七年级数学上册 第1章 有理数 14 有理数的乘除法 141 有理数的乘法 第1课时 有理数的

合集下载

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版
第一章 有理数
1.4 有理数的乘除法 第3课时 有理数的除法
提示:点击 进入习题
1 倒数;1b;≠0
6C
7D
答案显示
2 见习题 3 C 4 C 5 A 8 除法 9 不变 10 C
11 D
12 见习题 13 B
14 A
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题 20 见习题
【点拨】A.3+(-2)=1,故A不符合题意; B.3-(-2)=3+2=5,故B不符合题意; C.3×(-2)=-6,故C符合题意; D.(-3)÷(-2)=1.5,故D不符合题意.
【答案】C
*7.(2019·广东)有理数 a,b 在数轴上的对应点的位置如图所示, 下列式子成立的是( )
A.a>b C.a+b>0
A.-ba=-ab=-ab
B.--ba=- -ab=ab
C.--ab=ab
D.若 a>b,ab<0,则 a<0
12.有理数的除法可以转换为乘法,所以有理数的乘除混合 运算可以统一成乘法运算,其步骤为:
(1)__将__所__有__除__数__转__化__为__其__倒__数__,__将__除__法__转__化__为__乘__法________; (2)__运__用__乘__法__法__则__计__算__,__能__简__算__的__运__用__运__算__律__简__化__运__算____.
3.(教材 P34 例 5 变式)(2020·山西)计算(-6)÷-13的结果是( C )
A.-18
B.2
C.18
D.-2
4.下列把除法转换为乘法的过程中,正确的是( C ) A.13÷(-4)=-13×4 B.(-3)÷(-6)=3×-16 C.1÷(-4)=1×-14 D.(-3)÷4=3×14

数学上册第1章有理数14有理数的乘除法141有理数的乘法第2课时有理数的乘法运算律课件(新版)

数学上册第1章有理数14有理数的乘除法141有理数的乘法第2课时有理数的乘法运算律课件(新版)

-3
3 4
×4 可以化为(
A
)
A.-3×4-34×4
B.-3×4+34×4
C.-3×3-3
D.-3-34×4
解析:先把-334拆成-3-34,再运用分配律可知正确答案为 A.
4.a,b,c符合下面哪一种情况时,这三个数相乘的积必是正数( C ) A.a,b,c同号 B.b是负数,a和c同号 C.a是负数,b和c异号 D.c是正数,a和b异号
A.(-3)×(-4)×
-
1 4
=-3
B.
-
1 5
×(-8)×5=-8
C.(-6)×(-2)×(-1)=-12
D.(-3)×(-1)×(+7)=21
2.(-6)×
1 12
-1
2 3
+
5 24
=-12+10-54,这步运算运用了(
D
)
A.加法结合律 B.乘法结合律C.乘法交换律 D.乘法分配律
3.算式
得的积相加.
第(2)小题把-9956拆成-100+16;再运用分配律计算. 解:(1)原式=(-24)×172-(-24)×56-(-24)×1=-1ຫໍສະໝຸດ +20+24=30.
(2)原式=
-100
+
1 6
×12
=(-100)×12+16×12
=-1 200+2
=-1 198.
1.下列计算结果,错误的是( B )
是正数; 负 因数的个数是 奇 数时,积是负数;几个数相
乘,如果其中有因数为0,那么积等于 0
.
2.五个数相乘,若积为负数,则其中负因数的个数为 ( D )

