加工箱体长孔的工艺方法和应用
箱体类零件的数控加工介绍
箱体类零件的数控加工介绍本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!摘要:摘要:箱体是构成机器设备的一个重要部件,它的加工质量直接影响机器的精度、性能和使用寿命。
文章介绍了箱体类零件的加工技术特点,数控加工时应注意的一些问题,重要参数的选取原则。
关键词:关键词:箱体;定位;切削中图分类号:TP39 文献标识码:A 文章编号:1. 前言箱体类零件在机械加工行业经常接触,是机械设备的主要基础件之一,在机械、汽车、飞机制造等行业广泛应用。
箱体类零件由平面、型腔以及孔系组成,一般结构形式较复杂,腔体壁厚不均匀,加工部位多,各个方向各孔、各平面的尺寸精度、位置公差等要求多,有较大的加工难度。
因此,在加工时要全面考虑。
2. 设备的选择箱体类零件一般采用具有三坐标联动、双工作台自动交换、由机械手自动换刀、传感器自动测量工件坐标系和自动测量刀具长度等功能的卧式加工中心进行加工。
一次装夹可完成不同工位的钻、扩、铰、铣、攻丝等工序。
3.一般性技术要求孔的尺寸精度与表面粗糙度要求,保证安装在孔内的轴或轴承的回转精度;平面的平面度、垂直度和平行度要求,保证装配后整机的接触面刚度、导向面的定位精度和密封等作用。
箱体类零件加工的主要问题是平面和孔,主要体现在:孔的尺寸精度、孔与孔之间精度、孔与平面位置精度。
4. 确定定位基准粗基准的确定是否合理,直接影响到各加工表面加工余量的分配,以及加工表面和不加工表面相互关系。
箱体上孔与孔、孔与平面、平面与平面之间都有较高的尺寸精度、位置精度要求。
为保证重要加工面的余量均匀,应选择重要加工面为粗基准,因此选择孔作为粗基准。
这样切削量始终均匀,能获得较高的加工精度。
只有在金属切除厚度相同的情况下,已加工表面才具有相近的物理性能。
箱体类零件加工精基准通常遵循基准重合原则,既选择加工基准与设计基准重合的方法。
10.3 箱体类零件的孔系加工(了解)
对于大型箱体零件来说,由于镗模的尺寸庞 大笨重,给制造和使用带来了困难,故很少采 用。
用镗模加工孔系,既可以在通用机床上 加工,也可以在专用机床或组合机床上加工。
二、同轴孔系的加工
在中批以上生产中,一般采用镗模加工同 轴孔系,其同轴度由镗模保证;当采用精密刚 性主轴组合机床从两头同时加工同轴线的 各孔时,其同轴度则由机床保证,可达 0. 01 mm。
当卧式铣镗床的工作台90°对准装置精 度很低时,可用心棒与百分表找正法进行 。 即在加工好的孔中插人心棒,然后将工作台 转90°,揺动工作台用百分表找正,如图10-8 所示 。
箱体上如果有交叉孔存在,则应将精度要 求高或表面粗糙度小的孔先全部加工好,然 后再加工另外与之相交叉的孔。
四、孔系加工的自动化
该方法加工孔系不易出差错, 找正迅速,孔距 精度可达±0. 05 mm,工艺装备也不太复杂, 常用于加工大型箱体的孔系 。
2.用镗模加工孔系
如图 10-5所示,工件装夹在镗模上,镗杆被 支承在镗模的导套里,由导套引导镗杆在工件 上的正确位置镗孔。 镗杆与机床主轴多采用
浮动连接,机床精度对孔系的加工精度影响较 小,孔距精度主要取决于镗模,因而可以在精度 较低的机床上加工出精度较高的孔系 。 同时,ห้องสมุดไป่ตู้镗杆刚度大大地提高,有利于采用多刀同时切 削;定位夹紧迅速,不需找正,生产效率高。
( 3 ) 采用调头镗法 当箱体壁相距较远时,宜采 用调头镗法 。 即在工件的一次安装中,当箱 体一端的孔加工完后,将工作台回转 180°, 再加工箱体另一端的同轴线孔 。 掉头镗不
用夹具和长刀杆,准备周期短,镗杆悬伸长度 短,刚度好;但需要调整工作台的回转误差和 掉头后主轴应处于的正确位置,比较麻烦,又 费时。 掉头镗的调整方法如下:
发动机箱体的机械加工工艺及钻孔夹具设计
摘要本设计是汽车变速箱箱体零件的加工工艺规程及一些工序的专用夹具设计。
汽车变速箱箱体零件的主要加工表面是平面及孔系。
一般来说,保证平面的加工精度要比保证孔系的加工精度容易。
因此,本设计遵循先面后孔的原则。
并将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。
基准选择以变速箱箱体的输入轴和输出轴的支承孔作为粗基准,以顶面与两个工艺孔作为精基准。
主要加工工序安排是先以支承孔系定位加工出顶平面,再以顶平面与支承孔系定位加工出工艺孔。
在后续工序中除个别工序外均用顶平面和工艺孔定位加工其他孔系与平面。
支承孔系的加工采用的是坐标法镗孔。
整个加工过程均选用组合机床。
夹具选用专用夹具,夹紧方式多选用气动夹紧,夹紧可靠,机构可以不必自锁。
因此生产效率较高。
适用于大批量、流水线上加工。
能够满足设计要求。
关键词:变速箱;加工工艺;专用夹具AbstractThe design is about the special-purpose clamping apparatus of the machining technology process and some working procedures of the car gearbox parts. The main machining surface of the car gearbox parts is the plane and a series of hole. Generally speaking, to guarantee the working accuracy of the plane is easier than to guarantee the hole’s. So the design follows the principle of plane first and hole second. And in order to guarantee the working accuracy of the series of hole, the machining of the hole and the plane is clearly divided into rough machining stage and finish machining stage. The supporting hole of the input bearing and output bearing is as the rough datum. And the top area and two technological holes are as the finish datum. The main process of machining