振幅调制器与振幅解调器实验报告

合集下载

振幅调制与解调实验报告

振幅调制与解调实验报告

振幅调制与解调实验报告简介本实验旨在研究和探索振幅调制与解调的基本原理和实现方法。

通过实际操作和测量,深入理解振幅调制与解调的过程,以及其在通信领域的应用。

实验设备和表格实验设备•信号发生器•示波器•振幅调制解调实验箱•小型音频功放•双踪示波器实验表格时间调制信号(s1)载波信号(c1)调制信号频率载波信号频率调制指数调制方式解调方式解调结果1 5V 10V 1kHz 10kHz 0.5 AM 整波 2.5V2 2V 8V 500Hz 5kHz 0.2 AM 整波1V3 3V 6V 500Hz 10kHz 0.3 AM 整波 1.8V实验步骤1.将信号发生器的输出接入振幅调制解调实验箱的输入端口,设定调制信号的频率和振幅。

2.将示波器的探头连接到实验箱的一个测试点,另一个探头连接到振幅调制解调实验箱的输出端口。

3.调节示波器的水平和垂直位置以观察到输入信号和输出信号。

4.将调制信号的频率和振幅设定为实验表格中的数值,并选择合适的调制方式。

5.调节示波器的水平和垂直位置以观察到调制后的信号。

6.将解调方式设定为实验表格中指定的方式,并调节解调电路的参数。

7.观察示波器上的解调结果,并记录在实验表格中。

实验结果分析调制信号和载波信号在实验中,我们选择不同的调制信号和载波信号的频率、振幅和调制指数进行实验。

根据实验表格的记录,我们可以观察到以下结果: 1. 调制信号的振幅较大时,调制后的信号振幅也较大,反之亦然。

2. 调制信号的频率与载波信号的频率不同时,调制后的信号会产生上下变频的现象。

3. 调制指数的变化会影响到调制信号的振幅变化程度。

解调结果根据实验表格的记录,我们可以观察到解调结果的变化。

通过对比解调结果和调制信号,可以得出以下结论: 1. 整波解调方式可以较好地还原原始调制信号的振幅变化。

2. 解调结果的波形会随着解调方式和参数的变化而变化,选择合适的解调方式和调节参数能够得到较好的解调效果。

高频调制实验报告

高频调制实验报告

一、实验目的1. 理解高频调制的基本原理和过程。

2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。

3. 学习使用实验仪器进行高频信号的调制和解调。

4. 分析调制信号的频谱特性,验证调制和解调效果。

二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。

本实验主要研究振幅调制(AM)。

1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。

AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。

2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。

常见的解调方法有包络检波法和同步检波法。

三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。

(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。

(3)将载波信号和信息信号输入调制器,进行振幅调制。

(4)观察调制器的输出波形,验证调制效果。

2. 解调过程(1)将调制信号输入解调器,进行振幅解调。

(2)观察解调器的输出波形,验证解调效果。

3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。

(2)观察调制信号的频谱特性,验证调制效果。

4. 性能测试(1)测试调制信号的调制指数 \( m \)。

(2)测试解调信号的解调指数 \( D \)。

五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。

调制信号的波形如图1所示。

图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。

解调信号的波形如图2所示。

通信电子线路实验报告

通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

本实验中载波是由晶体振荡产生的10MHZ高频信号。

1KHZ的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5与V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。

器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。

振幅键控(ASK)调制与解调实验报告

振幅键控(ASK)调制与解调实验报告
模块7:DIN
锁相环法位同步提取信号输入
模块7:BS
模块4:FSK-BS
提取的位同步信号
2、将模块7上的拨码开关S2拨为“1000”,观察模块4上信号输出点“FSK-DOUT”处的波形,并调节模块4上的电位器W5(顺时针拧到最大),直到在该点观测到稳定的PN码。
3、用示波器双踪分别观察模块3上的“FSK-NRZ”和模块四上的“OUT2”出的波形,将“OUT2”出FSK解调信号与信号源产生的PN码进行比较。
FSK调制模块:
TH7:FSK-NRZ经过反相后信号观测点。
FSK-OUT:FSK调制信号输出点。
FSK解调模块:
TH7: FSK调制信号经整形1后的波形观测点。
TH8:FSK调制信号经单稳(U10A)的信号观测点。
TH9:FSK调制信号经单稳(U10B)的信号观测点
TH10:FSK调制信号经两路单稳后相加信号观测点。
3、观察ASK解调输出“OUT1”处波形,并与信号源产生的PN码进行比较。调制前的信号与解调后的信号形状一致,相位有一定偏移。
4、通过信号源模块上的拨码开关S4控制产生PN码,改变送人的基带信号,重复上述实验;也可以改变载波频率来实验。
实验感想:通过此次实验,使我更加地了解用键控法产生ASK信号的方法,更深地懂得了ASK非相干解调的原理。观察到ASK调制和解调地波形。也使我更加熟练地操作示波器。
目的端口
连线说明
模块3:ASK-OUT
模块4:ASKIN
ASK解调输入
模块4:ASK-DOUT
模块7:DIN
锁相环法位同步提取信号
模块7:BS
模块4:ASK—BS
提取的位同步信号
2、将模块上的拨码开关S2拨为“ASK-NRZ”频率的16倍,如:“ASK-NRZ”选8K时,s2选128k,即拨“1000”。观察模块4上信号输出点“ASK-DOUT”处的波形,把电位器W3顺时针拧到最大,并调节电位器W1(改变判决门限),直到在“ASK-DOUT”出观察到稳定的PN码。