清城区师院附中七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第3课时有理数的乘

清城区师院附中七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第3课时有理数的乘

第3课时有理数的乘法运算律一、导学1.课题导入:在小学的数学学习中,学习乘法的交换律、结合律与分配律,那么学习了有理数后,这些运算律是否仍然适用呢?这就是这节课我们要研究的内容.2.学习目标:(1)知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.(2)过程与方法通过对问题的探索,培养观察、分析和概括的能力.(3)情感态度能面对数学活动中的困难,有学好数学的自信心.3.学习重、难点:重点:乘法的运算律.难点:灵活运用运算律进行计算.4.自学指导:(1)自学内容:教材第32页“练习”以下到教材第33页的内容.(2)自学时间:7分钟.(3)自学要求:认真阅读课文,体验运算律在计算中有什么作用.(4)自学参考提纲:①乘法交换律是:两个数相乘,交换因数的位置,积相等,写成数学式子为ab=ba,举两个数(至少有一个是负数)验证乘法交换律.3×(-4)=(-4)×3=-12②乘法结合律是:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,写成数学式子为(ab)c=a(bc),举三个数(至少有一个数是负数)验证乘法结合律.[3×(-4)×5]=3×[(-4)×5]=-60③分配律是:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,写成数学式子为a(b+c)=ab+ac,举三个数(至少有一个数是负数)验证分配律.3×(-4+5)=3×(-4)+3×5=3④例4中,比较两种解法,他们在运算顺序上有什么区别?解法1、2运用了什么运算律?哪种解法更简便?解法1先算加减法,再算乘法;解法2先算乘法,再算加减法;运用了乘法分配律;第二种更简便.⑤下列式子的书写是否正确.a×b×c ab·2 m×(m+n)三个式子的书写均不正确.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生中了解学生自学中存在的问题.(2)差异指导:指导困难的学生,并引导小组讨论.2.生助生:学生相互帮助解决自学中的疑难问题.四、强化1.解题要领:①观察算式;②看是否可以进行简便运算;③运算顺序.2.代数式的书写要求:①数与字母相乘;②字母与字母相乘.3.计算:(1)(-85)×(-25)×(-4)(2)(-78)×15×(-117)(3)(910-115)×(-30)(4) (-65)×(-23)+(-65)×(+173)解:(1)-8500;(2)15;(3)-25;(4)-6.五、评价1.学生的自我评价(围绕三维目标):交流本节课学习中的得与失.2.教师对学生的评价:(1)表现性评价:对本节课学习过程中的积极表现与不足进行总结. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课主要学习乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.一、基础巩固(60分)1.(10分)计算(-100015)×(5-10)的值为(D)A.1000B.1001C.4999D.50012.(10分)下列计算(-55)×99+(-44)×99-99正确的是(C)A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-196023.(40分)计算.(1)(-19)×(-98)×0×(-25)(2)(-0.2)×(-0.4)×(-212)×(-15)(3)15×(-56)×145×(-114)(4)(-100)×(-4)×(-1)×0.25解:(1)0;(2)0.04;(3)2258;(4)-100二、综合应用(30分)4.(30分)计算.(1)4×(-96)×0.25×(-1 48)(2)(8-113-0.04)×(-34)(3)(+3313)×(-2.5)×(-7)×(+4)×(-0.3)(4)791314×(-7)(5)(-14)×23-3.14×(-27)+(-13)×14+57×3.14解:(1)2;(2)-4.97;(3)-700;(4)-11192;(5)-10.86三、拓展延伸(10分)5.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6,如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?类似地:2ab-5ab又等于什么呢?解:-2a+3a=(-2+3)a;2ab-5ab=(2-5)ab.第一章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.(2018·湖北咸宁中考)咸宁冬季里某一天的气温为-3 ℃~2 ℃,则这一天的温差是()A.1 ℃B.-1 ℃C.5 ℃D.-5 ℃2.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克3.下列说法正确的有()①一个数不是正数就是负数;②海拔-155 m表示比海平面低155 m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个4.小灵做了以下4道计算题:①-6-6=0;②-3-|-3|=-6;③3÷×2=12;④0-(-1)2 020=-1.则她做对的道数是()A.1B.2C.3D.45.(2018·黑龙江齐齐哈尔中考)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1096.有理数a,b,c在数轴上对应的点如图所示,则下列式子正确的是()A.ac>bcB.|a-b|=a-bC.-a<-b<cD.-a-c>-b-c7.已知①1-22;②|1-2|;③(1-2)2;④1-(-2),其中相等的是()A.②和③B.③和④C.②和④D.①和②8.若(-ab)2 019>0,则下列各式正确的是()A.<0B.>0C.a>0,b<0D.a<0,b>0二、填空题(本大题共4小题,每小题4分,共16分)9.-2的相反数是,倒数是,绝对值是.10.在数轴上,与-3对应的点距离4个单位长度的点有个,它们表示的数是.11.近似数20.995精确到百分位是.12.某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子一个月后也能繁殖3对新小兔子,总之,所有的每对兔子都是每月繁殖3对小兔子.如果开始只有一对兔子,那么半年后有对兔子(不考虑意外死亡).三、解答题(本大题共5小题,共52分)13.(12分)计算:(1)(-49)-(+91)-(-5)+(-9);(2)-17+17÷(-1)11-52×(-0.2)3;(3)-5-.14.(10分)某人用400元购买了8套儿童服装,准备以一定价格出售.如果每套儿童服装以55元的价格为标准,实际出售时超出的记作正数,不足的记作负数,记录如下:+2,-4,+2,+1,-2,-1,0,-2.(单位:元)(1)通过计算说明当他卖完这8套儿童服装后是盈利还是亏损.(2)每套儿童服装的平均售价是多少元?15.(10分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……(1)说出等式左边各个幂的底数与右边幂的底数之间有什么关系;(2)利用上述规律,计算13+23+33+43+…+1003的值.16.(10分)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×118+999×-999×18.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:-3 -5 0 +3 +4(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,得到一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).参考答案第一章测评一、选择题1.C2-(-3)=5 ℃.2.C3.A4.C5.A6.D7.A因为①1-22=1-4=-3;②|1-2|=|-1|=1;③(1-2)2=(-1)2=1;④1-(-2)=1+2=3,所以相等的是②和③.8.A因为(-ab)的奇次幂大于0,所以-ab>0,则ab<0,即a,b异号,商为负数,但不能确定a,b谁正谁负.二、填空题9.2-210.2-7和1满足要求的点有2个,分别位于-3的两侧且到-3对应的点的距离都是4,右边的数为-3+4=1,左边的数为-3-4=-7.11.21.00精确到百分位即保留两位小数,根据四舍五入法可得20.995≈21.00.12.4 096结合乘方的定义可知:开始有兔子的对数是1,1个月后有4对兔子,以后每一个月后每一对兔子都变成4对兔子,依次类推,可得6个月后有46对小兔子.三、解答题13.解(1)原式=-49-91+5-9=-49-91-9+5=-149+5=-144.(2)原式=-17+17÷(-1)-25×=-17+(-17)-=-34+=-33.(3)原式=-5-=-5-=-5-=-5+=-4.14.解(1)售价总额为55×8+2-4+2+1-2-1+0-2=440-4=436(元).436-400=36(元),即当他卖完这8套儿童服装后盈利了36元.答:他卖完这8套儿童服装后是盈利.(2)436÷8=54.5(元).答:每套儿童服装的平均售价是54.5元.15.解(1)左边各个幂的底数之和等于右边幂的底数.(2)原式=(1+2+3+4+…+100)2=5 0502=25 502 500.16.解(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×=999×100=99 900.17.解(1)抽取-3,-5,最大的乘积是15.(2)抽取-5,+3,最小的商是-.(3)抽取-5,+4,最大的数为(-5)4=625.(4)答案不唯一,如抽取-3,-5,0,+3,运算式子为{0-[(-3)+(-5)]}×(+3)=24.有理数的减法教学目标1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能熟练进行有理数的减法的运算,并灵活应用有理数减法解决实际问题,培养运算能力,增强应用数学的意识.3.通过把减法运算转化为加法运算,向学生渗透转化思想. 教学过程 一、情境导入下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-8℃.那么它的温差怎么算?6-(-8)=?二、合作探究探究点一:有理数的减法运算计算:(1)(-3)-(+7); (2)13-12;(3)0-(-10).解析:每个小题均是两个数的差,直接利用有理数的减法法则,先把减法转化为加法,再计算.解:(1)(-3)-(+7)=(-3)+(-7)=-10; (2)13-12=13+(-12)=-16; (3)0-(-10)=0+10=10.方法总结:进行有理数的减法运算时,将减法转化为加法,再根据有理数加法的法则进行运算.要特别注意减数的符号,这是易错点,同时统一成加法后还应注意选择合适的运算律,使运算简便.探究点二:有理数减法的应用在1986~2014年(即第10~17届)的八届亚运会中,我国运动员取得了骄人的成绩.将我国运动员夺得的奖牌数以2002年的308枚为基准,超过的枚数记为正数,不足的枚数记为负数,记录情况如下表:问奖牌最多的一届比最少的一届多多少枚?解析:观察表格发现,奖牌最多的是2010年,最少的是1986年,所以108-(-86)=194(枚).即奖牌数最多的一届比最少的一届多194枚.解:由题可知108-(-86)=194,即奖牌最多的一届比最少的一届多194枚.方法总结:找出奖牌最多的数量与最少的数量是解题的关键.探究点三:应用有理数减法法则判定正负性已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解析:判断a-b的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.解:因为a<0,b<0,所以-b>0.又因为a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以通过运算法则来解答.三、板书设计教学过程本课时在学习了有理数加法法则的基础上,探索有理数的减法法则.教学过程中,强调学生自主探索和合作交流,经历观察、归纳、积累等思维过程,体验从特殊到一般的数学思想方法,培养学生的转化思想,同时升华学生的情感态度和价值观.11。