technology is that first, the series of supporting hole fix and machine the top plane, and then the top plane and the series of supporting hole fix and machine technological hole. In the follow-up working procedure, all working procedures except several special ones fix and machine other series of hole and plane by using the top plane and technological hole. The machining way of the series of supporting hole is to bore hole by coordinate. The combination machine tool and special-purpose clamping apparatus are used in the whole machining process. The clampingway is to clamp by pneumatic and is very helpful. The instruction does not have to lock by itself. So the product efficiency is high. It is applicable for mass working and machining in assembly line. It can meet the design requirements.Key words: Gearbox; machining technology; special-purpose clamping apparatus目录摘要........................................................... I ABSTRACT ...................................................... I I 目录.......................................................... I V 第1章绪论 (1)1.1当前发展现状 (1)1.2 论文主要研究内容 (2)第2章发动机箱体工艺设计 (3)2.1箱体的分析 (3)2.1.1箱体的功用分析 (4)2.1.2箱体结构和功用的分析 (5)2.1.4箱体的技术分析 (6)2.1.5箱体的材料分析 (6)2.2发动机箱体毛坯的设计 (7)2.2.1确定毛坯种类及加工方法的选择 (7)2.2.2毛坯的工艺分析及要求 (8)2.2.3毛坯余量和公差的确定 (9)2.3工艺路线设计 (12)2.3.1加工方法的选择 (12)2.3.2箱体的材料及热处理 (12)2.3.3阶段的划分 (13)2.3.4工序的集中与分散 (13)2.3.5基准的选择 (14)2.3.6 拟定发动机箱体的工艺路线 (15)2.4 加工设备及工艺装备的选择 (17)2.5 加工工序设计 (19)第3章钻床专用夹具设计 (26)3.1夹具的设计内容 (26)3.1.1定位基准的选择 (26)3.1.2工件的夹紧及夹紧装置 (26)3.1.3夹具材料的选择 (30)3.1.4夹具精度分析 (28)3.2削边销 (26)3.3支承板 (26)3.4压板 (27)3.5夹具体中间支架 (28)3.6齿轮齿条偏心轮部分的设计 (26)3.7齿轮的设计 (27)3.8键的选择及校核............................. 错误!未定义书签。
发动机箱体的机械加工工艺及钻孔夹具设计1
摘要本设计是汽车变速箱箱体零件的加工工艺规程及一些工序的专用夹具设计。
汽车变速箱箱体零件的主要加工表面是平面及孔系。
一般来说,保证平面的加工精度要比保证孔系的加工精度容易。
因此,本设计遵循先面后孔的原则。
并将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。
基准选择以变速箱箱体的输入轴和输出轴的支承孔作为粗基准,以顶面与两个工艺孔作为精基准。
主要加工工序安排是先以支承孔系定位加工出顶平面,再以顶平面与支承孔系定位加工出工艺孔。
在后续工序中除个别工序外均用顶平面和工艺孔定位加工其他孔系与平面。
支承孔系的加工采用的是坐标法镗孔。
整个加工过程均选用组合机床。
夹具选用专用夹具,夹紧方式多选用气动夹紧,夹紧可靠,机构可以不必自锁。
因此生产效率较高。
适用于大批量、流水线上加工。
能够满足设计要求。
关键词:变速箱;加工工艺;专用夹具AbstractThe design is about the special-purpose clamping apparatus of the machining technology process and some working procedures of the car gearbox parts. The main machining surface of the car gearbox parts is the plane and a series of hole. Generally speaking, to guarantee the working accuracy of the plane is easier than to guarantee the hole’s. So the design follows the principle of plane first and hole second. And in order to guarantee the working accuracy of the series of hole, the machining of the hole and the plane is clearly divided into rough machining stage and finish machining stage. The supporting hole of the input bearing and output bearing is as the rough datum. And the top area and two technological holes are as the