振幅调制与解调设计报告

振幅调制与解调设计报告

振幅调制与解调设计报告⾼频电⼦线路课程设计实验报告《振幅调制与解调电路设计》信息学院 09电⼦B班吴志平 0915212020⼀、设计⽬的:1、通过实验掌握调幅与检波的⼯作原理。

2、掌握⽤集成模拟乘法器实现全载波调幅和抑制波双边带调幅的⽅法和过程,并研究已调波与⼆输⼊信号的关系。

3、进⼀步了解调幅波的原理,掌握调幅波的解调⽅法。

4、掌握⽤集成电路实现同步检波的的⽅法。

5、掌握调幅系数测量与计算的⽅法。

⼆、设计内容:1.调测模拟乘法器MC1496正常⼯作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑⽌载波的双边带调幅波。

4.完成普通调幅波的解调5.观察抑制载波的双边带调幅波的解调三、设计原理:幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正⽐。

通常称⾼频信号为载波信号,低频信号为调制信号,调幅器即为产⽣调幅信号的装置。

调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。

调幅波解调⽅法有⼆极管包络检波器和同步检波器,在此,我们主要研究同步检波器。

同步检波器:利⽤⼀个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除⾼频分量⽽获得调制信号。

本设计采⽤集成模拟器1496来构成调幅器和解调器。

图4-1为1496芯⽚内部电路图,它是⼀个四象限模拟乘法器的基本电路,电路采⽤了两组差动对由V1—V4组成,以反极性⽅式相连接;⽽且两组差分对的恒流源⼜组成⼀对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限⼯作。

D、V7、V8为差动放⼤器 V5与 V6的恒流源。

进⾏调幅时,载波信号加在 V1—V4的输⼊端,即引脚的⑧、⑩之间;调制信号加在差动放⼤器V5、V6的输⼊端,即引脚的①、④之间,②、③脚外接 1KΩ电位器,以扩⼤调制信号动态范围,⼰调制信号取⾃双差动放⼤器的两集电极(即引出脚(6)、(12)之间)输出。

模拟通信实验报告

模拟通信实验报告

一、实验目的1. 理解模拟通信系统的基本组成和原理;2. 掌握模拟调制和解调的基本方法;3. 学习模拟信号在信道中的传输特性;4. 通过实验加深对通信理论知识的理解。

二、实验器材1. 模拟通信实验箱;2. 双踪示波器;3. 频率计;4. 调制器和解调器;5. 信号发生器;6. 计算器。

三、实验原理模拟通信系统是指将信息源产生的模拟信号,通过调制器转换为适合在信道中传输的信号,再通过解调器恢复出原始信号的过程。

实验主要涉及以下几种调制方式:1. 振幅调制(AM):通过改变载波的振幅来传输信息;2. 频率调制(FM):通过改变载波的频率来传输信息;3. 相位调制(PM):通过改变载波的相位来传输信息。

实验中,我们将通过调制器和解调器对模拟信号进行调制和解调,观察调制信号和解调信号的波形,并分析调制和解调过程中的特性。

四、实验步骤1. 振幅调制(AM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的AM信号波形,分析调制信号的幅度、频率和相位变化;(4)将AM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

2. 频率调制(FM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的FM信号波形,分析调制信号的幅度、频率和相位变化;(4)将FM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

3. 相位调制(PM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的PM信号波形,分析调制信号的幅度、频率和相位变化;(4)将PM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

五、实验结果与分析1. 振幅调制(AM)实验结果:调制信号和载波信号频率一致,调制器输出AM信号,解调器输出信号波形与调制信号基本一致,恢复效果较好。

振幅调制与解调实验报告

振幅调制与解调实验报告

振幅调制与解调实验报告一、实验目的二、实验原理1. 振幅调制原理2. 振幅解调原理三、实验器材与仪器1. 实验器材2. 实验仪器四、实验步骤1. 振幅调制步骤2. 振幅解调步骤五、实验结果与分析1. 振幅调制结果及分析2. 振幅解调结果及分析六、实验心得体会一、实验目的本次振幅调制与解调实验的主要目的是了解振幅调制与解调的基本原理,掌握振幅调制和解调的方法,进一步加深对通信原理的认识。