邵阳县第六中学七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除

邵阳县第六中学七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除

1.4.2 有理数的除法 第1课时 有理数的除法1.了解有理数除法的定义.2.经历有理数除法法则的探索过程,会进行有理数的除法运算. 3.会化简分数.重点正确运用法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、复习导入1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、推进新课(一)有理数除法法则的推导师提出问题:1.怎样计算8÷(-4)呢? 2.小学学过的除法的意义是什么?学生进行讨论、思考、交流,然后师生共同得出法则. 除以一个不等于0的数,等于乘这个数的倒数. 可以表示为: a ÷b =a·1b(b≠0)师指出,将除法转化为乘法以后类似的除法法则我们有:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例5. 计算:(1)(-36)÷9;(2)(-1225)÷(-35).师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值.教师出示教材例6.化简下列分数:(1)-123;(2)-45-12.教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.教师出示教材例7.计算:(1)(-12557)÷(-5);(2)-2.5÷58×(-14).教师分析,学生口述完成.三、课堂练习教材第36页上方练习 四、课堂小结小结:谈谈本节课的收获. 五、布置作业教材习题1.4第4~6题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用。

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第3课时课件新版新人教版

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第3课时课件新版新人教版

1 2 1 21 2 (2) ? 12 ? 1 ? 12 ? ? 12
4 3 4 32 3
? ( 1 ? 1 1 ? 1 ) ? 12 2 4 42 3
? ( 1 ? 5 ? 2) ? 12 2 ? 1? 12 2 ? 12 2
444 3
33
课题小结
(1)本节我们主要学习了哪些内容? (2)在运算过程中,你最容易犯哪些错误?
达标检测
1.乘法结合律用字母表示为 ( (ab)c=a(bc) )。
2.在算式 ? 57 ? 24 ? 36 ? 24 ? 79 ? 24
?(? 57 ? 36 ? 79)? 24中,应用了( D)。
A加法交换律
B乘法交换律
C乘法结合律
D乘法分配律
3.计算:125 ? 3.67 ? 6? 8?(? 1) 6
即:ab= ba
活动二 请同学们先计算 .再认真观察并比较它们的
结果:
(一) (1) ?2 ? (? 3)?? (? 4) (2) 2 ? ?(? 3) ? (?4)?
(二)
(1) ??(? 3) ? ?
2 5
??? ?
(? 5)
(2)
(?3) ?
?2 ??5
?
(? 5)???
通过计算你又发现了什么 ?
?4 6 2?
?? 1 ? 1 ? 1 ?? ? 12 ?4 6 2?
解法2:
?? 1 ?4
?
1 6
?
1 ??? 12 2?
=?? 3 ? 2 ? 6 ??? 12 ?12 12 12 ?
=1 ? 12 ? 1 ? 12 ? 1 ? 12
4
6
2
= ? 1 ? 12= ? 1 12

七年级数学上册第1章《有理数的乘除法》知识点解读(人教版)

七年级数学上册第1章《有理数的乘除法》知识点解读(人教版)

《有理数的乘除法》知识点解读一、关于有理数的乘法知识点一:有理数的乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。

温馨点拨:(1)有理数乘法法则中的“同号得正,异号得负”是专指“两数相乘”而言的;(2)有理数的乘法与有理数的加法的运算步骤一样,第一步:确定符号;第二步:确定绝对值。

知识点二:有理数的乘法的运算律(掌握)有理数乘法的运算律:算术乘法中适用的交换律、结合律以及乘法对加法的分配律在有理数范围内依然成立。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab ba=。

(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即()()ab c a bc=。

(3)乘法分配律:一个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即()a b c ab ac+=+。

知识点三:多个有理数相乘的符号法则(掌握)多个有理数相乘的符号法则:(1)几个不为0的数相乘,积的符号由负数的个数决定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

(2)几个数相乘,如果有一个因数为0,积就为0,反之,如果积为0,那么至少有一个因数为0。

例1 计算(134-78-712)×(-117).分析:可以直接利用乘法的分配律计算,即正向运用。

解:(134-78-712)×(-117)=74×(-87)+(-78)×(-87)+(-712)×(-87)=-2+1+23=-13. 说明:利用乘法的分配律可以使某些特殊结构的有理数乘法运算简化,但要注意灵活运用避免符号、拆项等错误。

