列表法和树状图求概率复习过程共40页
人教版九年级上册数学《用列举法求概率》概率初步研讨复习说课教学课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
S2 (S1,S2)
—
(S3,S2)
S3 (S1,S3) (S2,S3)
—
共有 6 种等可能的情况,必须闭合开关 S3 灯泡才亮,即能让灯泡发光的概率是46
=23. 答案:C
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
基础过关
课件 课件
课件
课件
A.12 C.23
第二十五章 概率初步
B.13 D.14
上一页 返回导航 下一页
数学·九年级(上)·配人教
分析:列表如下:
S1
S2
S3
S1
—
(S2,S1) (S3,S1)
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
1 和等于5的概率是___3___.
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
7 . 【 教 材 P140 习 题 25.2T3 变 式 】 一 个 不 透 明 的 口 袋 中 有 四 个 完 全 相 同 的 小
球 , 把 它 们 分 别 标 号 为 1,2,3,4. 随 机 摸 取 一 个 小 球 然 后 放 回 , 再 随 机 摸 取 一 个 小
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
12 . 随 着 信 息 技 术 的 迅 猛 发 展 , 人 们 去 商 场 购 物 的 支 付 方 式 更 加 多 样 、 便
九年级数学 第3章 概率的进一步认识 3.1 用树状图或表格求概率
12/7/2021
第十四页,共九十九页。
知识点 用树状图或表格(biǎogé)求概率
1.(2018四川攀枝花中考)布袋中装有除颜色外没有其他区别的1个红球 和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都 摸出白球的概率是 ( )
A. 4
B.2
C2 .
1 D.
9
9
3
3
12/7/2021
答:七年级特等奖作文被选登在校刊上的概率是 1 .
2
12/7/2021
第九页,共九十九页。
题型二 跨学科问题 例2 如图3-1-5①所示,有一条电路AB由图示的开关控制,任意地闭合 两个开关. (1)请你补全如图3-1-5②所示的树状图; (2)求使电路形成通路的概率.
图3-1-5
12/7/2021
16 4
4.(2016辽宁沈阳中考)为了传承优秀传统文化,某校开展“经典诵读”
比赛活动(huódòng),诵读材料有《论语》《三字经》《弟子规》(分别用字
母A,B,C依次表示这三个诵读材料).将A,B,C这三个字母分别写在3张完
全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面
上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记
成了4组进行活动,该班小明和小亮同学被分在同一组的概率是
.
答案 1
4
解析 设4个组分别是1,2,3,4, 画树状图如图.
根据树状图可知,共有16种等可能的结果,其中小明和小亮同学被分在同一组
的情况有4种,所以小明和小亮同学被分在同一组的概率P= 12/7/2021 第二十八页,共九十九页。
= 4. 1
第十五页,共九十九页。
用列表法和树状图法求概率课件
你的理由.不公平.其概率分别为13/25和12/25.
本题中元音字母: A E I
辅音字母: B C D H
A
B
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I
HI
H
I
HI
解:由树形图得,所有可能出现的结果有 12个,它们出现的可能性 相等。
(1)满足只有一个元音字母的结果有5个,
则P(1个元音)=
5 12
(2)两辆车右转,一辆车左转的结果有 3个,则
P(两辆车右转,一辆车左转) =
3
=
1
27
9
7 (3)至少有两辆车左转的结果有 7个,则 P(至少有两辆车左转) = 27
.依据闯关游戏规则,请你探究“闯关游戏” 的奥秘:(1)用列表的方法表示有可能的 闯关情况; (2)求出闯关成功的概率
1、掷一枚骰子,落地后4或2朝上的概率为( 1 )
9、两人一组,每人在纸上随机1 写出一个1----5之间的整数,两人所写的两 个整数恰好是相同的概率是(5 )
10、(2009江西中考题)某市今年中考理化实验操作考试,采用学生抽签 方式决定自己的考试内容。规定:每位考生必须在三个物理实验(用纸签 A,B.C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试, 小刚在看不到纸签的情况下,分别从中各随机抽取一个 (1):用“列表法”或“树状图法'表示可能出现的结果; (2):小刚抽到物理实验B和化学实验F(记事件M)的概率是多少?
