基于Matlab 的QPSK调制解调仿真设计与研究
基于MATLAB的QPSK通信系统仿真设计毕业设计论文
基于MATLAB的QPSK通信系统仿真设计摘要随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。
本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。
通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。
关键词 QPSK,数字通信,调制,解调,SIMULINK-I-AbstractAs mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle.Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK-II-目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 选题的目的和意义 (1)1.2 课题研究现状 (1)1.3 本文主要研究工作 (2)第 2 章数字通信技术简介 (3)2.1 引言 (3)2.2 概念及其基本组成部分 (3)2.3 数字通信的特点 (5)2.4 数字通信发展的回顾与展望 (5)本章小结 (6)第3 章数字相位调制 (7)3.1 数字基带传输系统 (7)3.2 正弦载波数字调制系统 (8)3.3 QPSK概述 (9)3.4 QPSK调制和解调 (10)3.4.1调制 (10)3.4.2解调 (10)3.4.3QPSK的调制原理 (11)3.4.4QPSK解调的工作原理 (13)本章小结 (14)第4章 QPSK调制与解调的软件实现 (15)4.1 SIMULINK功能介绍 (15)4.2 SIMULINK特点 (15)4.3 QPSK调制与解调的软件设计 (16)4.3.1QPSK调制与解调的软件实现 (16)4.3.2QPSK调制解调过程主要组件的功能 (17)4.4 QPSK调制解调仿真过程及其波形图 (19)4.4.1QPSK调制过程及其波形图 (19)4.4.2QPSK解调过程及其波形图 (29)4.5 QPSK调制解调仿真过程正确性的验证 (34)本章小结 (35)结论 (36)-III-致谢 (37)参考文献 (38)附录1 (39)附录2 (41)-IV-第1章绪论1.1 选题的目的和意义随着经济危化的不断发展,人们对通信的要求也越来越高。
基于 MATLAB 的QPSK系统仿真设计与实现
通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验容 (3)1.3.1实验平台 (3)1.3.2实验容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于MATLAB的QPSK系统仿真设计实现分析范文
通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生姓名:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验内容 (3)1.3.1实验平台 (3)1.3.2实验内容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于Matlab的QPSK调制解调仿真设计与研究设计说明书
天津理工大学计算机与通信工程学院通信工程专业设计说明书基于Matlab/Simulink的QPSK调制解调仿真设计与研究目录摘要 (2)第一章前言 (2)1.1 专业设计任务及要求 (2)1.2 Matlab简介 (2)1.3 Matlab下的simulink简介 (3)1.4 通信系统模型 (3)第二章QPSK调制 (4)2.1 QPSK介绍 (4)2.2 QPSK调制原理 (4)2.2.1 相乘法 (4)2.2.2 选择法 (5)2.3 QPSK调制原理框图 (6)2.4 QPSK调制方式的Matlab仿真 (6)2.5 QPSK调制方式Matlab-simulink仿真 (7)2.5.1 simulink调制建模 (7)2.5.2 simulink调制仿真结果 (8)第三章QPSK解调 (14)3.1 QPSK解调原理 (14)3.2 QPSK解调原理框图 (14)3.3 QPSK解调方式Matlab仿真 (14)3.4 QPSK解调方式的Matlab-simulink仿真 (15)3.4.1 QPSK解调建模 (15)3.4.2 传输信道 (17)3.4.3仿真结果 (17)3.5 仿真结果分析 (20)第四章QPSK通信系统性能分析 (20)第五章结论 (20)参考文献 (21)附录 (21)摘要正交相移键控(QPSK),是一种数字调制方式。
QPSK技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。