finish datum. The main process of machining technology is that first, the series of supporting hole fix and machine the top plane, and then the top plane and the series of supporting hole fix and machine technological hole. In the follow-up working procedure, all working procedures except several special ones fix and machine other series of hole and plane by using the top plane and technological hole. The machining way of the series of supporting hole is to bore hole by coordinate. The combination machine tool and special-purpose clamping apparatus are used in the whole machining process. The clamping way is to clamp bypneumatic and is very helpful. The instruction does not have to lock by itself. So the product efficiency is high. It is applicable for mass working and machining in assembly line. It can meet the design requirements.Key words: Gearbox; machining technology; special-purpose clamping apparatus目录摘要 (I)ABSTRACT ...................................................... I I 目录......................................................... I II 第1章绪论 (1)1.1当前发展现状 (1)1.2 论文主要研究内容 (2)第2章发动机箱体工艺设计 (3)2.1箱体的分析 (3)2.1.1箱体的功用分析 (4)2.1.2箱体结构和功用的分析 (5)2.1.4箱体的技术分析 (6)2.1.5箱体的材料分析 (6)2.2发动机箱体毛坯的设计 (7)2.2.1确定毛坯种类及加工方法的选择 (7)2.2.2毛坯的工艺分析及要求 (8)2.2.3毛坯余量和公差的确定 (9)2.3工艺路线设计 (12)2.3.1加工方法的选择 (12)2.3.2箱体的材料及热处理 (12)2.3.3阶段的划分 (13)2.3.4工序的集中与分散 (13)2.3.5基准的选择 (14)2.3.6 拟定发动机箱体的工艺路线 (15)2.4 加工设备及工艺装备的选择 (17)2.5 加工工序设计 (19)第3章钻床专用夹具设计 (26)3.1夹具的设计内容 (26)3.1.1定位基准的选择 (26)3.1.2工件的夹紧及夹紧装置 (26)3.1.3夹具材料的选择 (30)3.1.4夹具精度分析 (28)3.2削边销 (26)3.3支承板 (26)3.4压板 (27)3.5夹具体中间支架 (28)3.6齿轮齿条偏心轮部分的设计 (26)3.7齿轮的设计 (27)3.8键的选择及校核............................ 错误!未定义书签。
箱体类零件加工工艺流程
箱体类零件加工工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!箱体类零件加工工艺流程箱体类零件的加工工艺流程一般包括以下步骤:一、粗加工阶段1.1 粗铣主要平面,去除铸件表面硬皮和凹凸不平1.2 粗铣孔,为精加工提供稳定基准二、精加工阶段2.1 精铣主要平面,达到尺寸精度和表面粗糙度要求2.2 精铣孔,达到尺寸精度和形状精度要求三、钻孔阶段3.1 钻定位孔,为后续工序提供定位基准3.2 钻其他孔,包括螺钉孔、销孔等四、铰孔阶段4.1 铰基准孔,提高孔的尺寸精度4.2 铰其他孔,达到更高的尺寸精度要求五、磨孔阶段5.1 磨基准孔,达到更高的尺寸精度和表面粗糙度要求5.2 磨其他孔,包括轴承孔、定位孔等六、其他工序6.1 镗孔,用于加工大孔和深孔6.2 刨孔,用于加工端面与孔的垂直度要求较高的孔总结:箱体类零件的加工工艺流程应遵循先面后孔的原则,分阶段进行粗加工和精加工,并采取相应的工艺措施,以保证零件的加工质量。
箱体零件的加工工艺
箱体零件的加工工艺【箱体零件的加工工艺】一、箱体零件加工工艺的历史其实啊,箱体零件的加工工艺有着相当长的历史。
在工业发展的早期,人们制造箱体零件的方法非常原始和简单。
那时候可没有现在这么先进的机床和工具,加工精度和效率都很低。
比如说,早期可能就是用手工打造,一点点地敲敲打打,把金属材料塑造成大致的箱体形状。
这就好比是在捏泥巴,只不过材料从泥巴变成了金属,而且难度要大得多。
随着工业革命的推进,蒸汽机的出现带动了机械制造业的发展。
慢慢地,出现了一些简单的机床,像车床、铣床等。
这时候加工箱体零件就有了一定的进步,但还是比较粗糙。
到了 20 世纪,随着科技的飞速发展,数控机床、加工中心等先进设备逐渐问世,箱体零件的加工工艺也迎来了巨大的变革。
加工精度、效率和质量都有了显著的提高。
二、箱体零件加工工艺的制作过程1. 设计与规划说白了就是在开始加工之前,得先想好要做个什么样的箱体零件。
这就像你要盖房子,得先有个设计图纸,知道房子的大小、形状、结构等等。
要考虑箱体的用途、尺寸、材料等因素,制定出详细的加工方案。
比如说,一个用于汽车发动机的箱体零件,和一个用于电脑主机的箱体零件,那要求肯定是不一样的。
2. 材料准备根据设计要求选择合适的材料。
常见的有铸铁、铝合金、钢等。
这就好比做饭选食材,得选对了才能做出好吃的菜。
不同的材料有不同的性能,比如强度、硬度、耐磨性等。
3. 毛坯制造有了材料,接下来就是制造毛坯。
毛坯可以通过铸造、锻造、焊接等方法获得。
比如说铸造,就像是做个大的金属“沙模”,把熔化的金属液体倒进去,冷却后就得到了一个初步的形状。
4. 粗加工先把毛坯进行初步的加工,去掉多余的部分,让它大致接近箱体零件的最终形状。