利用画树状图和列表计算概率课件
解:
大刚
小亮
抽到A组
抽到B 组
抽到C 组
BC
抽到C组
CA CB CC
P(
同组)=
3 9
=1
3
答:他们恰好分到一组的概率是
1 3·
利用树状图或表格可以清楚地表示出某个事件 产生的所有可能出现的结果,从而较方便地求出某 些事件产生的概率.
除上述方法外,还可以用什么方法解决这个问题?
列表
大刚 小亮
走A
走B
走A
AA
AB
走B
BA
BB
所有等可能的4种结果,即AA、AB、BA、BB,其中二人 相
遇的结果有2种.
想一想: 用树状图和列表法来计算概率,有什么优点?
用树状图和列表法来能帮助我们将所有可能的 结果,直观的列出来做到既不重复也不遗漏.
例1. A,B两个盒子里各装入分别写有数字0,1的两 张卡片,分别从每个盒子中随机取出1张卡片,两张 卡片上的数字之积为0的概率是多少?
解:画树状图
从树状图可以看出,两张卡片 上的数字之积共有4个等可能 结果,从中可找出“两数之积 为0”这一事件的结果有3个.
方法二:列表
B
A
0
1
0
0
0
1
0
1
由上表可知,两张卡片上的数字之积共有4种等可能的结 果,积为0的结果有3种.
次数
54
100
46
(1)根据表格提供的信息分别求出事件A、B、C产生的频率;
(2)你能求出事件A、B、C产生的理论概率吗? (3)比较同一事件的频率与概率是否一致?
通过这节课的学习,你将知道答案.
如图,甲、乙两村之间有两条A,而两条道路,小亮从甲村 去往乙村,大刚从乙村去往甲村,二人同时出发.如果每人 从A,B两条道路中随机选择一条,而且他们都不知道对方 的选择,那么二人途中相遇的概率是多少?
用列表法或画树状图法求概率 (3)
用列表法或画树状图法求概率(放回、不放回)【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出nmA P =)(即得所求事件的概率。
【分类】放回、不放回类型一:明确写出放回、不放回类型例1:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?类型二:隐含放回、不放回类型例3:(指定特殊条件)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23答:根据题意,列表如下: 共有 6 种可能的结果,每种结果出现的可能性都相同。
其中恰好选中“A 入口进入、从C ,D 出口”的结果有2种,所以3162)出口D ,C 入口A (==P例4:选人(不放回)(2019济南)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣 传活动,请用树状图法或列表法求出恰好选中“1 男 1 女”的概率.有 8 种,所以32128)(==选择一男一女P 出口出口【同类题】1.(2019历下一模)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.2.(2019年市中一模)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.3.(2019长清一模)已知受访的教师中,E 组只有2名女教师,F 组只有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.例5:选课(放回)(2018济南中考)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.A (A,A ) (B,A ) (C,A )B (A,B ) (B,B ) (C,B ) C(A,C )(B,C )(C,C )共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.【同类题】1. (2015年中考)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.2. (2014年中考)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .32 B .21 C .31 D .41。
树状图和表格法求概率
树状图和表格法求概率知识点一利用频率估计概率1、在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近.2、我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.注意:(1)在试验时应注意试验的随机性;(2)要保证足够多的试验次数,随着试验次数的增加,频率的“波动”就会越小,即趋于相对稳定的状态;(3)得到的概率仅仅是估计值,而不是准确值.我们可以用频率来估计概率,但是不能说频率等与概率,区别在于:频率是通过多次试验而得到的数据,而概率是理论上事件发生的可能性.3、频率与概率的联系:利用频率估计概率:在进行大量试验时,随着试验次数的增加,一个不确定事件的发生的频率逐渐稳定到某一个数值,在这个数值附件摆动,这个数值便是,因此可以用平稳时的频率来估计这个事件发生的概率。
利用概率指导频率:频率的合理性和科学性依赖于概率理论的严密性。
4、频率与概率的区别:1)概念不同:每个对象出现的次数与总次数的比值称为。
刻画事件A发生的可能性大小的数值,称为事件A发生的。
2)意义不同:频率所描述对象可以是确定事件,也可以是不确定事件。
概率所描述对象通常为不确定事件。
3)性质不同:频率是试验统计值,是随着试验次数的变化而不断变化的。
概率是不确定事件本身所固有的特性,是不确定事件的一种内部规律,其数值是固定的,不随着试验次数的变化而变化。
注意:频率是变化的,概率是固定的。
二者存在一定的偏差,频率的值无限接近于概率的值。
5、利用频率估计概率可以估算数学或实际生活中的不能或不易直接获得的数值。
6、用抽取法估计数目两种解决方法:(1)从袋中随意摸出一个球,记下颜色,然后将其放回袋中,重复做这一过程,进行一定的次数,记录其中某一个颜色的球出现的次数,利用频率估计概率估算这一颜色球的数量。
依据:重复多次试验时,试验频率约等于概率。
(2)利用抽样调查,从袋中一次摸出10个球,求出其中某一个颜色球的个数与10的比值,再把球放回袋中,不断重复上述过程,摸一定的次数,求出这个颜色球的个数与10的比值的平均数,即平均概率,利用平均概率来估算这一颜色球的数量。
北师大版九年级上册数学《用树状图或表格求概率》概率的进一步认识说课教学复习课件
卡片标记的数字之和为偶数,则按照小明的想法参加敬老服 务活动,若抽出的两张卡片标记的数字之和为奇数,则按照 小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平 吗?请说明理由.