论文主要介绍了正交相移键控(QPSK)的概况,以及正交相移键控QPSK的调制解调概念和原理,利用Matlab中M文件和Simulink模块对QPSK的调制解调系统进行了仿真,对QPSK在高斯白噪声信道中的性能进行了,分析了解Simulink中涉及到QPSK的各种模块的功能。
【关键词】Matlab QPSK Simulnk 仿真第一章前言1.1专业设计任务及要求1了解并掌握QPSK调制与解调的基本原理;2在通信原理课程的基础上设计与分析简单的通信系统;3学会利用MATLAB7.0编写程序进行仿真,根据实验结果能分析所设计系统的性能。
基于MATLAB的QPSK系统仿真设计与实现
通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现学生学号:学生:所在班级:任课教师:2016年 10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验容 (3)1.3.1实验平台 (3)1.3.2实验容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于Matlab的QPSK调制解调仿真设计与研究设计说明书
理工大学计算机与通信工程学院通信工程专业设计说明书基于Matlab/Simulink的QPSK调制解调仿真设计与研究目录摘要 (2)第一章前言 (2)1.1 专业设计任务及要求 (2)1.2 Matlab简介 (2)1.3 Matlab下的simulink简介 (3)1.4 通信系统模型 (3)第二章 QPSK调制 (4)2.1 QPSK介绍 (4)2.2 QPSK调制原理 (4)2.2.1 相乘法 (4)2.2.2 选择法 (5)2.3 QPSK调制原理框图 (6)2.4 QPSK调制方式的Matlab仿真 (6)2.5 QPSK调制方式Matlab-simulink仿真 (7)2.5.1 simulink调制建模 (7)2.5.2 simulink调制仿真结果 (8)第三章 QPSK解调 (13)3.1QPSK解调原理 (13)3.2 QPSK解调原理框图 (13)3.3QPSK解调方式Matlab仿真 (13)3.4QPSK解调方式的Matlab-simulink仿真 (14)3.4.1 QPSK解调建模 (14)3.4.2 传输信道 (16)3.4.3 仿真结果 (16)3.5 仿真结果分析 (18)第四章 QPSK通信系统性能分析 (19)第五章结论 (19)参考文献 (20)附录 (20)摘要正交相移键控(QPSK),是一种数字调制方式。
QPSK技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。
论文主要介绍了正交相移键控(QPSK)的概况,以及正交相移键控QPSK的调制解调概念和原理,利用Matlab中M文件和Simulink模块对QPSK的调制解调系统进行了仿真,对QPSK在高斯白噪声信道中的性能进行了,分析了解Simulink中涉及到QPSK的各种模块的功能。
【关键词】Matlab QPSK Simulnk 仿真第一章前言1.1 专业设计任务及要求1了解并掌握QPSK调制与解调的基本原理;2在通信原理课程的基础上设计与分析简单的通信系统;3学会利用MATLAB7.0编写程序进行仿真,根据实验结果能分析所设计系统的性能。
在matlab上的的QPSK调制与解调仿真
QPSK的调制与解调电路的MATLAB实现摘要本课程设计主要讨论了QPSK的调制解调原理,分析了它们的调制解调实现过程的程序设计。
在课程设计中,系统开发平台为Windows 2000,程序运行平台为MATLAB集成环境下的Simulink仿真平台。
用Simulink构建QPSK调制与解调电路仿真模型,得到调制、解调信号,绘制调制前后频谱图,分析QPSK在各种噪声信道中的性能。
程序运行初步实现了QPSK的调制解调,其所得结果基本与理论结果一致。
关键词Simulink;调制解调;QPSK;目录1.前言 (1)1.1QPSK系统的应用背景简介 (1)1.2 QPSK实验仿真的意义 (1)1.3 实验平台和实验内容 (2)1.3.1实验平台 (2)1.3.2实验内容 (2)2系统实现框图和分析 (3)2.1、QPSK调制部分 (3)2.2、QPSK解调部分 (4)3实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)4致谢 (9)参考文献 (10)附录 (11)1.前言1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
基于-MATLAB-的QPSK系统仿真设计与实现