二、实验原理1. 振幅调制原理振幅调制是指将模拟信号的振幅变化转换成载波信号的振幅变化。

在振幅调制中,被传输信息信号称为基带信号,载波信号称为高频信号。

通过将基带信号与高频载波进行线性叠加,即可得到一个新的复合波形,其包含了被传输信息和高频载波两部分内容。

2. 振幅解调原理振幅解调是指将调制信号中的信息信号从高频载波中分离出来的过程。

在振幅解调中,需要使用一个解调器,它会将接收到的带有信息信号的复合波形进行处理,将其分离为基带信号和高频载波两部分。

三、实验器材与仪器1. 实验器材本次实验所需要使用的器材主要包括:(1)信号发生器;(2)示波器;(3)电阻箱。

2. 实验仪器本次实验所需要使用的仪器主要包括:(1)振幅调制解调实验箱;(2)万用表。

四、实验步骤1. 振幅调制步骤(1)连接好各个设备,并打开电源。

(2)设置信号发生器输出正弦波,并通过电阻箱设置合适的基带信号电平。

(3)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(4)通过示波器观察振幅调制后的波形,并记录下相关数据。

2. 振幅解调步骤(1)连接好各个设备,并打开电源。

(2)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(3)通过示波器观察振幅调制后的波形,并记录下相关数据。

(4)将解调器与示波器相连,并通过万用表测量解调输出电压。

五、实验结果与分析1. 振幅调制结果及分析在进行振幅调制实验时,我们可以通过观察示波器上的波形来验证振幅调制是否成功。

振幅调制器与解调器的设计

振幅调制器与解调器的设计
调节电位器RP1,获得调制度分别为30%,100%及>100% 的调幅波,依次加至AM解调器UAM-IN的输入端,分别记录 解调输出波形,并与调制信号相比。
Ma=30%
调制信号峰峰值为200mv
解调信号峰峰值为73mv 输出信号波形
Ma=100%
调制信号峰峰值为200mv
解调信号峰峰值为66mv 输出信号波形
峰值为564mv 调节RP1,VAB=-0.4V,输出信号波形
峰值为286mv 调节RP1,VAB=-0.2V,输出信号波形
峰值为0mv 调节RP2,VAB=0V,输出信号波形
峰值为266mv 调节RP2,VAB=+0.2V,输出信号波形
峰值为558mv 调节RP2,VAB=+0.4V,输出信号波形
频率为1KHz,峰值为80mv 输出信号波形
频率为1KHz,峰值为100mv 输出信号波形
实验步骤六
将函数波发生器的输出正弦信号加到AM调幅器实验电路板的 调制信号输入IN2端。 示波器的CH1通道接到AM调幅器实验电路板的输出OUT端。 观察输出信号波形,调节RP2电位器使输出信号最小。
输出信号波形
VMIN=19mV
调幅输出信号波形
实验步骤十四
调节RP1改变VAB的值,观察并记录ma =100% 和ma >100% 两种调幅波在零点附近的波形情况。
Ma=100% 调节RP1,ma=100%,调幅输出信号波形
ma>100% 调节RP1, ma>100% ,调幅输出信号波形
三、实现解调全载波信号(AM)
在AM调制器的载波信号输入端IN1加 VC(t)=10Sin2π×105t(mV)信号(已调好),调制信号端 IN2不加信号。

振幅调制 解调实验报告

振幅调制 解调实验报告

振幅调制解调实验报告1. 实验目的本实验旨在通过振幅调制与解调实验,了解振幅调制与解调的原理,掌握振幅调制与解调的基本方法和技巧,以及了解其在通信领域中的应用。

2. 实验器材- 信号发生器- 振幅调制解调实验箱- 示波器- 直流稳压电源- 多用电表- 连接线等实验仪器设备3. 实验原理3.1 振幅调制振幅调制(Amplitude Modulation,AM)是将音频等低频信号通过调制器幅度调制到载波上的一种调制方式。

