骗了消费者呢?
提出原假设和备择假设→根据抽样分布,计算样本统 计量→选择显著性水平α ,查表确定临界值→判断并 得出结论。
8
第一步:确定原假设与备择假设
: =255;
:
≠250
原假设H0:通常是研究者 想收集证据予以反对的假 设,也称为零假设
备择假设H1:通常是研究 者想收集证据予以支持的 假设,也称为研究假设。
3
例2
一种罐装饮料采用自动生产线生产,每罐
的容量是255ml,标准差为5ml。为检验每罐
容量是否符合要求,质检人员在某天生产
的饮料中随意抽取了40罐进行检验,测得每
罐平均容量为255.8ml。检验该天生产的饮
料容量是否符合标准要求。
4
例3
根据过去大量资料,某厂生产的产品的使
用寿命服从正态分布N(1020,1002)。现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)结论:因为z=1.82>1.645=u 所以拒绝H0 ,接受HA 。
0.05,
即栽培条件的改善显著地提高了 豌豆籽粒重量。
【例题分析】 某批发商欲从生产厂家购进一批灯泡,根据合同 规定,灯泡的使用寿命平均不能低于1000小时。 已知灯泡使用寿命服从正态分布,标准差为20小时。 随机抽取100只灯泡,测得样本均值为 960 小时。 批发商是否应该购买这批灯泡? (=0.05)
零假设
条件
X 是正 态的
检验的统 计量
统计量 的分布
备择 假设
H0的拒绝域
u u
u u | u | u / 2
1
0
2
z
x 0
0
N (0,1)
已知
X 是正 态的
/ n
0 0
0
3
未知
X 是正 态的
tn1
x 0 t分布 s / n df n 1
α
χ2df χ2df
故卡方上尾检验比较简单,此时显著度α 即是上尾 概率,其对应的自变量是2 α , 当 检验统计量2 < 2 α 时,即满足我们要求的事件概率 P >显著度α ,接受零假设。
而卡方下尾检验时,给出的显著度α 是(左)下尾 概率,其自变量2 α 在附表4中对应的概率是(1- α ), 即显著度α (左下尾概率)对应的自变量2 α 与附表4 中概率为(1- α )的自变量2 1 – α 为同一个数值。 当检验统计量2df > 2 1 – α 时表明其上尾(右尾)概率 小于2 1 – α 的上尾(右尾)概率,即检验统计量2df 下尾概率大于显著度α , 接受零假设。
根据n和p的大小,其检验方法是不一样的。 当np(或nq)<5,由二项分布的概率公式计算 出概率,然后判断是大概率还是小概率。 当 5<np(或 nq)<30,二项分布趋于正态分布 可用 z检验,但需进行连续性矫正。 z值的计算公式为:
0 .5 ˆ p0 | | p n z
标准差
) p
HA :μ ≠μ
0
因为问题要求检验的是―穗重差异 是否显著―,并没有明确穗重一定 增加或一定减少.
(2)显著性水平:α =0.05 (3) 统计量:
t X 0 s n
1 9 x xi 308 9 i 1
s
x
i 1
9
2 i
( xi ) / n
2 i 1
9
n 1
9.62
(1)σ 已知时(或σ 未知,但为大样本时) 平均数的显著性检验--z检验
1. 假定条件 – 总体服从正态分布 – 若不服从正态分布, 可用正态分布来近似 (n30) 2. 原假设为H0: =0 备择假设为HA: 3. 使用z-统计量
0 ; >0 ; <0
z
x 0
2 /2
3.频率(比例)的检验
在生物研究中,有许多试验或调查结果是用 频率(百分数)表示的。如种子发芽率、雌雄 的比率等。
一般为二项分布
【例题】有一批蔬菜种子的平均发芽率 p0=0.85, 现随机抽取500粒,用种衣剂进行浸种处理,结果 有445粒发芽,试检验种衣剂对种子发芽有无效果?
这样的问题可按二项分布计算概率,判断 为大概率还是小概率,若为小概率则拒绝 原假设,即有显著影响。 但当样本容量 n较大,且np、nq≥5时, 二项分布就趋于正态分布,因而可将频率资料 做正态分布处理,从而做出近似的检验。
-1.96
0
1.96
Z
(2).σ 未知时的平均数的显著性检验 —t 检验
生物学中所遇到的大部分问题,总体标准差 都是未知的,此时的检验统计量 x 服从自由度 为( n - 1)的 t 分布。即需用t检验做平均数 的显著性检验, t 检验的程序与z 检验一样, 只要用t分布的分位数 t 代替标准正态分布的 分位数 u 就可以了。
0
0
0
t t t t
| t | t (双侧)
0
未知
(n 1)s2 2 分布 2 n1 02 df n 1
0 0
0
2 2
2 2
2
12
12 / 2
所针对的问题?
回答样本是否来自同一总体。故又称为 ― 单样本检验 ‖
解决的方法?