通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生姓名:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验内容 (3)1.3.1实验平台 (3)1.3.2实验内容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
QPSK调制与解调在MATLAB平台上的实现
QPSK调制与解调在MATLAB平台上的实现QPSK(Quadrature Phase Shift Keying)是一种常用的调制解调技术,常用于数字通信中。
在QPSK调制中,每个符号代表两个比特,通过将这两个比特与正交信号载波进行调制,实现高效的数据传输。
在这篇文章中,我们将介绍如何在MATLAB平台上实现QPSK调制和解调。
1.QPSK调制首先,我们需要生成待发送的二进制比特序列。
我们可以使用randi 函数生成0和1之间的随机整数序列。
```matlabbits = randi([0,1],1,N);```N表示待发送的比特数。
接下来,我们需要将这个二进制序列转换为QPSK调制符号。
在QPSK 调制中,我们将每两个比特映射到一个复数符号。
将0映射为1+j,将1映射为1-j。
```matlabfor i = 1:2:Nif bits(i) == 0 && bits(i+1) == 0symbols((i+1)/2) = 1 + 1i;elseif bits(i) == 0 && bits(i+1) == 1symbols((i+1)/2) = 1 - 1i;elseif bits(i) == 1 && bits(i+1) == 0symbols((i+1)/2) = -1 + 1i;elseif bits(i) == 1 && bits(i+1) == 1symbols((i+1)/2) = -1 - 1i;endend```最终得到的symbols变量即为QPSK调制后的复数符号序列。
2.QPSK解调首先,我们需要接收到的QPSK信号进行解调,得到复数符号序列。
```matlabsymbols_received = received_signal./carrier; % 将接收到的信号除以载波得到复数符号序列```其中received_signal为接收到的QPSK信号,carrier为发送端使用的载波。
QPSK调制与解调(Matlab仿真)
QPSK调制与解调(Matlab仿真)1. 一般在仿真的时候,大家都喜欢直接做等效基带仿真(类似于星座点的仿真)。
但实际要传,还是要传频带的波形信号。
2. 为了模拟真实的环境,先把基带信号经过一个自定义的信道,然后再做脉冲成型,上变频,加一点噪声AWGN进去。
3. 为了模拟同步,应该用专用的同步算法。
但是这里的重点不在同步。
所以用了很简单粗暴的办法。
假装直接同步上了。
4. 为了造出不同步的结果,可以这样写 x_未同步 = [x(300:end); x; x]; 相当于循环发送,循环接收。
这是仿真。
Main%%% 单载波QPSK 接收端% 2017年5月17日18:02:56clear;close all;clcrand_seed = 0;rand('seed',rand_seed);randn('seed',rand_seed);%%% Set up parameters and signals.M = 4; % Alphabet size for modulationbaud_rate = 100; % Baud ratef_carrier1 = 75; % Carrier frequencyNsym = 10000; % Number of symbolsmsg = randi([0 M-1],Nsym,1); % Random messagehMod = comm.RectangularQAMModulator(M);modmsg = step(hMod,msg); % Modulate using QAM. % 映射后的基带信号trainlen = 1000; % Length of training sequencerolloff = .3; % 滚降因子span = 20 ; % 截断长度sps = 10; % Samples per symbolrrcFilter=rcosdesign(rolloff,span,sps,'sqrt'); %根升余弦滚降滤波器,‘sqrt’均方根升余弦;‘normal’升余弦fs = baud_rate*sps; % 时间采样率,时间采样间隔为1/fs 秒Tsymbol=1/baud_rate;% 2. 脉冲成型% txSig = upfirdn(modmsg, rrcFilter, sps); % 发送端的基带复波形信号% chan = [1; .001];chan = [.986; .845; .237; .123+.31i]; % Channel coefficients% chan = [1 0.45 0.3+0.2i]; % Channel coefficientsfiltmsg = filter(chan,1,modmsg); % Introduce channel distortion.