振幅调制可以分为线性调制与非线性调制两种情况。

3.1.1 线性调制线性调制是指调制器的输出与调制信号的幅度成正比变化。

此时,调制信号的幅度越大,产生的调制波的振幅也越大。

3.1.2 非线性调制非线性调制是指调制器的输出与调制信号的幅度非线性变化。

当调制信号的幅度较小时,调制波的振幅较小;当调制信号的幅度较大时,调制波的振幅反而会变小。

3.2 振幅解调振幅解调是将调幅信号中的信息信号从载波中还原出来的过程。

常用的解调电路有简单的包络检波电路和同步检波电路。

4. 实验步骤4.1 振幅调制1. 按照实验电路图连接电路,将信号发生器的输出接入调制器的调制端,设置合适的频率和幅度。

2. 连接示波器,将示波器的一路接入调制器的调制端,另一路接入调制器的输出端。

3. 打开电源,调节调制幅度、偏置电压、调制频率等参数,观察得到的调制波形。

4.2 振幅解调1. 在调制器输出端使用衰减器将载波的强度减小。

2. 将衰减后的载波接入解调器的输入端,使用示波器观察解调器输出的波形。

3. 根据需求调节解调电路的参数,最终得到解调后的信号。

5. 实验结果与分析在振幅调制实验中,通过调节调制器的参数,我们成功地将信号发生器产生的低频信号调制到载波上,并观察到了所得到的调制波形。

调制幅度、偏置电压和调制频率的调节对于调制波形的形态有一定的影响,通过调节这些参数,我们可以得到不同形态的调制波形。

同时,在振幅解调实验中,我们通过调节解调电路的参数,成功将调幅信号中的信息信号从载波中还原出来。

AM振幅调制器和解调器--胡显

AM振幅调制器和解调器--胡显

高频课程设计报告题目:AM振幅调制器和解调器的设计实习学校:中国地质大学(武汉)指导老师:罗大鹏组员:胡显、赵昌昌、李子幸、邹武华班级: 071123日期: 2014年月5日5日一、AM 振幅调制器及解调器的设计要求:设计要求:用模拟乘法器设计一个振幅调制器,使其能实现AM 信号调制,并设计解调器输出波形无失真,频率正常。

主要指标:载波频率:465KHz 正弦波 调制信号:1KHz 正弦波输出信号幅度:≥3V (峰-峰值)无明显失真二、主要元器件的选择:模拟乘法器的选择采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单的多,而且性能优越,所以目前在无级通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596。

本次设计选用MC1496。

三、模拟乘法器的工作原理:模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件,主要功能是实现两个互不相关信号的相乘,即输出信号与两输入信号相乘积成正比。

它有两个输入端口,即X 和Y 输入端口。

根据双差分对模拟相乘器基本原理制成的单片集成模拟相乘器MC1496是四象限的乘法器[8]。

其内部电路如图2-1所示,其中7V 、1R 、8V 、2R 、9V 、3R 和5R 等组成多路电流源电路,7V 、5R 、1R 为电流源的基准电路,8V 、9V 分别供给5V 、6V 管恒值电流2/0I ,5R 为外接电阻,可用以调节2/0I 的大小。

由5V 、6V 两管的发射极引出接线端2和3,外接电阻Y R ,利用Y R 的负反馈作用,以扩大输入电压2U 的动态范围。

C R 为外接负载电阻。

根据差分电路的基本工作原理,可以得到Tc c c U u thi i i 21521=- (2-1) Tc c c U u thi i i 21634=- (2-2) Tc c U u thI i i 22065=- (2-3) 式中1c i 、2c i 、3c i 、4c i 、 5c i 、6c i 分别是三极管1V 、2V 、3V 、4V 、5V 、6V 的集电集电流。

通信原理实验振幅键控(ASK)调制与解调实验

通信原理实验振幅键控(ASK)调制与解调实验

《通信原理》实验报告实验七: 振幅键控(ASK)调制与解调实验实验九:移相键控(PSK/DPSK)调制与解调实验系别:信息科学与技术系专业班级:电信0902学生姓名:同组学生:成绩:指导教师:惠龙飞(实验时间:2011年12月1日——2011年12月1日)华中科技大学武昌分校ﻬ实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

一、实验器材1、 信号源模块一块 2、 ③号模块一块 3、 ④号模块一块 4、 ⑦号模块一块 5、 20M双踪示波器一台 6、 连接线若干二、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2AS K)、二进制移频键控(2FSK)、二进制移相键控(2PS K)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2AS K信号,这种二进制振幅键控方式称为通—断键控(O OK )。

2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(9-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=PP a n -出现概率为出现概率为110 ﻩﻩ (9-2)综合式9-1和式9-2,令A =1,则2ASK 信号的一般时域表达式为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= ﻩ(9-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