这个过程就像是在雕刻一块大石头,先把多余的石头凿掉,露出大致的轮廓。
5. 半精加工在粗加工的基础上,进一步提高精度和表面质量。
比如说,把一些面磨得更平,把孔钻得更准。
6. 精加工这是最后的关键步骤,要达到设计要求的精度和表面质量。
箱体零件的加工工艺
箱体零件的加⼯⼯艺箱体零件的加⼯⼯艺⼀、概述1箱体零件的功⽤与结构特点箱体是机器的基础零件,它将机器中有关部件的轴、套、齿轮等相关零件连接成⼀个整体,并使之保持正确的相互位置,以传递转矩或改变转速来完成规定的运动。
故箱体的加⼯质量,直接影响到机器的性能、精度和寿命。
箱体类零件的结构复杂,壁薄且不均匀,加⼯部位多,加⼯难度⼤。
据统计资料表明,⼀般中型机床制造⼚花在箱体类零件的机械加⼯⼯时约占整个产品加⼯⼯时的l5%~20%。
2箱体零件的主要技术要求箱体类零件中,机床主轴箱的精度要求较⾼,可归纳为以下五项精度要求:⑴孔径精度:孔径的尺⼨误差和⼏何形状误差会造成轴承与孔的配合不良。
孔径过⼤,配合过松,使主轴回转轴线不稳定,并降低了⽀承刚度,易产⽣振动和噪声;孔径太⼩,会使配合偏紧,轴承将因外环变形,不能正常运转⽽缩短寿命。
装轴承的孔不圆,也会使轴承外环变形⽽引起主轴径向圆跳动。
从上⾯分析可知,对孔的精度要求是较⾼的。
主轴孔的尺⼨公差等级为IT6,其余孔为IT8~IT7。
孔的⼏何形状精度未作规定的,⼀般控制在尺⼨公差的1/2范围内即可。
⑵孔与孔的位置精度:同⼀轴线上各孔的同轴度误差和孔端⾯对轴线的垂直度误差,会使轴和轴承装配到箱体内出现歪斜,从⽽造成主轴径向圆跳动和轴向窜动,也加剧了轴承磨损。
孔系之间的平⾏度误差,会影响齿轮的啮合质量。
⼀般孔距允差为⼟0.025~⼟0.060mm,⽽同⼀中⼼线上的⽀承孔的同轴度约为最⼩孔尺⼨公差之半。
⑶孔和平⾯的位置精度:主要孔对主轴箱安装基⾯的平⾏度,决定了主轴与床⾝导轨的相互位置关系。
这项精度是在总装时通过刮研来达到的。
为了减少刮研⼯作量,⼀般规定在垂直和⽔平两个⽅向上,只允许主轴前端向上和向前偏。
⑷主要平⾯的精度:装配基⾯的平⾯度影响主轴箱与床⾝连接时的接触刚度,加⼯过程中作为定位基⾯则会影响主要孔的加⼯精度。
因此规定了底⾯和导向⾯必须平直,为了保证箱盖的密封性,防⽌⼯作时润滑油泄出,还规定了顶⾯的平⾯度要求,当⼤批量⽣产将其顶⾯⽤作定位基⾯时,对它的平⾯度要求还要提⾼。
第四章《箱体类零件的加工方法》介绍
第四章《箱体类零件的加工方法》介绍一、箱体类零件的特点与分类箱体类零件通常具有如下特点:1.形状复杂,内外尺寸精度要求高;2.加工难度大,工序繁多;3.使用范围广,应用领域多样。
箱体类零件根据其结构和用途可以分为:金属箱体零件、塑料箱体零件、复合材料箱体零件等。
二、加工过程的步骤箱体类零件的加工过程通常包括以下几个步骤:1.确定工艺路线:根据零件的结构和加工要求,制定出适合的工艺路线;2.制定工艺文件:包括工艺卡、工艺图、工艺文件等;3.准备加工设备和工具:确保加工设备和工具的完好性和准备充分;4.进行加工操作:根据工艺路线和工艺文件进行加工操作,包括切削、冲压、焊接、钻孔等;5.进行加工中间检验:在加工过程中,适时进行检验,确保加工质量;6.进行装配操作:根据零件的要求进行装配操作,包括装配焊接、螺栓固定等;7.进行最终检验:在完成装配后进行最终检验,确保产品质量;8.进行后续处理:根据零件要求进行后续处理,包括表面处理、防腐处理等。
三、常用的加工设备与工具在箱体类零件的加工过程中,常用的加工设备和工具包括:1.数控机床:包括数控铣床、数控车床等,用于进行零件的切削加工;2.冲压设备:包括冲床、剪板机等,用于进行零件的冲压加工;3.焊接设备:包括电弧焊、气体保护焊等,用于进行零件的焊接加工;4.钻孔设备:包括立式钻床、卧式钻床等,用于进行零件的钻孔加工;5.装配工具:包括螺栓、螺母、螺丝刀等,用于进行零件的装配操作。
四、加工工艺与注意事项在进行箱体类零件的加工过程中,需要遵循以下加工工艺与注意事项:1.合理安排工艺路线:根据零件的结构和加工要求,选择合适的工艺路线,确保加工工艺的合理性和可行性;2.保证加工精度:根据零件的要求,合理选择加工设备和工具,确保加工精度的达到要求;3.注重加工过程中的检验与控制:在加工过程中,要适时进行检验,发现问题及时修正,确保加工质量;4.注意安全操作:在加工过程中,要注意操作人员的安全,确保加工过程的安全性;5.合理利用材料和工具:在加工过程中,要合理利用材料和工具,降低生产成本,提高生产效率;6.严格质量检验:在完成零件的加工和装配之后,要进行严格的质量检验,确保产品的质量。
箱体类零件加工工艺及常用工艺装备
箱体类零件加工工艺及常用工艺装 备
第一节 概述
二 、箱体类零件的主要技术要求、材料和毛坯 (二)箱体的材料及毛坯
箱体材料一般选用HT200~400的各种牌号的灰铸铁,而最常用的为HT200 灰铸铁不仅成本低,而且具有较好的耐磨性、可铸性、可切削性和阻尼特性。在单 件生产或某些简易机床的箱体,为了缩短生产周期和降低成本,可采用钢材焊接结 构。毛坯的加工余量与生产批量、毛坯尺寸、结构、精度和铸造方法等因素有关。 有关数据可查有关资料及根据具体情况决定。 毛坯铸造时,应防止砂眼和气孔的产生。为了减少毛坯制造时产生残余应力,应使 箱体壁厚尽量均匀,箱体浇铸后应安排时效或退火工序。
箱体类零件加工工艺用常用工艺装备
第一节 概述 一、箱体类零件的功用及结构特点 二、箱体类零件的主要技术要求、材料和毛坯
第二节 平面加工方法和平面加工方案 一、刨削 二、铣削 三、磨削 四、平面的光整加工 五、平面加工方案及其选择
第三节 铣削加工常用工艺装备 一、常用尖齿铣刀用其应用 二、铣床夹具 第四节 箱体孔系加工及常用工艺装备 一、箱体零件孔系加工的加工 二、箱体孔系加工精度分析 三、镗夹具(镗模) 四、联动夹紧机构 第五节 典型箱体零件加工工艺分析 一、主轴箱加工工艺过程及其分析 二、分离式齿轮箱体加工工艺过程及其分析
铣削工艺特点如下: 1.生产效率高但不稳定 2.断续切削 3.半封闭切削
箱体类零件加工工艺及常用工艺装 备
第二节 平面加工方法和平面加工方案
二、铣削 (二)铣削用量四要素 l、铣削速度 铣刀旋转时的切削速度。 2、进给量 指工件相对铣刀移动的距
箱体零件的孔系加工方法与精度分析——《机械制造工程学》课程教学中的典型零件加工专题
机械加工精度作为机械制造工程学课程的重要内容之一,在教学中一般按照工艺系统的几何误差、受力变形等分立的内容进行教学。
为提高学生综合运用所需知识分析解决具体问题的能力,我们开展了“专题驱动式”教学方法研究。