(已经经过信道的畸变的基带复信号,星座点)txSig = upfirdn(filtmsg, rrcFilter, sps); % 发送端的基带复波形信号txSig = awgn(txSig,20,'measured'); % Add AWGNt = (0:1/fs:((length(txSig)-1)/fs)).';T = t(end)+1/fs;df = 1/T;freq = -fs/2:df:fs/2-df;cos1 = cos(2*pi*f_carrier1 * t);sin1 = sin(2*pi*f_carrier1 * t);x_upconv = real(txSig).* cos1 + imag(txSig) .* sin1;%% === 接收端x_training_wave = x_upconv;x_training_msg = msg;rxSig = [x_upconv(300:end) ; x_upconv];% 1. 同步x_resampled = resample(rxSig,1,1);x_sync = sync_two_signals( x_resampled,x_training_wave,0);figure(2);plot(freq,20*log10(abs(fftshift(fft(x_sync))/max(abs(fftshift(fft(x_sync)))))));ylim([-100,10])xlim([0,freq(end)])grid on;xlabel('频率(Hz)');title('接收信号');% 2. 下变频+ 匹配滤波xi_dnconv = x_sync .* cos1;xq_dnconv = x_sync .* sin1;x_filtered = xi_dnconv + 1j * xq_dnconv;rxFilt = upfirdn(x_filtered, rrcFilter, 1, sps);rxFilt = rxFilt(span+1:end-span); % 这是接收端匹配滤波后的信号% 3. 均衡% eq1 = lineareq(6, lms(0.01)); % LMSeq1 = lineareq(30, rls(0.99,0.01)); % Create an equalizer object. % 40 taps,RLS算法,步长0.99,自相关矩阵逆矩阵的初值InvCorrInit对角线上的元素eq1.SigConst = step(hMod,(0:M-1)')'; % Set signal constellation. % 标准星座图[symbolest,~] = equalize(eq1,rxFilt,x_training_msg(1:trainlen)); % Equalize. % 均衡器obj,需要均衡的信号,训练序列symbolest = symbolest ./ mean(abs(symbolest)) .* mean(abs(eq1.SigConst));% Plot signals.h = scatterplot(rxFilt,1,trainlen,'bx'); hold on;scatterplot(symbolest,1,trainlen,'r.',h);scatterplot(eq1.SigConst,1,0,'k*',h);legend('Filtered signal','Equalized signal',...'Ideal signal constellation');hold off;% Compute error rates with equalization.hDemod = comm.RectangularQAMDemodulator(M);demodmsg = step(hDemod,symbolest); % Demodulate detected signal from equalizer.% Create ErrorRate Calculator System objectserVec = step(comm.ErrorRate,msg(trainlen+1:end),demodmsg(trainlen+1:end));srate = serVec(1)snum = serVec(2)% Convert integers to bitshIntToBit = comm.IntegerToBit(log2(M));Tx_bit = step(hIntToBit, msg(trainlen+1:end));Rx_bit = step(hIntToBit, demodmsg(trainlen+1:end));% Calculate BERberVec = step(comm.ErrorRate,Rx_bit,Tx_bit);brate = berVec(1)bnum = berVec(2)同步的代码function x_sync = sync_two_signals( x_resampled,x_training_wave,idx )% sync_two_signals( x_resampled,x_training_wave,idx )% x_resampled:收到的信号% x_training_wave:用发送的信号% idx:要找同步上的第几段。