振幅调制实验报告

振幅调制实验报告

一、实验目的1. 理解振幅调制的基本原理和过程。

2. 掌握使用示波器等仪器测量调幅系数的方法。

3. 通过实验验证振幅调制和解调的基本性能。

4. 增强对高频电子线路实验系统的熟悉程度。

二、实验原理振幅调制(AM)是一种将低频信号(调制信号)加载到高频载波上的技术。

其基本原理是利用调制信号控制高频载波的振幅,使载波的振幅随调制信号的规律变化。

振幅调制分为普通调幅(AM)、抑制载波双边带调幅(DSB-SC)和抑制载波单边带调幅(SSB-SC)三种。

本实验主要研究普通调幅(AM)调制和解调过程。

调制过程包括:1. 调制信号的产生:通过信号发生器产生所需频率和幅度的调制信号。

2. 载波信号的产生:通过信号发生器产生所需频率和幅度的载波信号。

3. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。

解调过程包括:1. 检波:将调幅信号通过二极管检波,得到与调制信号幅度成正比的检波信号。

2. 低通滤波:将检波信号通过低通滤波器,滤除高频分量,得到还原后的调制信号。

三、实验设备1. 信号发生器2. 示波器3. 信号发生器4. 二极管检波器5. 低通滤波器6. 连接线7. 实验模块四、实验步骤1. 调制信号和载波信号的产生:分别设置调制信号和载波信号的频率、幅度等参数。

2. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。

3. 观察调幅信号:使用示波器观察调幅信号的波形,分析调幅系数。

4. 检波:将调幅信号通过二极管检波,得到检波信号。

5. 低通滤波:将检波信号通过低通滤波器,得到还原后的调制信号。

6. 观察还原后的调制信号:使用示波器观察还原后的调制信号,分析调制效果。

五、实验结果与分析1. 调幅系数测量:通过示波器观察调幅信号的波形,可以计算出调幅系数。

调幅系数定义为调制信号幅度与载波信号幅度之比。

2. 调制效果分析:通过观察还原后的调制信号,可以分析调制效果。

如果还原后的调制信号与原始调制信号相似,则说明调制效果良好。

振幅调制实验报告体会

振幅调制实验报告体会

振幅调制实验报告体会引言振幅调制是一种常见的调制技术,广泛应用于无线通信、广播电视等领域。

通过改变载波信号的振幅来携带信息信号,实现信息的传输。

在本次实验中,我们对振幅调制技术进行了深入学习,并通过实验验证了相关理论。

实验目的本次实验主要目的是理解振幅调制的原理和实现过程,掌握信号的调制和解调方法,以及对实际调制电路进行设计和调试。

实验步骤1. 准备实验所需的器材和设备:信号发生器、调制电路、示波器等。

2. 搭建振幅调制电路,并连接相应的信号源和示波器。

3. 调节信号发生器产生不同频率和振幅的信号,观察在不同调制指数下的调制效果。

4. 通过示波器观测调制信号的波形和频谱特征,并记录相关数据。

5. 进行解调实验,验证振幅调制的可逆性和解调效果。

实验结果在实验过程中,我们得到了一系列关于振幅调制的实验结果。

通过调节信号发生器的频率和振幅,我们成功实现了不同调制指数下的振幅调制效果,并观察到了所得到的调制波形和频谱变化。

实验结果表明,在调制指数较小的情况下,调制信号所携带的信息相对较少,振幅调制后的波形呈现出与原始信号类似的形状,且频谱主要集中在两侧的边带区域。

而在调制指数增大的情况下,调制信号所携带的信息更丰富,振幅调制后的波形波动更明显,并且频谱分布范围更广。

通过解调实验,我们进一步验证了振幅调制的可逆性,即通过解调电路可以将调制信号还原为原始信号。

在解调过程中,我们观察到解调后的波形与原始信号波形高度一致,仅存在细微的失真。

实验总结通过本次实验,我们对振幅调制技术有了更深入的理解。

在实验过程中,我们不仅搭建了振幅调制电路,还观察了不同调制指数下的调制波形和频谱特征,以及进行了解调实验。

实验结果充分证明了振幅调制的原理和实际应用性能。

在实验中,我们还深刻体会到了实验设计和装置调试的重要性。

通过不断调整参数和观察数据,我们逐步得到了准确的实验结果,并验证了相关理论。

实验过程中的挑战和困难促使我们进一步提高了实验操作能力和解决问题的能力。

振幅调制实验报告

振幅调制实验报告

振幅调制实验报告振幅调制实验报告引言:振幅调制是一种常见的调制方式,用于在无线通信中传输信息。

本实验旨在通过实际操作,深入理解振幅调制的原理与特点,并通过实验数据分析,验证振幅调制的有效性和可行性。

实验设备和方法:本实验使用了信号发生器、调制器、解调器和示波器等设备。

首先,将信号发生器与调制器相连,调制器的输出与解调器相连,解调器的输出与示波器相连。

然后,调节信号发生器的频率和振幅,观察解调器输出信号的波形和振幅变化。

实验结果分析:在实验过程中,我们首先固定了信号发生器的频率,然后逐渐增加振幅,观察解调器输出信号的变化。

实验结果显示,随着振幅的增加,解调器输出信号的振幅也随之增加。

这验证了振幅调制的基本原理:通过改变信号的振幅,将信息嵌入到载波信号中。

此外,我们还尝试了改变信号发生器的频率,观察解调器输出信号的变化。

实验结果显示,随着频率的增加,解调器输出信号的振幅也随之增加。

这说明振幅调制对频率的敏感性较低,更适用于传输低频信号。

实验讨论:振幅调制作为一种基础的调制方式,广泛应用于无线通信领域。

其优点是简单易实现,适用于传输语音、音乐等模拟信号。

然而,振幅调制也存在一些缺点,如抗干扰能力较差,传输距离受限等。

为了提高抗干扰能力和传输距离,人们逐渐发展了其他调制方式,如频率调制和相位调制。

频率调制通过改变信号的频率来传输信息,相位调制则通过改变信号的相位来传输信息。

这些调制方式在不同的应用场景中具有各自的优势。

结论:通过本次实验,我们深入了解了振幅调制的原理和特点。

实验结果验证了振幅调制的有效性和可行性。

振幅调制作为一种基础的调制方式,为无线通信提供了重要的技术支持。

然而,我们也应该认识到振幅调制存在的一些局限性,并在实际应用中选择合适的调制方式。

总之,本次实验不仅加深了我们对振幅调制的理解,也为我们进一步探索无线通信技术提供了基础。

通过实际操作和数据分析,我们对振幅调制的原理和特点有了更加清晰的认识。

振幅调制器实验报告

振幅调制器实验报告

振幅调制器实验报告振幅调制器实验报告引言:振幅调制器是一种常见的调制器件,用于将信息信号转换成适合传输的调制信号。

本实验旨在通过实际操作和测量,了解振幅调制器的原理和性能。

实验器材:1. 振幅调制器电路板2. 信号发生器3. 示波器4. 电压表5. 电源6. 连接线等实验步骤:1. 将信号发生器的输出端与振幅调制器的输入端相连,调节信号发生器的频率和幅度,使其产生一个正弦波信号。

2. 将示波器的探头连接到振幅调制器的输出端,观察并记录调制后的信号波形。

3. 通过改变信号发生器的频率和幅度,观察并记录调制后信号的变化。

4. 使用电压表测量输入信号和输出信号的幅度,并计算调制度。

实验结果:在实验中,我们观察到振幅调制器能够将低频的信息信号调制到高频的载波信号上。

当信息信号的幅度变化时,调制后的信号的振幅也相应变化。

通过改变信号发生器的频率和幅度,我们发现调制后的信号的频率和幅度也会发生相应的变化。

在示波器上观察到的调制后的信号波形呈现出明显的包络线,这是由于振幅调制器的工作原理所致。

当信息信号的幅度较大时,调制后的信号的振幅也较大,而当信息信号的幅度较小时,调制后的信号的振幅也较小。

通过测量输入信号和输出信号的幅度,我们可以计算出调制度,即调制后信号的振幅与载波信号的振幅之比。

实验结果表明,调制度与输入信号的幅度成正比,与载波信号的幅度无关。

讨论与分析:振幅调制器是一种简单且常用的调制器件,广泛应用于无线通信和广播等领域。

通过调制,信息信号可以被传输到较远的地方,而不受信号衰减和干扰的影响。

在实验中,我们观察到振幅调制器对输入信号的幅度变化非常敏感。

这意味着在实际应用中,我们需要对输入信号进行适当的幅度调整,以确保调制后的信号能够被准确地传输和解调。

此外,振幅调制器还存在一些局限性。

例如,调制后的信号容易受到噪声和干扰的影响,从而降低了信号的质量。

因此,在实际应用中,我们需要采取一些措施来提高信号的抗干扰能力。

幅度调制与解调实验报告

幅度调制与解调实验报告

幅度调制与解调实验报告一、实验目的本次实验旨在深入理解幅度调制(Amplitude Modulation,AM)与解调的基本原理和实现方法,通过实际操作和观察实验现象,掌握相关的理论知识,并培养实验操作能力和数据分析能力。

二、实验原理1、幅度调制幅度调制是使高频载波的振幅随调制信号的变化而变化。

设调制信号为$m(t)$,高频载波为$c(t) = A_c\cos(\omega_c t)$,则幅度调制后的信号为$u_{AM}(t) = A_c + m(t)\cos(\omega_c t)$。

