印刷偶极子天线FSS仿真研究报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
印刷偶极子天线设计及振子长度对天线特性影响的研究
温州大学 愚 公
2012年10月20日
一、 所用仪器
1、装有windows XP系统的PC一台
2、HFSS10.0仿真软件
二、 操作步骤
1、设计变量
设置求解类型为Driven Model 类型,并设置长度单位为毫米。
定义对称偶极子天线的基本参数并初始化,如下表。
2、创建印刷偶极子天线模型如图。其中另外一个臂是通过坐标轴复制来实现的。过程
省略。
3、设置端口激励
印刷偶极子天线由中心位置馈电。
4、设置辐射边界条件
要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个长方体设置为辐射边界条件。
5、外加激励求解设置
设计的印刷偶极子天线的中心频率在2.45G Hz,同时添加2.0G Hz ~3.0G Hz频段内的扫频设置,扫频类型为快速扫频。
三、 实验结果
1、回波损耗S11
回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。HFSS10.0的设置方法与HSFF13有较大区别,具体步骤
如下面三个图所示:
其余各项结果的输出基本类似。以下不再赘述。
图中所示是在2G Hz ~3 G Hz频段内的回波损耗,设计的印刷偶极子天线中心频率约为2.45G Hz。
2、电压驻波比VSWR
电压驻波比VSWR,是指驻波的电压峰值与电压谷值之比。
由图可以看到在2.45GHz附近时,电压驻波比约为1.1,说明此处接近行波,传输特性比较理想。
3、smith圆图
史密斯圆图是一种计算阻抗、反射系数等参量的简便图解方法。采用双线性变换,
将z复平面上。实部 r=常数和虚部 x=常数两族正交直线变化为正交圆并与:反射系数|G|=常数和虚部x=常数套印而成。
图中所示的输入阻抗分别为实部和虚部,在中心频率 2.45GHz时,归一化输入阻抗为0.998‐j04,折合49.9‐j2,呈弱电容性。
4、输入阻抗
传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配。图中所示的输入阻抗分别为实部和虚部,在中心频率2.45GHz 时,输入阻抗约为50‐j2,呈弱电容性。与SMITH园的显示结果基本一致。
5、xoz方向图
方向图是方向性函数的图形表示,他可以形象描绘天线辐射特性随着空间方向坐标的变化关系。辐射特性有辐射强度、场强、相位和极化。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。天线方向图是在远场区确定的,所以又叫远场方向图。
电场方向图:
由图可以看到,电场方向以Z轴为对称轴,在XOY平面上电场最强,且沿四周均匀辐射。但沿着Z轴方向电场强度很弱,‐10db夹角为‐10~170度。
7、三维增益方向图:
天线的三维增益图如下,不赘述。
8、优化单极子长度
设置单极子长度变化范围为21‐23mm,三角翼高度为6‐14mm。回波损耗对比图如下:
可见当振子长度为21mm毫米、三角翼高度为6mm时,中心频率最接近2.45G,且天线增益最大。