最新二次函数中考选择填空题(带答案)

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

中考数学高频考点《实际问题与二次函数》专项练习题-带答案

中考数学高频考点《实际问题与二次函数》专项练习题-带答案

中考数学高频考点《实际问题与二次函数》专项练习题-带答案一、单选题1.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球从弹起后又回到地面所经过的总路程是()A.5米B.10米C.1米D.2米2.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC是()A.6米B.5米C.4米D.1米3.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣ x2D.y= x24.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2A.45B.83C.4 D.565.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y= √32x2B.y= √3x2C.y=2 √3x2D.y=3 √3x26.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是().A.12 B.18 C.20 D.247.如图,正方形ABCD的顶点A(0,√22),B(√22,0),顶点C,D位于第一象限,直线x=t,(0≤t≤√2),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.8.从地面竖直向上抛出一小球,小球的高度 h (单位: m )与小球运动时间t(单位: s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 40m ;②小球运动的时间为 6s ;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④二、填空题9.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=60t-1.5t2,则飞机着陆后滑行直到停下来滑行了米.10.如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(不与点B,C重合),连接PC,PD,设△PCD的面积为S,则S的取值范围是。

二次函数的最值问题(中考题)(含答案)

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( )A. a<bB.a=b C a>b D 不能确定答案:C2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( )A 、-74 B 、 C 、 2或 D 2或或- 74答案:C∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m.当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2765y x 416⎛⎫=-++ ⎪⎝⎭此时,它在-2≤x≤l 的最大值是6516,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符.当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在-2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符.综上所述,实数m 的值为2或. 故选C .3. 已知0≤x≤12,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。

真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0<x<8). 配方得S=- (x2-8x)=- (x-4)2+8∴当x=4时,S最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.-≤≤的最大值与最小值分别是3、函数y=2(0x4)答案:2,0最小值为0,当4x-x2最大,即x=2最大为4,所以,当x=0时,y最大值为2,当x=2时,y取最小值为04、已知二次函数y=x2+2x+a (0≤x≤1)的最大值是3,那么a的值为答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。

2020年全国各地数学中考试题精选之二次函数(含答案)

2020年全国各地数学中考试题精选之二次函数(含答案)