二、关于有理数的除法知识点一:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数。

一般的,当0a ≠时,a 与1a互为倒数。

凤泉区第七中学七年级数学上册 第一章 有理数 1.4 有理数的乘除法1.4.1有理数的乘法 第2课

凤泉区第七中学七年级数学上册 第一章 有理数 1.4 有理数的乘除法1.4.1有理数的乘法 第2课

第2课时相关运算律1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点1.了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.2.运用有理数的乘法解决问题.难点运用有理数的乘法解决问题.一、创设情境,导入新课教师出示投影,计算以下各题,并观察其结果的符号情况.2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)0×(-2)×(-3)×(-4)×(-5)几个不等于0的数相乘,你发现结果的符号与哪些因素有关?几个数相乘,如果其中一个因数是0,结果又是多少?学生讨论交流归纳结果,师生共同得出教材31页的归纳,同时完成31页的思考问题.二、推进新课,巩固提高1.教师出示例3.师生共同完成,教师注意讲解归纳方法.“先确定积的符号,然后再把它们的绝对值相乘.”2.练习:教材32页练习.学生分组练习,板演,互相纠错与全班纠错相结合,注意提示学生方法的运用.三、再次创设情境,导入运算律1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法.这样做有没有依据.小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.四、感受运算律在乘法运算中的运用教师出示例4,用两种方法计算.(14+16-12)×12师生共同完成.练习:教材33页练习.教师可布置学生板演,小组交流等形式,来发现学生的问题,及时反馈.五、作业习题1.4第7(1)~(3),14题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.同底数幂的乘法(30分钟50分)(一)选择题(每道题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.以下各式计算准确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.以下各式能用同底数幂乘法法那么进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)(二)填空题(每道题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.假设2n-2×24=64,那么n= .6.已知2x·2x·8=213,那么x= .(三)解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求以下各式的值:(1)a x+2. (2)a x+y+1.[拓展延伸]9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.[解析]选A.(-x)2·x3=x2·x3=x2+3=x5.2.[解析]选 B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④准确;a4·a3=a4+3=a7,故⑤准确.3.[解析]选B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.[解析]根据同底数幂的乘法法那么〞同底数幂相乘,底数不变,指数相加〞,所以a·a6=a1+6=a7.答案:a75.[解析]因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.[解析]因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.[解析](1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.[解析](1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.[解析]方式一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方式二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.有理数的乘法运算律教学目标:1、知识与技能:能熟练地进行有理数的乘法运算2、过程与方法:通过引导学生经历问题情境到有理数乘法运算律的得出过程.3、情感态度与价值观:让每个学生都参与教学活动,感受学习的乐趣,提高学习的兴趣.重点:有理数乘法的运算律.难点:有理数乘法的运算律的理解.教学过程:一、创设情景,导入新课1、回答下列问题(1)有理数加法法则,分几种情况,各是怎样规定的?(2)有理数的减法法则是什么?(3)有理数乘法法则,分几种情况,各是怎样规定的?(4)小学学过哪些运算律?2、计算下列各题(1)5×(-6)(2)(-6)×5(3)[3×(-4)]×(-5)(4)3×[(-4)×(-5)](5)5×[3+(-7)](6) 5×3+5×(-7)二、合作交流,解读探究1、推导乘法交换律:结论:两个有理数相乘,交换因数的位置,积不变.)43()94(-⨯-)94()43(-⨯-乘法交换律:a×b=b×a2、推导乘法结合律:[3×(-4)]×(-5) 3×[(-4)×(-5)]结论:对于三个有理数相乘,可以先把前两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把结果与第一个数相乘,积不变.乘法结合律:(a×b)×c = a×(b×c)3、推导乘法对于加法的分配律:(-6)×[4+(-9)](-6)×4+(-6)×(-9)结论:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.分配律:a×(b+c)=a×b+a×c4、引导学生注意运算律运用时的要点.(见课件)三、应用迁移,巩固提高1、下列各式运用了哪条运算律?如何用字母表示?(1) (-4)×8=8×(-4)(2)[(-8)+5]+(-4)=(-8)+[5+(-4)](3)(-6)×[(-8)×9] =[(-6)×(-8)]×9(4) (-8)+(-9)=(-9)+(-8)2、例题2(1)(-12.5)×(-2.5)×(-8)×4(2)(-12.5)×(-2.5)×(-8)×4总结:三个或三个以上有理数相乘,可以写成这些数的连乘式.对于连乘式可以任意交换因数的位置,也可以先把其中的几个数相乘.四、小结本课内容。

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

探究新知 知识点 1 有理数的乘法法则
探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的 点O.
O
l
1. 如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm
应该记为 –2cm . 2.如果3分钟以后记为+3分钟,那么3分钟以前应该记
为 –3分钟 .
探究新知 【思考】
1.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置? 2.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置? 3.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置? 4.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置? 5.原地不动或运动了零次,结果是什么?
1. 2×3×4×(–5)

2. 2×3×(–4)×(–5)

3. 2×(–3)×(–4)×(–5)

4. (–2)×(–3)×(–4)×(–5)

5. 7.8×(–8.1)×0×(–19.6)

【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
(
3 5
)
(
5 6
)
(2).
(2)
(
3 5
)
(
5 6
)
(2)
[( 3 5)] (2) 56
1 (2) = −1 . 2
解题后的反思:连续两次使用乘法法则,计算起来比较麻烦. 如果我们把乘法法则推广到三个以上有理数相乘,
只“一次性地”先定号,再绝对值相乘即可.
探究新知
知识点 3 倒数
【想一想】计算并观察结果有何特点?

浙教版七年级数学上册目录

浙教版七年级数学上册目录

浙教版七年级数学上册目录第1章有理数1.1数轴1.2绝对值第2章有理数的运算2.1有理数的加法2.2有理数的减法2.3有理数的乘法2.4有理数的除法2.5有理数的乘方2.6有理数的混合运算第3章实数3.1立方根3.2实数3.3立方根3.4实数的运算第4章代数式4.1用字母表示数4.2代数式4.3代数式的值4.4整式4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程5.2等式的基本性质5.3一元一次方程的解法5.4一元一次方程的应用第6章图形的初步认识6.1几何图形6.2线段\射线和直线6.3线段长短的比较6.4线段的和差6.5角与角的度量6.6角的大小比较6.7角的和差6.8余角和补角6.9直线的相交有理数1.1正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。

