江苏省徐州苏教版高中数学必修2学案:直线与圆中的动点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆中的动点控制

1.已知直线0=++m y mx 与圆2:2

2=+y x O 交于不同的两点B A ,,O 是坐标原点,OM OB OA =+,若点M 也在圆O 上,那么实数m 的值是 .

2.已知直线0=++m y x 与圆2:2

2=+y x O 交于不同的两点B A ,,O 是坐标原点,

≥,那么实数m 的取值范围是 .

3.过点)2,11(A 作圆016442:2

2=--++y x y x O 的弦,其中弦长为整数的共有 条

4.设圆3:22=+y x C ,直线06-3:=+y x l ,点l y x P ∈)

(00,,若存在点C Q ∈,使060=∠OPQ (O 为圆点),则0x 的取值范围是 .

5.已知BD AC ,为圆4:22=+y x O 的两条互相垂直的弦,垂足为()

21,M ,则四边形ABCD 的面积的最大值为 .

6.圆()42-:22=+y x C ,圆()()()R y x M ∈=-+--θθθ,1sin 5cos 52:2

2,若圆上M 任意一点P 作圆C 的两条切线PF PE ,,切点分别为F E ,,则PF PE ⋅的最小值是 .

7.已知直线09:=-+y x l 和圆0188-22:22=--+y x y x M ,点A 在直线l 上,C B ,为圆M 上两点,在ABC ∆中,0

45=∠BAC ,AB 过圆心M ,则点A 的横坐标的取值范围是 .

8.已知点()2,0A 是圆()0022-:22>=-+a ay ax y x M 外的一点,圆M 上存在点T 使得045=∠MAT ,则实数a 的取值范围是 .

9.在平面直角坐标系xoy 中,过点()1,0A 向直线02:=+-+m y mx l 作垂线,垂足为M ,

则点M 到点()32,

N 的距离的最大值为 .

10.在平面直角坐标系xoy 中,已知圆上42

2=+y x 有且仅有四个点到直线05-12=+c y x 的距离为1,则实数c 的取值范围是 .

11.在平面直角坐标系xoy 中,圆0158-:22=++x y x C ,若直线2-=kx y 上至少存在一点,使得以该点为圆心, 1为半径的圆与圆C 有公共点,则k 的最大值是 .

12.已知圆1:2

2=+y x C ,点)(00,y x P 是直线0423:=-+y x l 上的动点,若圆C 上总存在不同的两点B A ,,使得OP OB OA =+,则0x 的取值范围是 .

13.已知圆()12-:22=+y x C ,直线01=++y x 上存在点P 使得经过P 的直线l 与圆C 交于B A ,两点,且点A 为PB 中点,则点P 的横坐标0x 的取值范围是 .

14.在平面直角坐标系xoy 中,圆()()256-1:2

21=++y x C ,圆()()22

2230-17-:r y x C =+,若圆2C 上存在点P ,使得过点P 可作一条射线与圆1C 依次交于点B A ,,满足AB PA 2=,则半径r 的取值范围是 .

15.在平面直角坐标系xoy 中,若与点()2,2A 的距离为1且与点()0,m B 的距离为3的直线恰有两条,则实数m 的取值范围是 .

16.在平面直角坐标系xoy 中,圆C 的方程为()()91-1-:2

2=+y x C ,直线3:+=kx y l 与圆C 相交于B A ,两点,M 为弦AB 上的一动点,以M 为圆圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围 .

17.在平面直角坐标系xOy 中,圆M :(x-a )2+(y+a-3)2=1(a>0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 .

18.在平面直角坐标系xoy 中,圆()21-:221=+y x C ,圆()()22

22-:m m y m x C =++,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线PB PA ,,切点为B A ,,ABP ∆的面积为1,则正数m 的取值范围是 .

19.已知B A ,是圆04:22=-+x y x C 上两个动点,且32=AB ,点P 在直线

02:=-+y x l 上,则PB PA ⋅的最小值是 .

20.已知点B A ,在圆1:22=+y x C 上,点P 在圆()()143:2

2=-+-y x M 上,若PB PA λ=,则实数λ的取值范围是 .

相关文档
最新文档