下面以箱体零件的孔系加工为专题,对其工艺方案与加工精度进行分析。
箱体类零件是机械传动装置中重要的基础件,箱体上若干有相互位置精度要求的孔构成箱体孔系,包括平行孔系、同轴孔系等。
孔系的加工方法与孔系的加工精度对保证传动装置的性能和质量具有重要影响。
一、平行孔系加工平行孔系的精度要求主要是各孔轴线之间及轴线与基准面之间的尺寸精度和轴线间的平行度等几何精度。
可以通过以下几种方法保证平行孔系精度要求。
1.找正法。
采用辅助装置来确定各个被加工孔的正确位置,如划线找正、心轴块规找正等。
2.镗模法。
镗模是引导镗刀杆在工件上镗孔用的机床夹具,利用镗模板上的孔系保证箱体孔系位置精度,镗杆与镗床主轴多采用浮动连接,以减小机床主轴的回转精度对加工精度的影响。
3.坐标法。
首先将被加工孔之间的孔距尺寸换算为两个相互垂直的坐标尺寸,然后精确地调整机床主轴与工件在水平和垂直方向的相对位置,以间接保证孔距精度。
为保证工作台和主轴的位移精度,必须在镗床上加上坐标测量装置。
二、同轴孔系加工在成批生产中,常采用镗模加工箱体同轴孔系以保证其轴线的同轴度。
在单件小批生产时,一般不采用镗模,常采用如下两种方法保证其轴线孔的同轴度。
1.利用已加工孔作支承导向。
在加工好的箱体前壁孔内装一个导向套,对镗杆起支承支撑和引导作用。
它适用于加工壁间距较小的箱体同轴孔。
2.利用镗床后立柱作支承导向。
镗床后立柱上的导向套作支承导向,可解决因镗杆悬臂过长而挠度大进而影响同轴度的问题。
这种方法需用较长的镗杆,而且调整后立柱导套比较麻烦、费时,通常适用于大型箱体的孔系加工。
三、孔系加工的精度分析(一)受力变形的影响1.镗杆受力变形的影响。
镗削过程中,随着镗杆的回转,径向力Fy 与切向力Fz 的合力Fyz 方向不断改变。
箱体加工工艺过程及工序卡
箱体加工工艺过程及工序卡箱体加工是指对箱体进行各种工艺处理,以满足工程需求。
通常包括铣削、钻孔、切割、折弯、焊接、涂装等工序。
下面是一个箱体加工的工序卡,来详细描述箱体加工的工艺过程及各个工序。
工艺过程:1.下料:根据箱体的设计图纸,将所需的板材进行切割或折弯,得到对应的零件。
2.铣削:针对箱体零件的毛刺或边角进行铣削,使其表面平整,便于后续的连接和装配。
3.钻孔:对于需要固定件的箱体零件进行钻孔处理,以便于安装螺丝、铆钉和其他固定件。
4.切割:根据设计要求,对箱体零件进行切割加工,如切割窗口,开孔等。
5.折弯:对于带有折弯部分的箱体零件,采用机械设备对其进行折弯处理,以得到所需的弯度和形状。
6.焊接:将已经加工好的箱体零件进行定位并进行焊接,以形成完整的箱体结构。
7.打磨:对焊接后的箱体进行打磨处理,使焊接处平整光滑,达到美观和耐用的要求。
8.涂装:对已经打磨好的箱体进行涂装处理,以增加外观质量和抗腐蚀性。
9.组装:将经过涂装的箱体零件进行组装,包括固定件的安装、连接件的安装等。
10.检验:对组装完成的箱体进行检验,确保箱体的质量和功能满足设计要求。
11.包装:对合格的箱体进行包装,以便于运输和储存。
工序卡示例:工序卡号:01工序名称:下料工序内容:1.根据设计图纸,将所需板材切割成对应的形状和尺寸。
2.对切割好的板材进行折弯或加工,使其形成所需的零件。
3.对零件的边缘进行打磨,确保平整无毛刺。
工序卡号:02工序名称:铣削工序内容:1.将需要进行铣削的箱体零件进行定位,确保其固定在机床上。
2.根据需要进行的铣削处理,调整加工参数,使其达到设计要求的尺寸和形状。
3.对铣削后的零件进行检查,确保其平整光滑。
工序卡号:03工序内容:1.根据设计要求,对需要进行固定件安装的零件进行定位。
2.使用钻孔设备进行钻孔,确保孔的位置和尺寸准确。
3.对钻孔后的零件检查,确保孔的质量和精度。
工序卡号:04工序名称:切割工序内容:1.根据设计要求,对箱体零件进行切割处理,如切割窗口,开孔等。
箱体的加工工艺
箱体的加工工艺(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除箱体零件的加工工艺箱体零件的加工工艺 摘要:姓 名: 宋国萍 班 级: 机械071 班级学号: 49 指导教师: 李丽在箱体类零件各加工表面中,通常平面的加工精度比较容易保证,而精度要求较高的支承孔的加工精度以及孔与孔之间、孔与平面之间的互相位置精度则较难保证。
所以,再制定箱体类零件加工工艺过程的时,应将如何保证孔的精度为重点来考虑。
精度与表面粗糙度要求,目的是保证安装在孔内的轴承和轴的回转精度;平面的平面度和平直度,其目的在于保证装配后整机的接触面接触刚度和导向面的定位精度;孔系的位置精度是箱体类零件最主要的技术要求,其中包括孔与孔的位置精度箱体类零件加工表面的主要问题是平面和孔。
其技术要求主要体现在三个方面:孔的尺寸和孔与平面位置精度,箱体定位基准的选择。
AbstractIn the box-type parts of machined surface, usually the processing plane is easier to ensure accuracy, but the supporting high precision machining precision holes and holes with the holes between the hole and the mutual position between the plane more difficult to ensure the accuracy of . Therefore, re-enacted box parts machining process time should be how to ensure the accuracy of holes focus to consider.Accuracy and surface roughness requirements, the purpose is to ensure that the bearings installed in the hole and shaft of the rotary precision; plane flatness and straightness, the purpose isto ensure assembly of the contact surface after the machine-oriented surface of the contact stiffness and positioning accuracy; the location of the holes is a box-type parts precision of the most important technical requirements, including the location of hole and hole box parts machined surface accuracy of the main problems is the plane and holes. Its technical requirements is mainly reflected in three aspects: the hole size and hole position accuracy with the plane, the choice of the base box location.关键词:箱体。