(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

【名师推荐】七年级数学上册 第1章1.4.1 有理数的乘法 第2课时 多个有理数的乘法法则备课素材

【名师推荐】七年级数学上册 第1章1.4.1 有理数的乘法 第2课时 多个有理数的乘法法则备课素材

1.4 有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则归纳导入复习导入类比导入活动内容:回答下列问题.甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲、乙水库的水位的总变化量各是多少?问题1:来看一下两水库的水位变化情况(多媒体出示图片),题目中已知什么?求什么?图1-4-1问题2:如果用正数表示水位上升的高度,用负数表示水位下降的高度,那么4天后,甲水库水位的变化量怎样表示?乙水库水位的变化量又如何表示呢?你能找到更简洁的表示方法吗?[说明与建议] 说明:得出水位的变化量很简单,关键是通过类比小学乘法法则的推导过程,使学生类比归纳出有理数的乘法法则,利用旧理论得到新知识,这也是数学中常用的转化的学习方式.建议:学生讨论交流,有的学生自然利用小学学过的算术的计算法,甲水位上升12 cm,乙水位下降12 cm;当然还有部分学生回想起相反意义的量,会想到用正数表示水位上升的高度,用负数表示水位下降的高度,就可借助负数的乘法运算探索出有理数的乘法法则.问题1:同学们,我们已经知道可以用正负数表示具有相反意义的量,你能举几个生活中的例子吗?问题2:小学已经学过正数与正数的乘法、正数与零的乘法,那么引入负数之后,怎样进行有理数的乘法运算?有理数的乘法运算有几种情况?[说明与建议] 说明:问题1通过复习,使学生回顾用正负数表示具有相反意义的量的方法,为推导有理数的乘法法则打下基础.问题2,将有理数按正有理数、零、负有理数进行分类,体现分类的合理性,并向学生渗透分类讨论思想,有利于学生探究有理数的乘法法则.建议:让学生充分思考后回答,同时教师引导学生从有理数分为正有理数、零、负有理数的角度去考虑,点拨学生的展示情况,最后得出结论.(1)计算:(-5)+(-5)+(-5)+(-5)+(-5);(2)猜想(-5)×5的结果是多少?(3)有理数加减运算中的关键问题是什么?(4)猜想:有理数的乘法及以后学习的除法的关键问题是什么?[说明与建议] 说明:回顾学过的相关知识,以便形成知识迁移,出示负数与正数相乘的算式,激发学生的思维,引出新课.建议:(1)(2)(3)题由学生口答完成,对于题(4)先让学生分组讨论,然后让一名学生回答.教材母题——教材第30页例1 计算:(1)(-3)×9;(2)8×(-1);(3)⎝ ⎛⎭⎪⎫-12×(-2). 【模型建立】两个有理数相乘,要先确定符号(同号得正,异号得负),再确定绝对值,任何数与0相乘都得0.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.【变式变形】1.[苏州中考] (-3)×3的结果是(A )A .-9B .0C .9D .-62.[荆门中考] 若( )×(-2)=1,则括号内填一个实数应该是(D )A .12B .2C .-2D .-123.下列说法正确的是(D ) A .同号两数相乘,符号不变 B .积一定大于每一个因数C .两数相乘,如果积为正,那么这两个因数都是正数D .两数相乘,如果积为负,那么这两个因数异号4.如果两个有理数的积为负数,和为正数,那么这两个有理数(C ) A .都是负数 B .都是正数C .一正一负且正数的绝对值大D .一正一负且负数的绝对值大 5.若|a|=3,|b|=5,且a ,b 异号,则ab =__-15__. 6.15.9×(-2015)×2016×(-2017)×0的积为__0__.7.(-1)×(-1)×(-2)×(-2)×(-3)的积的符号是__负号__. 8.如图1-4-2所示,下列判断正确的是(B )图1-4-2A .a +b >0B .a +b <0C .ab >0D .|b|<|a|[命题角度1] 倒数带分数化为假分数、小数化为分数→交换分子、分母的位置即得其倒数.求倒数时不改变符号.例 [黄石中考] -13的倒数是(A )A .-3B .3C .-13 D .13[命题角度2] 两个有理数相乘计算两个有理数相乘的一般思路:1.若有零因数,则积为零;2.若有小数或带分数的因数,一般先化为分数或假分数;3.计算时,先确定积的符号,然后求两个因数绝对值的积.例 计算:(1)(-3)×7;(2)(-8)×(-2);(3)35×(-113);(4)(-278)×0.解:(1)(-3)×7=-(3×7)=-21.(2)(-8)×(-2)=+(8×2)=16. (3)35×(-113)=-(35×43)=-45. (4)(-278)×0=0.[命题角度3] 多个有理数相乘几个不是0的因数相乘,首先看负因数的个数判断积的符号,再确定积的绝对值.如果其中有因数为0,那么积等于0.例 计算:(1)(-10)×(-13)×(-0.1)×6.(2)-3×56×145×(-0.25).解:(1)原式=-(10×13×110×6)=-2.(2)原式=3×56×95×14=98.P30练习 1.计算:(1)6×(-9); (2)(-4)×6; (3)(-6)×(-1); (4)(-6)×0; (5)23×⎝ ⎛⎭⎪⎫-94; (6)⎝ ⎛⎭⎪⎫-13×14. [答案] (1)-54;(2)-24;(3)6;(4)0;(5)-32;(6)-112.2.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?[答案] 少了300元. 3.写出下列各数的倒数:1,-1,13,-13,5,-5,23,-23.[答案] 1,-1,3,-3,15,-15,32,-32.[当堂检测]1. 计算2×(-1)的结果是( ) A .-12B .-2C .1D .2 2. 有理数:- 153的倒数是( ) A .153 B .85C .-35D .- 853. 已知四个数:2,-3,-4,5,任取其中两个数相乘,所得积的最大值是( ) A .20 B .12 C .10 D .-64. 有理数a ,b 在数轴上的表示如图所示,则下列结论中: ①ab <0;②a+b <0;③a-b <0;④a <|b|;⑤-a >-b . 其中正确的有( )A .2个B .3个C .4个D .5个5. 计算:(1)(-5)•(- 6);(2) (-53)•132; (3)(+85)•(- 2152).参考答案:1. B 2. D 3. B 4. B5. (1)30 (2)- 1 (3)- 34。