QPSK调制与解调在MATLAB平台上的实现
QPSK调制与解调在MATLAB平台上的实现QPSK(Quadrature Phase Shift Keying)是一种常见的数字调制技术,主要用于数字通信领域中的高速数据传输。
QPSK调制与解调的实现可以利用MATLAB平台,并结合数字信号处理工具箱中的相关函数来完成。
在本文中,将详细介绍QPSK调制和解调的MATLAB实现步骤,并给出相关代码示例。
1. 生成一个二进制序列作为调制数据。
可以使用MATLAB中的randi函数生成0和1构成的随机序列。
```matlabdata = randi([0 1], 1, N); % N表示数据长度```2. 将二进制序列转换为QPSK调制符号。
由于QPSK调制中每个调制符号代表2个比特,所以需要将二进制序列分成两部分,并将每一部分映射到相应的星座点上。
可以使用MATLAB中的bi2de函数将二进制序列转换为十进制数,并按照星座点的排列顺序进行映射。
示例代码如下:```matlabI_data = bi2de(data(1:2:end), 'left-msb');Q_data = bi2de(data(2:2:end), 'left-msb');```3. 根据映射的结果,使用复数运算来生成QPSK调制信号。
可将实部和虚部分别设置为I_data和Q_data,形成一个复数信号。
示例代码如下:```matlabmodulated_signal = I_data + 1i*Q_data;```4. 将调制信号进行归一化并添加高斯白噪声(可选)。
调制信号一般需要归一化为特定的信号功率,可以使用MATLAB中的awgn函数向调制信号添加高斯白噪声。
示例代码如下:```matlabnormalized_signal = modulated_signal / sqrt(2); % 归一化信号功率noisy_signal = awgn(normalized_signal, SNR); % 向信号添加高斯白噪声,SNR表示信噪比```QPSK解调的实现步骤如下:1.接收到带有噪声的QPSK信号。
基于MATLAB的QPSK仿真与分析
摘要:本文根据当今现代通信技术的发展,对QPSK信号的工作原理进行了分析。
利用Simulink 仿真工具设计出一个QPSK仿真模型,以衡量QPSK在高斯白噪声信道中的性能,并对仿真结果进行了分析。
关键词:QPSK 信噪比误码率1 引言近年来,软件无线电作为解决通信体制兼容性问题的重要方法受到各方面的注意。
它的中心思想是在通用的硬件平台上,用软件来实现各种功能,包括调制解调类型、数据格式、通信协议等。
通过软件的增加、修改或升级就可以实现新的功能,充分体现了体制的灵活性、可扩展性等。
其中高性能、高频谱效率的调制解调模块是移动通信系统的关键技术,它的软件化也是实现软件无线电的重要环节。
四相移键控(QPSK) 调制技术广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入与移动通信及有线电视的上行传输。
在卫星数字电视传输中普遍采用的QPSK调谐器,可以说是当今卫星数字电视传输中对卫星功率、传输效率、抗干扰性以及天线尺寸等多种因素综合考虑的最佳选择。
与二进制数字调相比,多进制调相有以下两个特点 :(1) 在相同码元传输速率下,多进制调相的信息传输速率显然比二进制调相的高,比如,四进制调相的信息传输的速率是二进制调相的两倍。
(2) 在相同的信息速率下,由于多进制码元的速率比二进制的低,因而多进制信号码元的持续时间要比二进制的长。
显然增大码元宽度,就会增加码元的能量,并能减小由于信道特性引起的码间干扰的影响等,正是基于这些特点,使多进制移相键控方式获得了广泛的应用。
2 QPSK工作原理数字相位调制PSK是角度调制、恒定幅度数字调制的一种方式,通过改变发送波的相位来实现,除了其输入信号是数字信号以及输出的相位受限制以外,PSK与传统的相位调制相似。
QPSK信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号,其信号表示式为 : 为四进制符号间隔,{ }为正弦载波的相位,有4种可能的状态。