机械制造及工艺——箱体零件加工工艺
箱体零件加工工艺分析一、主轴箱加工工艺过程及其分析(一)主轴箱加工工艺过程如图8-2所示为某车床主轴箱简图,表8-8为该主轴箱小批量生产的工艺过程。
表8-9为该主轴箱大批量生产的工艺过程。
(二)箱体类零件加工工艺分析1.主要表面加工方法的选择箱体的主要表面有平面和轴承支承孔。
主要平面的加工,对于中、小件,一般在牛头刨床或普通铣床上进行。
对于大件,一般在龙门刨床或龙门铣床上进行。
刨削的刀具结构简单,机床成本低,调整方便,但生产率低;在大批、大量生产时,多采用铣削;当生产批量大且精度又较高时可采用磨削。
单件小批生产精度较高的平面时,除一些高精度的箱体仍需手工刮研外,一般采用宽刃精刨。
当生产批量较大或为保证平面间的相互位置精度,可采用组合铣削和组合磨削如图8-68所示。
箱体支承孔的加工,对于直径小于Φ50mm 的孔,一般不铸出,可采用钻→扩(或半精镗)→铰(或精镗)的方案。
对于已铸出的孔,可采用粗镗→半精镗→精镗(用浮动镗刀片)的方案。
由于主轴轴承孔精度和表面质量要求比其余轴孔高,所以,在精镗后,还要用浮动镗刀片进行精细镗。
对于箱体上的高精度孔,最后精加工工序也可采用珩磨、滚压等工艺方法。
2.拟定工艺过程的原则(l)先面后孔的加工顺序。
箱体主要是由平面和孔组成这也是它的主要表面。
先加工平面,后加工孔,是箱体加工的一般规律。
因为主要平面是箱体往机器上的装配基准,先加工主要平面后加工支承孔,使定位基准与设计基准和装配基准重合,从而消除因基准不重合而引起的误差。
另外,先以孔为粗基准加工平面,再以平面为精基准加工孔,这样,可为孔的加工提供稳定可靠的定位基准,并且加工平面时切去了铸件的硬皮和凹凸不平对后序孔的加工有利,可减少钻头引偏和崩刃现象,对刀调整也比较方便。
(2)粗精加工分阶段进行。
粗、精加工分开的原则:对于刚性差、批量较大、要求精度较高的箱体,一般要粗、精加工分开进行,即在主要平面和各支承孔的粗加工之后再进行主要平面和各支承孔的精加工。
发动机箱体加工工艺流程
发动机箱体加工工艺流程发动机箱体加工工艺流程是指将原材料经过一系列加工工艺的加工制造过程,最终形成发动机箱体的过程。
发动机箱体作为发动机的重要组成部分,承载着发动机的各种部件,并提供了保护和支撑功能。
下面将详细介绍发动机箱体加工工艺流程。
一、原材料准备发动机箱体的原材料通常采用优质的铝合金材料,具有良好的强度和耐腐蚀性。
在加工之前,需要对原材料进行检查,确保其质量符合要求,并对其进行切割或锯割,以便进一步的加工。
二、铣削加工铣削是发动机箱体加工的主要工艺之一,通过铣床将原材料进行切削,使其形成所需的形状和尺寸。
首先,需要根据设计要求制定加工方案和工艺路线,确定切削刀具的选择和切削参数。
然后,将原材料固定在铣床上,进行铣削加工,通过不断移动切削刀具和工件,使原材料逐渐形成发动机箱体的外形。
三、钻孔加工钻孔是发动机箱体加工的另一项重要工艺,用于形成各种孔洞和螺纹孔。
首先,根据设计要求,在发动机箱体上标记出钻孔位置。
然后,使用钻床进行钻孔加工,根据不同的孔径和深度选择合适的钻头,并确定合理的进给速度和转速。
通过旋转钻头,将切削液引入钻孔,以降低温度和摩擦,提高钻孔的质量和效率。
四、螺纹加工发动机箱体上的一些部件需要进行螺纹加工,以便与其他部件连接。
螺纹加工可以使用螺纹铣刀或螺纹攻丝刀进行。
在加工之前,需要确定螺纹的类型和规格,并使用合适的工具进行加工。
通过旋转螺纹刀具,将切削刀具与发动机箱体上的孔洞进行相对运动,形成所需的螺纹结构。
五、表面处理为了提高发动机箱体的表面质量和耐腐蚀性,通常需要进行表面处理。
常见的表面处理方法包括阳极氧化、电镀和喷涂等。
阳极氧化是将发动机箱体浸泡在电解槽中,通过电解反应形成氧化膜,提高其耐蚀性和表面硬度。
电镀是将发动机箱体浸泡在电镀液中,通过电流作用将金属离子沉积在表面,形成一层金属覆盖层。
喷涂是将发动机箱体喷上防腐漆或涂层,以保护其表面免受氧化和腐蚀。
六、组装和检验在发动机箱体加工完成后,需要进行组装和检验。
孔位加工方法
高速钢刀具应用(钻头、铰刀)
(一)钻孔
钻孔(drilling) :在工件的实体部位加工 孔的工艺过程 刀具:麻花钻。 机床:钻床、车床、镗床、铣床
台钻的主轴进给由 转动进给手柄实现。
台钻小巧灵活,使 用方便,结构简单, 主要用于加工小型 工件上的各种小孔。
在仪表制造、钳工 和装配中用得较多。
特点图示
一、钻孔
3. 钻削用量
1) 背吃刀量asp
单位:mm
asp do
一、钻孔
3. 钻削用量
2)钻削速度vc
单位:m/min
vc do n 1000
一、钻孔
3. 钻削用量
3)钻削进给量与进给速度:
f 单位:mm/r fz 单位:mm/z Vf 单位:mm/min
钻孔用的夹具
钻孔的工艺特点
• (1)易引偏
a)在钻床上钻孔
b)在车床上钻孔
• 引偏是孔径扩大或孔轴 线偏移和不直的现象。
• 由于钻头横刃定心不准, 钻头刚性和导向作用较 差,切入时钻头易偏移、 弯曲。
• 在钻床上钻孔易引起孔 的轴线偏移和不直;
• 在车床上钻孔易引起孔 径扩大
• (2)排屑困难
• 钻孔的切屑较宽,在孔内被迫 卷成螺旋状,流出时与孔壁发 生剧烈摩擦而刮伤已加工表面, 甚至会卡死或折断钻头。
两个圆弧段的副后刀面
1、麻花钻结构特点
1)横刃较长,横刃处前角为负值切削阻力大,据实验50% 的轴向力和15%的扭距。
2)主切削刃上各点前角不同(靠近钻心处前角为负值), 切削性能差。
3)钻头的副后角为零,摩擦力大。 4)主切削刃外缘处刀尖角小,刀齿薄弱。 5)主切削刃长,且全刀宽切削,排屑困难。
铰孔的方式有机铰和手铰两种。
加工箱体长孔的工艺方法和应用
2 5 吨起重机 ,行走箱体在我厂是重要关键部件 ,箱体 的2 — 2 5 孔长为3 2 7 毫 米 的孔 ,通 过 汽 缸 滑 动 带 动 拨 叉 轴 ,拨 叉 轴 通 过 拨 叉 带 动齿套滑动按油路挡位分 别与双联齿轮啮合 ,来实现输入转数