七年级数学上册《有理数的乘法和除法》教案、教学设计

七年级数学上册《有理数的乘法和除法》教案、教学设计
1.培养学生对数学学科的兴趣和热爱,增强学生学习数学的自信心。
2.使学生认识到数学来源于生活,又服务于生活,体会数学在现实世界中的广泛应用。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
4.引导学生学会尊重他人意见,学会合作与分享,培养团队精神。
二、学情分析
七年级学生在学习有理数的乘法和除法之前,已经掌握了有理数的加减法运算,具有一定的数学基础。但在乘除法的学习过程中,学生可能会遇到以下困难:对乘除法运算规则的混淆,难以理解负数的乘除运算,以及在实际问题中运用乘除法则的能力较弱。因此,在教学过程中,教师应关注以下几个方面:
七年级数学上册《有理数的乘法和除法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解有理数的乘法和除法的概念,掌握其运算法则。
2.能够正确进行同号有理数、异号有理数的乘法和除法运算。
3.能够解决实际问题中涉及有理数乘法和除法的问题,提高解决问题的能力。
4.学会对有理数乘法和除法进行简化运算,灵活运用分配律、交换律等运算性质。
2.教学策略:
-针对学生的认知规律,由浅入深,逐步引导,让学生在轻松愉快的氛围中掌握知识。
-对学习困难的学生,采用个别辅导和小组合作的方式,帮助他们克服难点,提高学习效果。
-对优秀创新思维。
3.教学过程:
(1)导入:通过生活实例或数学问题,引出有理数乘除法的运算,激发学生兴趣。
教学过程:
-将学生分成小组,讨论以下问题:
1)有理数乘法运算的性质有哪些?
2)有理数除法运算的性质有哪些?
3)在实际问题中,如何运用有理数乘除法运算?
-每个小组汇报讨论成果,教师点评并总结。
2.教学目的:培养学生的合作能力,提高他们对有理数乘除法运算性质的理解。

人教版七年级数学上册第一章 1.4.1 第1课时 有理数的乘法法则 优秀教学PPT课件

人教版七年级数学上册第一章 1.4.1 第1课时 有理数的乘法法则 优秀教学PPT课件

A.-2 019
B.2 019
C.-2
1 019
D.2
1 019
7.(2 分)如图,数轴上点 A 所表示的数的倒数是( D )
A.-2 B.2 C.12
D.-12
8.(3分)下列说法错误的是( A ) A.任何有理数都有倒数 B.互为倒数的两个数的积为1 C.互为倒数的两数的符号相同 D.倒数等于本身的数是±1
5.(12分)计算: (1)15×(-6); (2)(-2)×5; 解:原式=-90 解:原式=-10
(3)(-8)×(-0.25); (4)(-0.24)×0;
解:原式=2
解:原式=0
(5)57 ×(-145 ); 解:原式=-241
(6)-(-14 )×(-89 ). 解:原式=-29
6.(2 分)(雅安中考)-2 019 的倒数是( C )
11.(3分)高度每增加1千米,气温大约下降6 ℃,现在地面的气温是25 ℃, 某飞机在该地上空6千米处,则此时飞机所在高度的气温是___-_11℃.
12.(大庆中考)已知两个有理数a,b,如果ab<0,且a+b>0,那么( D) A.a>0,b>0 B.a<0,b>0 C.a,b同号 D.a,b异号,且正数的绝对值较大 13.已知|x-1|+|y+2|=0,则(x+1)(y-2)的值为( B ) A.8 B.-8 C.0 D.-2
乙水库
水库水位的变化
(−3)×4 = −12 (−3)×3 = −9 , (−3)×2 = −6 , (−3)×1 = −3 , (−3)×0 = 0 ,
(−3)×(−1) = 3 (−3)×(−2) = 6 (−3)×(−3) = 9 (−3)×(−4) = 12
第二个因数减少 1 时,积 怎么变化?