解:不公平.
理由如下:列表得
小亮
和
4
小明
4
8
5
9
6
10
5
6
9
10
10
11
11
12
由表可知,共有 9 种等可能的结果,其中和为偶数的有 5 种结 果,和为奇数的有 4 种结果,
2. 能够借助概率的大小判断游戏的公平性.(难点)
课前预习
(一)知识探究 当事件涉及多种可能的结果时,可选择 画画树树状状图图 或 列表 列出所有等可能出现的结果.当事件涉及三个或更多 的因素时,为了不重不漏地列出所有可能的结果,通常采用 树树状状图图 列出所有可能出现的结果.
(二)预习反馈
1. 用 2,3,4 三个数字排成一个三位数,则排出的数是
知识点 2 判断游戏公平性 例2 小石和小丁利用盒子里的三张卡片做游戏,卡片上分别写有 A, A,B,这些卡片除了字母外完全相同.从中随机摸出一张卡片记下字母, 放回盒子后充分搅匀,再从中随机摸出一张卡片记下字母.如果两次摸 到的卡片字母相同则小石获胜,否则小丁获胜,这个游戏公平吗?请用 画树状图或列表的方法说明理由.
【思路点拨】用 A,a 表示第 1 张的上下部分,用 B,b 表示第 2 张的上下部分,用 C,c 表示第 3 张的上下部分,画 树状图展示所有 9 种等可能的结果数,再找出这两张恰好能 拼成原来的一幅画的结果数,然后根据概率公式求解.
解:用 A,a 表示第 1 张的上下部分, 用 B,b 表示第 2 张的上下部分, 用 C,c 表示第 3 张的上下部分,
概率讲义(树状图和列表法)
概率知识点1 树状图(或列表法)的使用对于简单的概率类题型我们可以通过列举法,计算事件发生的频率的分析来估计事件发生的概率,但是对于可能情况较多的事件,我们可以通过用树状图或列表法来解决树状图法:①分层.分清事件发生的层次,哪些情况是第一层(第一次)发生的,哪些是第二层(第二次)发生的;②根据分层用树状图把每一层(每一次)表示出来,然后计算事件发生的概率;列表法:将前后两次发生的事件在表格中全部表达出来,在其中计算事件发生的次数,进而计算频率.例1.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为例2.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.21=63【解析】(1)树状图如图所示,选手一共有8种等可能的结果,分别为(√,√,√)、(√,√,×)、(√,×,√)、(√,×,×)、(×,√,√)、(×,√,×)、(×,×,√)、(×,×,×). 开始(2)由(1)得选手A 的结果共有8种等可能情况,其中晋级的情况有4种,故其概率为41=82例 3.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图的方法列出所有等可能的结果,并求出两次好抽取的卡片上的实数之差为有理数的概率.【解析】(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,∴从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是:23(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况, ∴两次好抽取的卡片上的实数之差为有理数的概率为: 例4.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A .15B .25C .35D .45例5.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.例6.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .例7.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x ;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x 、y 确定的点(x ,y )在函数6y x =-+图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x 、y 满足xy>6,则小明胜;若x 、y 满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?例8.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x 2-3x+2=0的解的概率.。
树状图、列表法 ppt课件
ppt课件
1
“剪刀,石头,布”这个 游戏公平吗
ppt课件
2
.