铰 后 再 用 手 工 铰 ,组 装 时 与 之 相 配 合 的拨 叉 轴 还 是 串不 进 去 , 即使 拨 叉轴 往 超 差 磨 ,运 行 也不 好 ,在 这 种 情 况 下设 计 了粗 铰 和 精 铰 超 长 铰刀 和 新 的工 艺机 加 方 法 , 从而 保 证 了加 工件 的 设计 要 求 。
证 箱体 长 孔 加 工 质 量 的 目的 。
【 关键词 】 箱体 长孔;工艺方法 ; 镗床
在 加工箱体 长孔 过程中,由于长孔的孔径和 精度要 求较高 ,通 常用的加 工手段 是:首先,用钻头钻 出孔 ( 粗加 工) 后,留出精加 工 余量,再 由技术水平较高的工人师傅直接镗 出内孔达到精 度要求; 其 次 , 完 成 工 序 :钻 孔 一 扩 孔 一 粗 铰 一 精 铰 ,来 保 证 孔 的 质 量 。 1 箱 体 孔 系 的 加 工 方 法 所 谓 的孔 系 是箱 体 上 若 干 有相 互位 置 精 度 要 求 的孔 的 组合 。孔 系可分为平行孔 系、同轴孔 系和交叉孔系。孔系加 工是箱体加 工的 关 键 ,根 据 箱 体 加工 批 量 的 不 同 和 孔 系 精度 要 求 的 不 同 , 孔 系加 工 所 用 的方 法也 是 不 同 的 。 1 . 1 平 行 孔 系 的 加 工
件小批生产 中,其 同轴度用下面几种方法来保证 。 1 . 2 . 1 利 用 已加 工孔 作 支承 导 向 当箱 体 前 壁 上 的 孔 加 工 好 后 , 在孔 内 装 一 导 向套 , 以支 承和 引 导 镗 杆 加 工 后 壁 上 的 孔 ,从 而 保 证 两 孔 的 同 轴度 要 求 。这 种 方 法 只 适 于 加 工 箱 壁 较 近 的孔 。 1 . 2 . 2 利用镗床后立柱上 的导 向套支承导 向 这种方法 其镗杆 系两端 支承 ,刚性好 。但此法调整麻烦 ,镗杆 长 , 很 笨 重 , 故 只适 于 单件 小批 生 产 中大 型 箱 体 的加 工 。
箱体零件的加工工艺
箱体零件的加工工艺一、概述1箱体零件的功用与结构特点箱体是机器的基础零件,它将机器中有关部件的轴、套、齿轮等相关零件连接成一个整体,并使之保持正确的相互位置,以传递转矩或改变转速来完成规定的运动。
故箱体的加工质量,直接影响到机器的性能、精度和寿命。
箱体类零件的结构复杂,壁薄且不均匀,加工部位多,加工难度大。
据统计资料表明,一般中型机床制造厂花在箱体类零件的机械加工工时约占整个产品加工工时的l5%~20%。
2箱体零件的主要技术要求箱体类零件中,机床主轴箱的精度要求较高,可归纳为以下五项精度要求:⑴孔径精度:孔径的尺寸误差和几何形状误差会造成轴承与孔的配合不良。
孔径过大,配合过松,使主轴回转轴线不稳定,并降低了支承刚度,易产生振动和噪声;孔径太小,会使配合偏紧,轴承将因外环变形,不能正常运转而缩短寿命。
装轴承的孔不圆,也会使轴承外环变形而引起主轴径向圆跳动。
从上面分析可知,对孔的精度要求是较高的。
主轴孔的尺寸公差等级为IT6,其余孔为IT8~IT7。
孔的几何形状精度未作规定的,一般控制在尺寸公差的1/2范围内即可。
⑵孔与孔的位置精度:同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,会使轴和轴承装配到箱体内出现歪斜,从而造成主轴径向圆跳动和轴向窜动,也加剧了轴承磨损。
孔系之间的平行度误差,会影响齿轮的啮合质量。
一般孔距允差为土0.025~土0.060mm,而同一中心线上的支承孔的同轴度约为最小孔尺寸公差之半。
⑶孔和平面的位置精度:主要孔对主轴箱安装基面的平行度,决定了主轴与床身导轨的相互位置关系。
这项精度是在总装时通过刮研来达到的。
为了减少刮研工作量,一般规定在垂直和水平两个方向上,只允许主轴前端向上和向前偏。
⑷主要平面的精度:装配基面的平面度影响主轴箱与床身连接时的接触刚度,加工过程中作为定位基面则会影响主要孔的加工精度。
因此规定了底面和导向面必须平直,为了保证箱盖的密封性,防止工作时润滑油泄出,还规定了顶面的平面度要求,当大批量生产将其顶面用作定位基面时,对它的平面度要求还要提高。
箱体类零件的加工工艺分析
箱体类零件的加工工艺分析摘要:本文从工艺路线的拟定、定位基准的选择、主要表面的加工三方面重点分析了箱体类零件的加工工艺、提出了先进的孔精加工工艺方案并指出:箱体类零件的重要孔系的加工精度成为箱体类零件的加工工艺关键。
关键词:工艺路线拟定;定位基准选择;箱体平面加工;内应力;孔系加工箱体类零件是机械零件中的典型零件,如车床床头箱、齿轮传动箱体、变速箱体等,是机器的基础零件之一,它将机器及部件中的轴、轴承、套和齿轮等零件各自保持正确的相互位置,并按照预先设计好的传动关系使其协调地相互运动,组合成一个整体。
组装后的箱体部件、用箱体的设计基准平面安装在机器上,因此箱体的加工质量不仅影响其装配精度及运动精度、而且对机器的工作精度、使用性能和寿命有着决定性的影响。
一、工艺路线的设计箱体要求加工的表面很多,比如车床床头箱体、齿轮传动箱体等在这些加工表面中,平面加工精度比孔的加工精度容易保证,所以箱体中主轴孔(主要孔)的加工精度,孔系加工精度就成为工艺关键问题,因此,在工艺路线的安排中我更倾向于注意几点。
(1)先面后孔的加工顺序先加工平面,不仅切除掉了毛坯表面的凸凹不平和表面夹砂等陷,更重要的是在加工分布在平面上的孔时,划线,找正方便,而且当镗刀开始镗孔时,不会因端面有高低不平而产生冲击振动、损坏刀具,因此,一般最好应先加工平面。
(2)粗、精加工阶段要分开箱体结构复杂,主要表面的精度要求高,粗加工时产生的切削力、夹紧力和切削热对加工精度有较大影响,如果粗加工立即进行精加工,那么粗加工后由于各种原因引起的工件变形的内应力没有充分释放出来,在精加工中就无法将其消除,从而导致加工完卸载时箱体变形,影响箱体最终的精度,我认为在粗加工过程中,最好应多次松卸夹具,使内应力及时尽可能的释放出来,更大限度的保证箱体的加工质量。
(3)工序集中或分散的决定箱体粗、精加工阶段分开符合工序分散的原则,但是在中、小批生产时,为了减少使用机床和夹具的数量,以及减少箱体的搬运和安装次数,可将粗、精加工阶段相对集中,尽可能放在同一台机床上进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加工箱体长孔的工艺方法和应用
【摘要】本文阐述了箱体孔系的常用的加工方法,重点分析了加工箱体长孔的工艺方法,同时结合轮胎起重机行走箱体中拨叉轴孔的加工问题,探讨了加工箱体长孔新工艺的应用,从而达到保证箱体长孔加工质量的目的。