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第1课时有理数的乘法.docx

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第1课时有理数的乘法.docx

第一章有理数1.4有理数的乘除法1. 4.1有理数的乘法 第1课•时有理数的乘法法则学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.2. 掌握多个有理数相乘的积的符号法则.重点:有理数的乘法法则,多个数相乘的符号法则. 难点:积的符号的确定.y自主学习K一、知识链接1. 计算:(1) 7 + 7 + 7= __________ ; (2) 12 + 12 + 12 + 12 + 12 =2. 将以上两个加法运算用乘法运算表示出来:教学备注学生在课前 完成自主学 习部分3.计算:(1) 3X2;(2)3X11;(3)^xl ; 2 2 6(4) 2r°-二、新知预习1. 计算:(1)(_2 ) + (-2 ) + (-2)= ____________ ; (2) (-9) + (-9) + (-9) + (-9) + (-9)= ______________ .2. 你能将上面两个算式写成乘法算式吗?3. 怎样计算? (1) 6X (-5) ;(2) (-4) X (-5) ;(3) 0X (-5).【自主归纳】有理数的乘法:正数乘正数,积为 ______ 数;负数乘负数,积为 _____ 数; 负数乘正数,积为 ______ 数;正数乘负数,积为 _______ 数;零与任何数相乘或任何数 与零相乘结果是 ______ . 三、自学自测1. 计算 (1) 5x(-3)(2) (-4)x6 (3) ( — 7)x( —9) (4) 0.9x82. 填空(1) -3的倒数是 ___________ ;-的倒数是 _______________4 (2) _____ 的倒数是6; __________ 的倒数-彳.----------- 四、我的疑惑填一填:(1) 如果一只蜗牛向右爬行2cnv 记为+2cm,那么向左爬行2cm 应记为__________ : (2) 如果3分钟以后记为+3分钟,那么3分钟以前应记为 ____________ •想一想:(1 )如果蜗牛一直以每分2 cm 的速度向右爬行,3分后它在什么位置?结果:3分钟后蜗牛在/上点0 __________ cm 处.可以表示为: ________________ .(2 )如果蜗牛一直以每分2 cm 的速度向左爬行,3分后它在什么位置?结果:3分钟后蜗牛在Z 上点0 _________ cm 处.可以表示为: ________________ ・(3 )如果蜗牛一直以每分2 cm 的速度向右爬行,.3分前它在什么位置?结果:3分钟前蜗牛在/上点0 __________ .cm 处.可以表示为: ________________ .(4 )如果蜗牛一直以每分2 cm 的速度向左爬行,3分前它在什么位置?结果:3分钟前蜗牛在/上点0 ____________ cm 处.可以表示为: _________________(5)原地不动或运动了零次,结果是什么?结果:仍在原处,即结果都是 ___________ ,可以表示为: __________________ . 根据上面结果可知:1. 正数乘正数积为 _____ 数;负数乘负数积为 _____ 数;(同号得正)2. 负数乘正数积为 _____ 数;正数乘负数积为 ______ 数;(异号得负)3. 乘积的绝对值等于各乘数绝对值的 ______ ・4. 零与任何数相乘或任何数与零相乘结果是 ______ •有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘•任何数同0相乘,都得0. 讨论:⑴若 a<0, b>0,则 ab ____ 0 ;(2) 若a VO, b V0,则 ab_0 ;(3) 若ab>0,则a 、b 应满足什么条件? ,4)若ab<0,则a 、b 应满足什么条件?归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值./ 课堂探究 \ W --------------------教学备注 配套PPT 讲授1•情景引入(见幻灯片3)2.探究点1新知讲授 (见幻灯片4-16)例 1 计算:(1)3X (-4);⑵(-3) X (-4)・一、要点探究探究点1:有理数的乘法运算1.如图,一只蜗牛沿直线1爬行,它现在的位置在1上的点0.教学备注配套PPT讲授例2计算:59 1 4 1 (1) (-3) X - X (--) X (-- ) : (2) (-5) X6X (--) X -6 5 4 5 42.探究点1新知讲授(见幻灯片4-16)3.探究点2新知讲授(见幻灯片17-18)4.探究点3新知讲授(见幻灯片19-20) 归纳:(1)几个不等于零的数相乘,积的符号由 ______________ 决定.(2)当负因数有____ 个时…积为负;当负因数有_____ 个时,积为正.(3)儿个数相乘,如果其屮有因数为0, ___________探究点2:倒数例3计算:(1)丄X2;(2)(-丄)X(-2)2 2要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.思考:数a(aHO)的倒数是什么?探究点3:有理数的乘法的应用例4用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高lkm, 气温的变化量为-6°C,攀登3km后,气温有什么变化?例5 一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1. 8元•小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?针对训练1.计算:(1) (-6)x(--) ;(2) 8X (-1.25).62.填空:-0.5的倒数是__________ , 一个数的倒数等于这个数本身,则这个数是_____________ •3.己知日与方互为倒数,c与d互为相反数,刃的绝对值是4,求/〃X(c+4+日X5—3X/〃的值.4.气彖观测统计资料表明,在一般情况下,高度每上升lkm,气温下降6°C.已知甲地现在地面气温为21°C,求甲地上空9km处的气温大约是多少?二、课堂小结1•有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘•任何数同0相乘,都得0・2.儿个不是零的数相乘,负因数的个数为奇数时积为负数,偶数时积为.正数.3.儿个数相乘若有因数为零则积为零.4.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.5.乘积是1的两个数互为倒数.〉&堂检和〈2.计算:17 5(1) 2-X (-4) ;(2)(一——)X (一—210 21(3) (-10.8) X (-—);(4) (-3丄)X0.2723.计算:(1) (-125) X2X (-8)(2)2763 (--)X (--)X (-x (--) 35142(3)-X (--)X(-3.4)X073教学备注配套PPT讲授5.课堂小结被乘数乘数. 积的符号积的绝对值结果—57—35-35 156-30—64-256 .当堂检测(见幻灯片21-24)4.气象观测统计资料表明,在一般情况下,高度每上升lkm,气温下降6°C.已知甲地现在地而气•温为21°C,求甲地上空9km处的气温大约是多少?。

徐汇区第三中学七年级数学上册 第1章 有理数 1.4 有理数的乘除法 1.4.1 有理数的乘法 课时

徐汇区第三中学七年级数学上册 第1章 有理数 1.4 有理数的乘除法 1.4.1 有理数的乘法 课时

1. 成立探索研究小组,3 ~ 4 人为一组,选出组长,分好工.
1
)
27 0=0.
5 27
2
当堂小练
5.假设a、b互为相反数 , 假设x、y互为倒数 , 那 么a-x-y1+b= .
6.相反数等于它本身的数是 0 ; 倒数等于它本 身的数是 1 , -1; 绝対值等于它本身的数 是 非负数 .
拓展与延伸
4.计算:2
1,2
1 2
,2
1
,2
1
2
联系这类具体的数的乘法,你认为一个非D 0有 理数一定小于它的2倍吗?为什么?
(A)5
(B)-5
(C)6
(D)-6
3〔宜昌中考〕如果ab<0 , 那么以下判断准确的选项是D 哪一项:
()
(A)a<0 , b<0
(B)a>0 , b>0
(【C)分a≥析0],同b号≤0得正 ,(D异)a号<得0 ,负b.>0或a>0 , b<0
当堂小练
4 计算 :
(1) 2 1 (-4); 2
D.北偏西35°
7.在飞机飞行时 , 飞行方向是用飞行路线与实际的南或北方向线之间的夹 角大小来表示的 , 如下图 , 用AN(南北线)与飞行线之间顺时针方向的夹角作 为飞行方向角 , 从A到B的飞行方向角为35° , 从A到C的飞行方向角为60° , 从A到D的飞行方向角为145° , 问 : AB与AC之间的夹角为多少度 ?AD与 AC之间的夹角为多少度 ?并画出从A飞出且方向角为105°的飞行线. 解 : AB与AC之间的夹角为25° , AD与AC之间的夹角为85° 画图略
结束语
同学们,你们要相信梦想是价值的源泉, 相信成功的信念比成功本身更重要,相信 人生有挫折没有失败,相信生命的质量来

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第1课时课件新版新人教版1

七年级数学上册第一章有理数14有理数的乘除法141有理数的乘法第1课时课件新版新人教版1

1,-1,1 ,- 1 ,5,-5,0.75,-2 1
3
3
3
1,-1, 3, -3,
1 5
-1 5
4 3
3 -
7
例3 用正负数表示气温的变化量,上升为正, 下降为负。登山队攀登一座山峰,每登高 1km 气温的变化量为 -6℃,攀登 3km后,气温有什么 变化?
解:(-6)×3=-18
答:气温下降 18℃。
1.填空题
被乘 数
-5
乘数
7
积的符 号
积的绝 对值
结果