若,则为0、、、,此初始相位为0的QPSK信号的矢量图如图1(a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津理工大学计算机与通信工程学院通信工程专业设计说明书基于Matlab/Simulink的QPSK调制解调仿真设计与研究姓名韩双年学号 ********班级 09通信3班指导老师白媛日期 2012-12-16目录摘要 (2)第一章前言 (2)1.1 专业设计任务及要求 (2)1.2 Matlab简介 (2)1.3 Matlab下的simulink简介 (3)1.4 通信系统模型 (3)第二章QPSK调制 (4)2.1 QPSK介绍 (4)2.2 QPSK调制原理 (4)2.2.1 相乘法 (4)2.2.2 选择法 (5)2.3 QPSK调制原理框图 (6)2.4 QPSK调制方式的Matlab仿真 (6)2.5 QPSK调制方式Matlab-simulink仿真 (7)2.5.1 simulink调制建模 (7)2.5.2 simulink调制仿真结果 (8)第三章QPSK解调 (13)3.1 QPSK解调原理 (13)3.2 QPSK解调原理框图 (13)3.3 QPSK解调方式Matlab仿真 (13)3.4 QPSK解调方式的Matlab-simulink仿真 (14)3.4.1 QPSK解调建模 (14)3.4.2 传输信道 (16)3.4.3仿真结果 (16)3.5 仿真结果分析 (18)第四章QPSK通信系统性能分析 (19)第五章结论 (19)参考文献 (20)附录 (20)摘要正交相移键控(QPSK),是一种数字调制方式。
QPSK技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。
论文主要介绍了正交相移键控(QPSK)的概况,以及正交相移键控QPSK的调制解调概念和原理,利用Matlab中M文件和Simulink模块对QPSK的调制解调系统进行了仿真,对QPSK在高斯白噪声信道中的性能进行了,分析了解Simulink中涉及到QPSK的各种模块的功能。
【关键词】Matlab QPSK Simulnk 仿真第一章前言1.1专业设计任务及要求1了解并掌握QPSK调制与解调的基本原理;2在通信原理课程的基础上设计与分析简单的通信系统;3学会利用MATLAB7.0编写程序进行仿真,根据实验结果能分析所设计系统的性能。
4学习MATLAB的基本知识,熟悉MATLAB集成环境下的Simulink的仿真平台。
5利用通信原理相关知识在仿真平台中设计QPSK调制与解调仿真系统并用示波器观察解调后的波形6在指导老师的指导下,独立完成课程设计的全部内容,能正确的阐述和分析设计和实验结果。
1.2 Matlab简介MATLAB是MATrix LABoratory的缩写,是一款由美国Math Works公司出品的商业数学软件。
MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。
尽管MATLAB主要用于数值计算,但是因为大量的额外的工具箱它也适合于不同领域的应用,如控制系统设计与分析、图像处理和信号处理和通信、金融建模和分析等。
除了一个完整的Simulink包,提供了一个可视化的开发环境,通常用于系统仿真、动态/嵌入式系统开发等。
1.3 Matlab下的simulink简介Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中只要通过简单的鼠标操作,就可以构造出复杂的系统。
Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
1.4 通信系统模型通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1.4.1所示。
信息源发送设备信道接收设备受信者→→→→↑噪声源图1.4.1 通信系统一般模型模拟通信系统是利用模拟信号来传递消息的通信系统,其模型如图 1.4.2所示。
信息源调制器信道解调器受信者→→→→↑噪声源图1.4.2 模拟通信系统模型第二章 QPSK调制2.1 QPSK介绍Quadrature Phase Shift Keying通过使用载波的四个各不相同的相位差来表示输入的信息,是具有四进制的相移键控。
QPSK是在M=4时的数字的调相技术,它通过约定的四种载波相位,分别为45°,135°,225°,275°,输入数据为二进制的数字序列,因为载波相位是四进制的,所有我们需要把二进制的数据变为四进制的,即把二进制序列中每两个比特分成一组,四种排列组合,即00,01,10,11,双比特码元即为一组。
每两位二进制信息比特构成每一组,它们分别表示着着四个符号中的某一个符号。
2.2 QPSK调制原理QPSK的调制有两种产生方法相乘电路法和选择法。
2.2.1相乘法输入信号是二进制不归零的双极性码元,它通过“串并变换”电路变成了两路码元。
变成并行码元后,每个码元的持续时间是输入码元的两倍。
用两路正交载波去调制并行码元。
图2.2.1选择法QPSK 的调制中,QPSK 信号可以看成是两个载波正交的2PSK 信号调制器构成。