根据问题的不同,确定不同的检验方法:
用到的统计量主要有三个:
Z 统计量、 t 统计量: 用于均值和比例的检验。
2 统计量: 用于方差检验。
1、检验均值 (1)σ 已知时的平均数的显著性检验 ——z 检验
(2) σ 未知时的平均数的显著性检验 ——t 检验
n
~ N ( 0 ,1 )
(1)σ 已知时(或σ 未知,但为大样本时) 平均数的显著性检验--z检验
均值的单侧 Z 检验 【例题分析】已知豌豆籽粒重量(g/100粒)
服从正态分布 N(37.72;0.332)。在改善栽培 条件后,随机抽取9粒,其重量平均数为 37.92,若标准差仍为 0.33,问改善栽培条件 是否显著提高了豌豆籽粒重量 ?
为:
p0 p
p0
p0q0 n
当np(或nq)>30,直接用z检验,不需进行
连续性矫正。 z值的计算公式为:
ˆ p p0 z
p 0
【例题分析】有一批蔬菜种子的平均发芽率 p0=0.85,现随机抽取500粒,使用种衣剂进行 浸种处理,结果有445粒发芽,试检验种衣剂 对种子发芽有无效果?
x 0 t ~ t(n 1 s n
【 例题分析】 已知玉米某品种的平均穗重μ 0=300g,喷药后 随机抽取9个果穗,穗重为: 308 305 311 298 315 300 321 294 320g。 问:喷药后与喷药前的果穗重差异是否显著?
解:(1)H0 :μ =μ 0=300
4、利用Excel进行单样本参数检验
(1)均值检验方法 【 例题分析】 已知某种玉米平均穗重μ 0=300g,标准差为 σ 0=9.5g,喷药后,随机抽取9个果穗,穗重为: 308 305 311 298 315 300 321 294 320g。 问:喷药后与喷药前的果穗重差异是否显著?
解: (1) 假设
H0: μ =μ 0=37.72 HA: μ >μ 0=37.72
由于改善了栽培条件,只会使籽粒 重量提高,不会使籽粒重量降低。
(2) 显著性水平:
α =0.05
(3) 检验统计量:
X 0 z n
37.92 37.72
0.33 / 9 1.82
(4) 建立H0的拒绝域: 因为 HA: μ >μ 0, 故为单侧上尾检验, 因为z>u 0.05 , 拒绝 H0, u 0.05=1.645
H0: = 0.081 HA: 0.081 = 0.05 n = 200 临界值(s):
检验统计量:
z x 0 0.076 0.081 2.83 n 0.025 200
决策:
拒绝 H0
.025
拒绝 H0
.025
拒绝H0
结论: 有证据表明新机床加工的 零件的椭圆度与以前有显著 差异。
Χ 2概率密度函数曲线比较特殊: (1)自变量( χ 2)恒大于零; (2)曲线左右不对称,上尾检验、下尾检验 的自变量( χ 2)绝对值不相等(与z 检验、t 检验不同)。 《生物统计学》教材(杨持主编)中附表4 (288页)是―χ 2分布的上侧分位数表‖,即: 对于一个自变量(χ 2df),给出的是上尾概率P; 表明自变量( χ 2)值越大,上尾概率越小 (右侧曲线下阴影面积),相反自变量( χ 2) 值越大,上尾概率越大。
0.85´ 0.15 p0 q0 p0 0.016 ˆ 500 n ˆ p p0 0.89 0.85 2.5 z p0 0.016 ˆ
(4) 建立H0的拒绝域:因为是双侧检验,当 |u|>u0.025时拒绝 (5) 结论:因为u=2.5> u0.025, 所以拒绝H0 , 接受HA 种衣剂对种子发芽有效果
H0: 1000 HA: < 1000 = 0.05 n = 100 临界值(s):
拒绝域 -1.645 0
检验统计量:
z
20 100
决策: 在 = 0.05的水平上拒绝H0 结论: 有证据表明这批灯泡的
Z
使用寿命低于1000小时
【例题分析】 一个混杂的小麦品种,株高标准差σ
0
=14cm,
经提纯后随机抽出10株,它们的株高为: 90 105 101 95 100 100 101 105 93 97cm, 考查提纯后的群体是否比原群体整齐?
解: (1) 假设 H0 :σ =σ 0=14
(2) 显著性水平:α =0.01 (3) 统计量:
统计量:
2
( n 1) s 2
02
( 20 1) 0 .0042 31 .92 0 .0025 决策:
在 = 0.05的水平上接受H0
/2 =0.025 =0.025
结论:有证据表明该日纤度的
0 8.907 32.852
2 2
波动比平时没有显著差异。
总
结
一个总体参数检验 (单样本检验)的要点
第二节 假设检验
一 假设检验的步骤
二 一个总体参数的显著性检验 三 两个总体参数的显著检验
二、一个总体参数的差异显著性检验
一个总体
均值 比例 方差
Z 检验
(单侧和双侧) (单侧和双侧)
t 检验
(单侧和双侧) (单侧和双侧)