概率的计算公式:
关注结果的个数
所有等可能结果的个数
3. 有一对酷爱运动的年轻夫妇给他们12个月大 的婴儿拼排3块分别写有“20”,“08"和“北 京”的字块,如果婴儿能够排成"2008北京” 或者“北京2008".则他们就给婴儿奖励,假 设婴儿能将字块横着正排,那么这个婴儿能得 到奖励的概率是___________.
4(2011河南12.)现有两个不透明的袋子,其中 一个装有标号分别为1、2的两个小球,另—个装 有标号分别为 2、3、4的三个小球,小球除标号 外其它均相同,从两个袋子中各随机摸出 1个小 球,两球标号恰好相同的概率是 .
2、如图,袋中装有两个完全相同的球,分别 标有数字“1”和“2”.小明设计了一个游 戏:游戏者每次从袋中随机摸出一个球,并自 由转动图中的转盘(转盘被分成相等的三个 扇形).
1 2
3
游戏规则是: 如果所摸球上的数字与转盘转出的数字 之和为2,那么游戏者获胜.求游戏者获胜 的概率.
ppt课件 乙
4
21
老师结束寄语
我们都生活在一个充满概率的世 界里。当我们要迈出人生的一小 步时,就面临着复杂的选择,虽 然你有选择生存的方式和权利, 但你选择的概率永远达不到100%
ppt课件 22
有的同学有99 %想在学习上出 人头地的概率,但却选择了1% 等待的概率,这一等就是一生 的现象已经司空见惯了,你还 在等什么!?
鲁教版九年级数学下册课件_6.1 用树状图或表格求概率
感悟新知
解:记袋中的4 个球为白1,白2,黑1,黑2. 根据题意列表如下:
知2-练
第一次 第二次
白1 白2 黑1 黑2
白1
白1 白2 白1 黑1 白1 黑2
白2 白2 白1
白2 黑1 白2 黑2
黑1 黑1 白1 黑1 白2
黑1 黑2
黑2
黑2 白1 黑2 白2 黑2 黑1
感悟新知
知2-练
共有12 种等可能的结果,符合题意的结果有8 种, 故取出的2 个球中有1 个白球,1 个黑球的概率
现的结果和次数,以及某一事件发生出现的结果和次数, 并求出概率的方法.
感悟新知
知2-讲
2. 适用条件 当一次试验涉及两个因素(同时进行两种相同的操作
或先后进行两次相同的操作,即两步试验),并且可能出 现的等可能结果数目较多时,为不重不漏地列出所有可能 的结果,常采用列表法.
感悟新知
知2-讲
特别提醒 1.列表法适用于求两步试验的概率,利用表格的行和列,
感悟新知
解:画树状图如图3-1-1. 由树状图知,共有4 种等可能 的结果,两次传球后,球恰 好在乙手中的结果只有1 种, 所以两次传球后,球恰好在乙手中的概率为14.
知1-练
感悟新知
知1-练
(2) 求三次传球后,球恰好在甲手中的概率.
解题秘方:先确定试验有几步,再确定每步的情 况,选用画树状图法.
感悟新知
解:画树状图如图3-1-2. 由树状图知,共有8 种等可能的 结果,三次传球后,球恰好在甲 手中的结果有2 种,所以三次传
球后,球恰好在甲手中的概率为
2 8
=
14.
知1-练
感悟新知
知1-练
1-1. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面
九年级数学上册教学课件《用画树状图法求概率》
AB 甲
CD E乙
HI 丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
C DE
C DE
丙 HI HI HI HI HI HI
n
注意 用列表法或画树状图法求概率的前提: 1.可能出现的结果只有有限个; 2.各种结果出现的可能性大小相等.
思考
列表法和画树状图法的选用:
(1)当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”; (2)当一次试验要涉及三个或更多的因素(或步 骤)时,应采用“画树状图法”.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
练习
【教材P139练习】
经过某十字路口的汽车,可能直行,也可能向左转或向
右转.如果这三种可能性大小相同,求三辆汽车经过这个十
字路口时,下列事件的概率:
(1)三辆车全部继续直行;
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?