35 -35
15 6
+
90
90
-30 -6 + 4 -25 -
180 180
100 -100
2.课本P30页练习题
课堂小结
1、有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值 相乘.任何数同0 相乘,都得0.
2、有理数乘法的求解步骤: 有理数相乘,先确定 个因数减小1时, 积是怎样变化的?
? 答:一个因数减 小1时,积减小3。
你有什么发现?
? 议一议:
? (-3) × 3=_-9__ ? (-3) × 2=_-6__ ? (-3) × 1=_-3__ ? (-3) × 0=_0__ ? (-3) ×(-1)=_3__ ? (-3) ×(-2)=_6__ ? (-3) ×(-3)=9___
所以 (-5) ×(-3)= 15
填空:(-7)× 4……__异__号__两__数__相__乘________ (-7)× 4 = -( )………__得__负_______ 7 × 4 = 28………__把__绝__对__值__相__乘_ 所以 (-7)× 4 = _-__2__8_______

人教版七年级数学有理数的乘法——乘法运算律课件

人教版七年级数学有理数的乘法——乘法运算律课件

知2-导
知2-讲
1.乘法交换律:两个数相乘,交换因数的位置,积相 等.即ab=ba.
2.乘法结合律:三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积相等.即(ab)c=a(bc).
3.分配律:一个数同两个数的和相乘,等于把这个数分 别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.
12
=
3 12
+
2 12
6 12
12
= 1 12= 1. 12
解法2:
1 4
+
1 6
1 2
12
= 1 12+ 1 12 1 12
4
6
2
=3+2 6= 1.
(来自教材)
知2-讲
总结
知2-讲
题中的12是括号内各分母的公倍数,所以可 以利用乘法分配律先去括号,再进行运算.
知2-练
1
在计算
乘法运算律运用的“四点说明”: (1)运用交换律时,在交换因数的位置时,要连同符号一
起交换; (2)运用分配律时,要用括号外的因数乘括号内每一个因
数,不能有遗漏; (3)逆用:有时可以把运算律“逆用”; (4)推广:三个以上的有理数相乘,可以任意交换因数的
位置,或者先把其中的几个因数相乘.如abcd=d(ac)b.
0.
导引:(1)负因数的个数为偶数,结果为正数.(2)负
因数的个数为奇数,结果为负数.(3)几个数
相乘,如果其中有因数为0,那么积等于0.
解:(1)(-5)×(-4)×(-2)×(-2)
=5×4×2×2=80.
2
2 3
1
1 5
1
1 2
5
= 2 6 3 5= 6. 352

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

新知演练
新知应用
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均 盈利2万元,7~10月平均盈利1.7万元,11~12月平均 亏损2.3万元,这个公司去年总盈亏情况如何?
新知应用
解:记盈利额为正数,亏损额为负数,公司去年
全年总的盈亏(单位:万元)为 除3万以元一,个这不个等公于司0去的年数总,盈等亏于情乘况以如这何个?数的___.
例D.3 -请4×你(2仔÷细8)阅和读-下4×列2÷材8料:计算 综解上:所 (述1),(1原0式-的4)×值3为-3(-或6-)=12.4; 解当:a>原0式,=b-<80+时(-,3原)×式(1=6(+-21)-)+(1-+(4-. 1)=3;
(-1.5)×3+2×3+1.7×4+(-2.3)×2 问(题2)1:4-小(-学6的)÷四3则×1混0=合2运4;算的顺序是怎样的?
答:这个公司去年全年盈利3.7万元.
新知演练
【变式】一架直升飞机从高度为450m的位置开始,先以20m/s 的速度上升60s,后以12m/s的速度下降120s,这时直 升机所在的高度是多少? 解:450+20×60-12×120 =450+1200-1440 =210 答:这时直升机所在的高度是210m.
问题2:我们目前都学习了有理数的哪些运算? 有理数的加法、减法、乘法、除法.
新知讲解
问题1:下列式子含有哪几种运算?先算什么,后算什么? 第二级运算 乘除运算
3 50 2 5 1 ?
加减运算 第一级运算
新知讲解
问题2:观察式子-3×(2+1)÷(5-12),应该按照什么 顺序来计算?
有理数的加减乘除混合运算的顺序: 先算乘除,再算加减,同级运算从左往右依

1.4.1有理数的乘法法则(教案)

1.4.1有理数的乘法法则(教案)
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用计算器或纸笔模拟有理数乘法运算,观察结果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调同号得正和异号得负这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,3×(-2)和(-3)×(-2)的计算方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘法相关的实际问题,如购物时如何计算多件打折商品的总价。
1.学生对于同号得正、异号得负这一乘法法则的理解程度有所不同。有的学生能够迅速掌握,但部分学生还需要更多的练习和引导。在今后的教学中,我需要针对这一情况,设计更多的习题和实例,帮助学生巩固这一概念。
2.在小组讨论环节,学生们的参与度较高,能够积极发表自己的观点。但我也发现,有些学生在讨论中过于依赖同伴,缺乏独立思考。为了提高学生的独立思考能力,我将在今后的教学中,引导学生先独立思考,再进行小组讨论。
举例:解释如何将“小明返回了2次”转化为数学表达式(即(-2)×3)。
(4)运用乘法法则进行混合运算。学生在处理含有多个有理数的乘法表达式时,可能会出现错误。
举例:计算(-2)×3×(-4),指导学生先计算绝对值的乘积(2×3×4=24),再根据符号规则确定结果(异号得负,即-24)。
四、教学流程
(一)导入新课(用时5分钟)
5.整体来说,今天的课堂教学氛围较好,学生们的学习积极性较高。但在教学过程中,我也发现了一些不足之处,需要在今后的教学中加以改进。首先,要关注学生的个体差异,因材施教,提高他们的学习效果。其次,加强课堂互动,鼓励学生提问,及时解答他们的疑惑。最后,注重课后作业的布置,既要保证作业量适中,又要确保作业质量,让学生在课后能够有效巩固所学知识。

朔州市X中学七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法

朔州市X中学七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法

1.4 有理数的乘除法有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=; (4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X (2)√(3)X (4)X (5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275. 【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b 的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y …………………………………… 合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例 2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.5.3图形变换的简单应用【知识与技能】1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档