原理分析如下:基本原理和系统结构QPSK 与二进制PSK 一样,传输信号包含的信息都存在于相位中。
个别的载波相位取四个等间隔值之一,如л/4、3л/4、5л/4、7л/4。
相应的,可将发射信号定义为:⎪⎩⎪⎨⎧≤≤-+=其他,00],4)12(2cos[/2)(b t T t i ft t E t S ππ其中,i =1,2,3,4;E 是发射信号的每个符号的能量,T 为符号的持续时间,载波频率f 等于nc/T ,nc 为固定整数。
每一个可能的相位值对应于一个特定的二位组。
下面介绍QPSK 信号的产生和检测。
如图为典型的QPSK 发射机框图。
输入的二进制数据序列首先被不归零(NRZ)电平编码转换器转换为极性形式,即负号1和0分别用b E 和-b E 表示。
该二进制波形被分接器分成两个分别由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用a1(t)和a2(t)表示。
此时,在任何一信号时间间隔内a1(t),和a2(t)的幅度恰好分别等于Si1和 Si2,即由发送的二位组决定。
这两个二进制波形a1(t)和a2(t)被用来调制一对正交载波:()()t f T t c πφ2cos /21=,()()t f T t c πφ2sin /22=。
这样就得到一对二进制PSK 信号。
()t 1φ和()t 2φ的正交性使这两个信号可以被独立地检测。
最后,将这两个二进制PSK 信号相加,从而得期望的QPSK 。
2.2.2 选择法输入基带信号经过串并变换后用于控制一个相位选择电路,按照当时的输入双比特ab,决定选择哪个相位的载波输出。
图2.2.2选择法2.3 QPSK调制原理框图图2.3 调制原理框图2.4 QPSK调制方式的Matlab仿真I 路信号是用余弦载波,由2进制数据流的奇数序列组成;Q路信号用正弦载波,由2进制数据流的偶数序列组成。
下面的a是Idata,b就是Qdata,它们分布与各自的载波相乘分别输出 I 路信号和 Q 路信号。
I 路信号加上Q路信号就是QPSK 输出信号。
当 I 路载波信号是0相位时为1,是180°相位时为0;当Q 路载波信号是0相位时为1,是180°相位时为0。
-1012345678-101a 序列-1012345678-101b 序列-1012345678-101合成序列2.4 matlab 调制仿真图2.5 QPSK 调制方式Matlab-simulink 仿真2.5.1 simulink 调制建模图2.5.1调制框图(1)产生需要的信号源在搭建QPSK调制解调系统中使用伯努力信号发生器产生随机的01比特序列,每两比特代表就一个符号。
Bernoulli Binary Generator模块利用伯努利分布的原理,相应得到参数为p的伯努利分布。
伯努利分布的均值1 - p和方差p(1 –p)的。
一个零概率参数指定p。
本次实验中的p设置为0.5,即0和1等概。
采样时间可根据需要进行设置,例如测误码率时采样时间设为0.01s。
图2.5.2信号源参数设置(2)串并变换我们先通过使用buffer 这个模块来实现将信号源信号转变为两路信号。
Buffer 模块可以重新分配缓冲区块的输入样本,用到了Demux,可以将一个复合输入转化为多个单一输出,即可以输出多个采样率较低的帧信号。
但会产生与缓冲区容量相同的时延。
所以,我们可以设置buffer的参数容量为2。
图2.5.3 Buffer的参数设置(3)单极性信号转化为双极性信号因为QPSK的调制信号要求的是双极性信号,所以用伯努利随机生成二进制Generator模块产生的信号必须经过转化才能够被使用。
利用加法模块和常数产生模块将1和0的序列各自减去1/2,再利用比例运算模块乘以2,就得到了1和-1 的双极性序列。
(4)调制模块分别将两路信号乘以相位相差л/ 2的载波,然后相加。
载波由正弦信号发生器产生。
正弦波模块的参数设置为可基于时间的模式,时间设为使用仿真时间,我们设载波信号的幅度为1,载波频率可根据需要来进行设置,两路载波同频正交,相位相差л/ 2。
我们设上支路的相位为0,下支路的相位为л/ 2。
图2.5.4上支路载波参数图2.5.5下支路载波参数2.5.2 simulink调制仿真结果图2.5.6信号源和转变后的双极性信号图2.5.7上支路载波图2.5.8 下支路载波图2.5.9调制信号第三章 QPSK 解调3.1 QPSK 解调原理QPSK 接收机由一对共输入地相关器组成。
这两个相关器分别提供本地产生地相干参考信号()t 1φ和()t 2φ。
相关器接收信号x(t),相关器输出地x1和x2被用来与门限值0进行比较。
如果x1>0,则判决同相信道地输出为符号1;如果x1<0 ,则判决同相信道的输出为符号0。
如果正交通道也是如此判决输出。
最后同相信道和正交信道输出这两个二进制数据序列被复加器合并,重新得到原始的二进制序列。
在AWGN 信道中,判决结果具有最小的负号差错概率。