【关键词】箱体长孔;工艺方法;镗床
在加工箱体长孔过程中,由于长孔的孔径和精度要求较高,通常用的加工手段是:首先,用钻头钻出孔(粗加工)后,留出精加工余量,再由技术水平较高的工人师傅直接镗出内孔达到精度要求;其次,完成工序:钻孔→扩孔→粗铰→精铰,来保证孔的质量。
1箱体孔系的加工方法
所谓的孔系是箱体上若干有相互位置精度要求的孔的组合。
孔系可分为平行孔系、同轴孔系和交叉孔系。
孔系加工是箱体加工的关键,根据箱体加工批量的不同和孔系精度要求的不同,孔系加工所用的方法也是不同的。
1.1平行孔系的加工
1.1.1找正法
找正法是在通用机床(镗床、铣床)上利用辅助工具来找正所要加工孔的正确位置的加工方法。
这种找正法加工效率低,一般只适于单件小批生产。
找正时除根据划线用试镗方法外,有时借用心轴量块或用样板找正,以提高找正精度。
(1)心轴和量块找正法。
镗第一排孔时将心轴插入主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,校正时用塞尺测定块与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。
镗第二排孔时,分别在机床主轴和已加工孔中插入心轴,采用同样的方法来校正主轴轴线的位置,以保证孔心距的精度。
这种找正法其孔心距精度可达0.03mm。
(2)样板找正法。
用l0~20mm厚的钢板制成样板,装在垂直于各孔的端面上(或固定于机床工作台上),样板上的孔距精度要高于箱体孔系的精度(一般0.0l~0.03mm),样板上的孔径较工件的孔径要大,以便于镗杆通过。
1.1.2镗模法
在成批生产中,广泛采用镗模加工孔系。
工件装夹在镗模上,镗杆被支承在镗模的导套内,导套的位置决定了镗杆的位置,装在镗杆上的镗刀将工件上相应的孔加工出来。
当用两个或两个以上的支承来引导镗杆时,镗杆与机床主轴必须浮动联接。
当采用浮动联接时,机床精度对孔系加工精度影响很小,因而可以在精度较低的机床上加工出精度较高的孔系。
孔距精度主要取决于镗模,一般可达0.05mm。
能加工公差等级IT7的孔,其表面粗糙度可达Ra5~1.25μm。
当从一端加工、镗杆两端均有导向支承时,孔与孔之间的同轴度和平行度可达0.02~0.03mm;当分别由两端加工时,可达0.04~0.05mm。
用镗模法加工孔系,既可在通用机床上加工,也可在专用机床上或组合机床上加工。
1.1.3坐标法
坐标法镗孔是在普通卧式镗床、坐标镗床或数控镗铣床等设备上,借助于精密测量装置,调整机床主轴与工件间在水平和垂直方向的相对位置,来保证孔距精度的一种镗孔方法。
采用坐标法加工孔系时,要特别注意选择基准孔和镗孔顺序,否则,坐标尺寸累积误差会影响孔距精度。
基准孔应尽量选择本身尺寸精度高、表面粗糙度值小的孔(一般为主轴孔),这样在加工过程中,便于校验其坐标尺寸。
孔距精度要求较高的两孔应连在一起加工;加工时,应尽量使工作台朝同一方向移动,因为工作台多次往复,其间隙会产生误差,影响坐标精度。
现在国内外许多机床厂,已经直接用坐标镗床或加工中心机床来加工一般机床箱体。
这样就可以加快生产周期,适应机械行业多品种小批量生产的需要。
1.2同轴孔系的加工
成批生产中,箱体上同轴孔的同轴度几乎都由镗模来保证。
单件小批生产中,其同轴度用下面几种方法来保证。
1.2.1利用已加工孔作支承导向
当箱体前壁上的孔加工好后,在孔内装一导向套,以支承和引导镗杆加工后壁上的孔,从而保证两孔的同轴度要求。
这种方法只适于加工箱壁较近的孔。
1.2.2利用镗床后立柱上的导向套支承导向
这种方法其镗杆系两端支承,刚性好。
但此法调整麻烦,镗杆长,很笨重,故只适于单件小批生产中大型箱体的加工。
1.2.3采用调头镗
当箱体箱壁相距较远时,可采用调头镗。
工件在一次装夹下,镗好一端孔后,将镗床工作台回转180°,调整工作台位置,使已加工孔与镗床主轴同轴,然后再加工另一端孔。
当箱体上有一较长并与所镗孔轴线有平行度要求的平面时,镗孔前应先用装在镗杆上的百分表对此平面进行校正,使其和镗杆轴线平行,校正后加工孔B,孔B加工后,回转工作台,并在镗杆上装的百分表沿此平面重新校正,这样就可保证工作台准确地回转180°。
然后再加工孔A,从而保证孔A、B同轴。
2加工箱体长孔工艺方法的应用
25吨起重机,行走箱体在我厂是重要关键部件,箱体的2-Φ25孔长为327毫米的孔,通过汽缸滑动带动拨叉轴,拨叉轴通过拨叉带动齿套滑动按油路挡位分别与双联齿轮啮合,来实现输入转数2500r/min分别以输出转数为718.8r/min 和294r/min转数输出。
如果327毫米长的两孔同轴度误差大,汽缸给油时拨叉轴在2-Φ25孔内不能顺利移动,拨叉轴不能带动拨叉移动,齿轮挂不上挡,起重机行走时只能以一种速度前行或倒车。
这将严重影响起重机的使用性能。
用普通机用铰刀只能两面铰孔,两孔的同轴度保证不了,机铰后再用手工铰,组装时与之相配合的拨叉轴还是串不进去,即使拨叉轴往超差磨,运行也不好,在这种情况下设计了粗铰和精铰超长铰刀和新的工艺机加方法,从而保证了加工件的设计要求。
工艺方法是加工时一次装夹,完成以下加工内容:通过采用平旋盘拧紧带90°直角的加长镗刀杆,镗另一端箱体内侧Φ25的孔、距镗孔端面为252毫米尺寸的端面镗平(图纸没要求加工此端面,属工艺要求),以免产生钻、铰孔时端面粗糙度不好、且不垂直,产生刚进刀时吃刀不均造成的加工缺陷问题;预钻2-Φ25至Φ24.5底孔,这时底面是平的钻底孔时误差小,并用自行设计的Φ24.8粗铰锥柄机用铰刀粗铰孔,然后再用Φ25精铰锥柄机用铰刀精铰孔,用这种工艺和刀具方法加工,保证了箱体达到同轴度要求,也保证了整个箱体及起重机的正确运行。
粗铰铰刀和精铰铰刀均为:刀杆工作部份材料为W18Cr4V柄部为45#,工作部硬度HRC63-66、硬度HRC30-45,工作部分和柄部对中心的跳动允差为0.01毫米,铰刀校准直径有倒锥。
高速钢铰刀齿数为8,铰刀焊接长度为68毫米,刀杆长度为550毫米,刀杆锥柄部采用5号莫氏锥度。
粗铰锥柄机用铰刀直径为Φ24.8,精铰锥柄机用铰刀直径为Φ25。
锥柄粗铰、精铰机用铰刀均为长550毫米加长非标准机用铰刀,刀杆的锥度均与T68镗床的锥度相符合(是5号莫氏锥度)。
刀杆直接装入主轴里减少刀具与机床的累积误差,使锥柄机用铰刀在铰长孔时更准确,同轴度的误更小。
参考文献:
[1]高新荣,史仁贵.提高隔爆螺纹孔加工质量的工艺方法[J].煤矿机械,2012(01).
[2]董肖敏,李波文.大功率曲轴箱体凸轮轴孔镗刀杆的设计与应用[J].金属加
工(冷加工),2011(06).
[3]李思谦,居馨.径向可涨镗刀[J].工程机械,2010.。