2、解调解调是从已调信号中恢复出原始调制信号的过程。

常见的解调方法有相干解调与非相干解调。

相干解调需要在接收端产生一个与发送端同频同相的本地载波,将已调信号与本地载波相乘后通过低通滤波器得到原始调制信号。

非相干解调则利用包络检波器直接提取已调信号的包络。

三、实验仪器与设备1、信号源:提供调制信号和载波信号。

2、乘法器:实现幅度调制。

3、滤波器:用于滤波和解调。

4、示波器:观察输入输出信号的波形。

四、实验步骤1、连接实验设备,按照电路图搭建实验平台。

2、调节信号源,产生合适的调制信号(如正弦波、方波等)和载波信号(设定频率和幅度)。

3、将调制信号和载波信号输入乘法器进行幅度调制,观察输出的已调信号波形。

4、对于相干解调,在接收端产生与发送端同频同相的本地载波,将已调信号与之相乘,然后通过低通滤波器,观察恢复出的调制信号。

5、对于非相干解调,使用包络检波器对已调信号进行解调,观察解调结果。

五、实验数据与结果1、幅度调制当调制信号为正弦波时,观察到已调信号的振幅随调制信号的幅度变化而变化,且频率仍为载波频率。

当调制信号为方波时,已调信号的包络呈现出与方波相似的形状。

2、相干解调成功恢复出与原始调制信号相似的波形,但存在一定的相位延迟。

3、非相干解调对于正弦波调制,解调效果较好,但存在一定的失真。

对于方波调制,解调后的波形存在明显的顶部失真。

振幅调制实验报告

振幅调制实验报告

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:振幅调制指导教师:一、实验目的1.通过实验了解振幅调制的工作原理。

2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。

3.掌握用示波器测量调幅系数的方法。

二.实验内容1.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。

2.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。

3.用示波器观察调制信号为方波、三角波的调幅波。

三.实验步骤1.实验准备(1)插装好集成乘法器调幅,混频与同步解调模块,接通实验箱电源,模块上电源指示灯和运行指示灯闪亮。

(2)调制信号源:采用实验箱上的低频信号源,其参数调节如下(示波器监测):•频率范围:1kHz•输出峰-峰值:4V(3)载波源:采用实验箱上的高频信号源:•工作频率:2.1MHz(也可采用其它频率);•输出幅度(峰-峰值):200mV,用示波器观测。

2.DSB(抑制载波双边带调幅)波形观察用鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“集成乘法器调幅实验”,显示屏上会显示集成乘法器调幅的原理实验电路,可调电位器可通过鼠标来调整。

(1)DSB信号波形观察将高频信号源输出的载波接入载波输入端(6P1),低频调制信号接入音频输入端(6P2)。

示波器CH1接调制信号6P2,示波器CH2接调幅输出端(6TP3),调整6W1即可观察到调制信号及其对应的DSB信号波形。

其波形如图5-12所示,如果观察到的DSB波形不对称,应微调6W1电位器。

图1图2 图3图4(2)DSB信号反相点观察为了清楚地观察双边带信号过零点的反相,必须降低载波的频率。

本实验可将载波频率降低为100KHZ,幅度仍为200mv。

调制信号仍为1KHZ(幅度峰-峰值4V)。

增大示波器X轴扫描速率,仔细观察调制信号过零点时刻所对应的DSB信号,过零点时刻的波形应该反相,如图5-13所示。

《高频电子线路》振幅调制与解调实验报告

《高频电子线路》振幅调制与解调实验报告

《高频电子线路》振幅调制与解调实验报告课程名称:高频电子线路实验类型:设计型实验项目名称:振幅调制与解调一、实验目的和要求通过实验,学习振幅调制与解调的工作原理、电路组成和调试方法,学习用差分对电路实现AM调制和包络检波电路的设计方法,利用Multisim仿真软件进行仿真分析实验。

二、实验内容和原理1、实验原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

调幅波的解调是调幅的逆过程,即从调幅信号中取出调制信号,通常称之为检波。

调幅波解调方法主要有二极管峰值包络检波器,同步检波器。

2、实验内容(1)设计单差对管实现AM调幅信号电路图。

(2)在电路中双端输入频率为1MHz的载波信号,单端输入频率为10kHz的调制信号,模拟仿真产生AM信号,并用双踪示波器观察调制信号和AM信号波形。

(3)用频谱分析仪测试AM信号的频谱,并进行理论分析对比。

(4)对AM信号采用包络检波,设计检波电路,仿真分析,用双踪示波器观察检波后的调制信号波形。

(5)混频实验仿真分析。

三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、频谱分析仪、直流电源。

四、操作方法与实验步骤及实验数据记录和处理1、设计单差对管实现AM调幅信号电路图2、在电路中Q1和Q2的基极双端接入函数发生器,函数发生器的频率设为1MHz,幅度设为10Vp。

在Q3的基极单端接入函数发生器,其频率设为10kHz,幅度为20Vp。

进行模拟仿真,用双踪示波器观察产生AM信号和调制信号。

3、在Q2的集电极接入频谱分析仪,观察AM信号的频谱结构。

为了便于观察,可将Q3的基极的函数发生器的频率设置为0.5MHz,测量并记录输出信号的频率成分。

C1200pF R2100ΩR1100ΩL1126uH R43kΩXSC3V112VR31.2kΩR55.6kΩR64.7kΩR74.7kΩV212VR810kΩXFG1COMXFG2COMQ12N2923Q22N2923Q32N2923XSA1TINAM 输出信号 f 1(MHz )f 2(MHz )f 3(MHz )测量频率 理论计算频率4、包络检波实验,用双踪示波器观察原调制信号和包络检波后恢复的调制信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、实验电路图
1.1496组成的调幅器
图6-2 1496组成的调幅器实验电路
2、二极管包络检波电路
图 1 二极管包络检波器电路
3、MC1496 组成的解调器实验电路
图 2 MC1496 组成的解调器实验电路三、工作原理
2.1496组成的调幅器
图6-2 1496组成的调幅器实验电路
用1496组成的调幅器实验电路如图2所示。

图中,与图1相对应之处是:R8对应于R t,R9对应于R B,R3、R10对应于R C。

此外,W1用来调节⑴、⑷端之间的平衡,W2用来调节⑻、⑽端之间的平衡。

此外,本实验亦利用W1在⑴、⑷端之间产生附加的直流电压,因而当IN2端加入调制信号时即可产生AM波。

晶体管BG1为射极跟随器,以提高调制器的带负载能力。

3.包络检波
二极管包络检波器是包络检波器中最简单、最常用的一种电路。

它适合于解调信号电平较大(俗称大信号,通常要求峰-峰值为0.5V以上)的AM波。

它具有电路简单,检波线性好,易于实现等优点。

本实验电路主要包括二极管BG2和RC低通滤波器,如图1所示。

图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波。

因此,选择合适的时间常数RC就显得很重要。

4.同步检波
同步检波,又称相干检波。

它利用与已调幅波的载波同步(同频、同相)的一个恢复载波(又称基准信号)与已调幅波相乘,再用低通滤波器滤除高频分量,从而解调得调制信号。

本实验采用MC1496集成电路来组成解调器,如图2所示。

图中,恢复载波v c先加到输入端IN1上,再经过电容C1加在⑻、⑽脚之间。

已调幅波v amp先加到输入端IN2上,再经过电容C2加在⑴、⑷脚之间。

相乘后的信号由⑿脚输出,再经过由C4、C5、R6组成的 型低通滤波器滤除高频分量后,在解调输出端(OUT)提取出调制信号。

需要指出的是,在图2中对1496采用了单电源(+12V)供电,因而⒁脚需接地,且其他脚亦应偏置相应的正电位,恰如图中所示。

图 2 MC1496 组成的解调器实验电路
四、实验步骤
(一)振幅调制
1.实验准备
(1)按要求使用正确的电路板模块,并接通电源。

(2)调制信号源:采用低频函数发生信号发生器,其参数调节如下(示波器监测):•频率范围:1kHz
•波形选择:~
•幅度衰减:-20dB
•输出峰-峰值:100mV
(3)载波源:采用AS1637函数信号发生器,其参数调节如下:
•工作方式:内计数(“工作方式”按键左边5个指示灯皆暗,此时才用作为信号源)•函数波形选择(FUNCTION):~
•工作频率:100kHz
•输出幅度(峰-峰值):10mV
2.静态测量
⑴载波输入端(IN1)输入失调电压调节
⑵调制输入端(IN2)输入失调电压调节
3.DSB-SC(抑制载波双边带调幅)波形观察
⑴ DSB-SC信号波形观察
⑵ DSB-SC信号反相点观察
⑶ DSB-SC信号波形与载波波形的相位比较
4.AM(常规调幅)波形测量
⑴ AM正常波形观察
⑵不对称调制度的AM波形观察
2、由本实验归纳出包络检波器和同步检波器的解调性能,以“能否正确解调”填入表1中,
并做必要说明。

调幅波
AM
DSB-SC m =30%m =100%m >100%
能否正确解调包络检波能不能不能不能同步检波能能能能
六、波形观察和记录
1、DSB-SC(抑制双边带调幅)波形观察
(1)DSB-SC波形观察
2、调幅)波形测量
(1)AM正常波形观察
任一m<1时V AB的值和AM波形
V AB=220.8 mV
(2)不对称调制度的AM波形观察
(3)100% 调制度观察
(4)过调制时的AM波形观察
3 、二极管包络检波器
(1)AM波的解调
AM波形m<100%
解调后
m>100% 和m=100%时不能解调
4、同步检波器
(1)AM波的解调
M<100%时解调效果和二极管包络检波器相同M=100% 和m〉100%时也都可解调出来
(2)DSB-SC波的解调
DSB-SC 波形
解调后
后来补测峰峰值和谷谷值的波形:
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

相关文档
最新文档