2020年全国各地数学中考试题精选之二次函数一、单选题1.(2020·辽阳模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③4a﹣2b+c<0;④8a+c>0.其中正确的有()A. 4个B. 3个C. 2个D. 1个2.(2020·杭州模拟)在平面直角坐标系中,已知m≠n,函数y=x²+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx²+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是()A. a=bB. a=b-1C. a=b或a=b+1D. a=b或a=b-13.(2020·广西模拟)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①2a+b=0;②b2−4ac<0;③当y>0时,x的取值范围是−1<x<3;④当x>0时,y随x增大而增大;⑤若t为任意实数,则有a+b≥at2+ bt,其中结论正确的个数是( )A. 4个B. 3个C. 2个D. 1个4.(2020·铁岭模拟)二次函数y=ax2+bx+c的图象如图所示,在下列说法中:①abc>0;②a+b+c>0;③4a−2b+c>0;④当x>1时,y随着y的增大而增大.正确的说法个数是()A. 1B. 2C. 3D. 45.(2020·东城模拟)若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>26.(2020·长丰模拟)若(−2,0)是二次函数y=ax2+bx(a>0)图象上一点,则抛物线y=a(x−2)2+ bx−2b的图象可能是()A. B.C. D.7.(2020·南山模拟)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②4a−2b+c<0;③若A(−12,y1)、B(32,y2)、C(−2,y3)是抛物线上的三点,则有y3<y1<y2;④若m,n(m<n)为方程a(x−3)(x+1)−2=0的两个根,则m>−1且n<3,以上说法正确的有()A. ①②③④B. ②③④C. ①②④D. ①②③8.(2020·萧山模拟)已知二次函数y=a(x-2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1-2|>|x2-2|,则下列表达式正确的是()A. y1+y2>0B. y1-y2>0C. a(y1-y2)>0D. a(y1+y2)>09.(2020·西安模拟)二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )A. 有最小值9B. 有最大值9C. 有最小值8D. 有最大值810.(2020·广水模拟)二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a−b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠ x2,则x1+x2=2.其中正确的有()A. ①②③B. ②④C. ②⑤D. ②③⑤11.(2020·铜川模拟)若一个二次函数y=ax2−4ax+3(x≠0)的图像经过两点A(m+2,y1)、B(2−m,y2),则下列关系正确的是()A. y1=y2B. y1<y2C. y1>y2D. y1≥y212.(2020·连云模拟)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t2+mt+25 8,若小球经过74秒落地,则小球在上抛过程中,第()秒离地面最高.A. 37B. 47C. 34D. 4313.(2020·红花岗模拟)如图,抛物线y=﹣x2+2x+c+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①抛物线的对称轴是直线x=1;②若OC=OB,则c=2;③若M(x0,y0)是x轴上方抛物线上一点,则(x0﹣a)(x0﹣b)<0;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中真命题个数是()A. 1B. 2C. 3D. 414.(2020·柯桥模拟)在同一平面直角坐标系中,先将抛物线A:y=x2﹣2通过左右平移得到抛物线B,再将抛物线B通过上下平移得到抛物线C:y=x2﹣2x+2,则抛物线B的顶点坐标为()A. (﹣1,2)B. (1,2)C. (1,﹣2)D. (﹣1,﹣2)15.(2020·台州模拟)抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c ﹣2=0有两个相等的实数根.其中正确的结论是()A. ③④B. ②④C. ②③D. ①④16.(2020·绍兴模拟)抛物线y=﹣x2+bx+c与x轴的两个交点坐标如图所示,下列说法中错误的是()A. 一元二次方程﹣x2+bx+c=0的解是x1=﹣2,x2=1B. 抛物线的对称轴是x=−12C. 当x>1时,y随x的增大而增大D. 抛物线的顶点坐标是(−12,9 4 )17.(2020·湖州模拟)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac >0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A. 1B. 2C. 3D. 418.(2020·南充模拟)将抛物线y=x(x+2)向左平移1个单位后的解析式为()A. y=x(x+1)B. y=x(x+3)C. y=(x−1)(x+1)D. y=(x+1)(x+3)19.(2020·沙湾模拟)二次函数y=−x2−1的图象是一条抛物线,下列关于该抛物线的说法正确的是()A. 开口向上B. 对称轴是x=1C. 当x=0时,函数的最大值是-1D. 抛物线与x轴有两个交点20.(2020·峨眉山模拟)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图像与x轴有M个交点,函数y=(ax+1)(bx+1)的图像与x轴有N个交点,则()A. M=N−1或M=N+1B. M=N−1或M=N+2C. M=N或M=N+1D. M=N或M=N−121.(2020·峨眉山模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(−2,0),对称轴为直线x= 1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;3⑤若方程a(x+2)(4−x)=−2的两根为x1,x2,且x1<x2,则﹣2≤ x1<x2<4.其中正确结论的序号是()A. ①②④B. ①③④C. ①③⑤D. ①②③⑤22.(2020·旌阳模拟)已知y关于x的函数表达式是y=ax2−4x−a,下列结论错误的是()A. 若a=−1,函数的最大值是5B. 若a=1,当x≥2时,y随x的增大而增大C. 无论a为何值时,函数图象一定经过点(1,−4)D. 无论a为何值时,函数图象与x轴都有两个交点23.(2020·新都模拟)关于二次函数y=x2−kx+k−1,以下结论:①抛物线交x轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交x轴于A、B两点,若AB=1,则k=4;④抛物线的顶点在y=−(x−1)2图象上;⑤抛物线交y轴于C点,若△ABC是等腰三角形,则k=−√2,0,1.其中正确的序号是()A. ①②⑤B. ②③④C. ①④⑤D. ②④24.(2020·武侯模拟)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=1,且与x轴的一个交点为A(3,0),下列说法错误的是()A. b2>4acB. abc<0C. 4a﹣2b+c>0D. 当x<﹣1时,y随x的增大而增大25.(2020·青白江模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+ b+c<0;②b2-4ac<0;③b+2a<0;④c<0.其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②26.(2020·大邑模拟)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−2,与x轴的一个交点坐标为(−4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=−4;④当−4<x<0时,ax2+bx+ c>0;⑤a−b+c<0.其中结论错误的...个数有()个A. 1B. 2C. 3D. 427.(2020·永州模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②2a+b=0;③3a+c>0;④4a﹣2b+c<0:⑤9a+3b+c<0.其中结论正确的个数有()A. 1个B. 2个C. 3个D. 4个28.(2020·怀化模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=−1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A. ①②B. 只有①C. ③④D. ①④29.(2020·黄石模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A. a>0B. 当﹣1<x<3时,y>0C. c<0D. 当x≥1时,y随x的增大而增大30.(2020·乾县模拟)已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A. −14B. 14C. −15D. 15二、填空题31.(2020·海淀模拟)如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,−2),C(−2,4),D(4,−2),E(7,0),将二次函数y=a(x−2)2+m(m≠0)的图象记为W.下列的判断中①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是________.32.(2020·长丰模拟)若抛物线y=x2−2kx+k2+1在−1≤x≤1时,始终在直线y=2的上方,则k的取值范围是________.33.(2020·新疆模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(−12,0),对称轴为直线x=1,下列5个结论:①abc<0;②a−2b+4c=0;③2a+b>0;④2c−3b<0;⑤a+b≤m(am+b).其中正确的结论为________. (注:只填写正确结论的序号)34.(2020·昌吉模拟)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(12,0),有下列结论:①abc<0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c<0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是________.(填写正确结论的序号)35.(2020·立山模拟)若二次函数y=mx2+(m−2)x+m的顶点在x轴上,则m=________.36.(2020·立山模拟)在同一平面直角坐标系中,若抛物线y=x2+(2m−1)x+2m−4与y=x2−(3m+n)x+n关于y轴对称,则符合条件的m=________;n=________.37.(2020·铁西模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大.⑤4a+2b≥am2−bm(m为任意实数)其中正确的结论有________.(填序号)38.(2020·梧州模拟)已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是________39.(2020·南充模拟)如图,抛物线y=x2+ax+2经过点P(−2,2),Q(m,n).若点Q到y轴的距离小于2,则n的取值范围是________.40.(2020·海曙模拟)如图,已知△ABC中,∠ACB=90°,D是斜边AB上一点,BD=2AD,CD=4,则S△ACD 的最大值为________.三、综合题41.如图,已知二次函数y=-x2+bx+c的图像经过点A(4,-5),点B(0,3)。

人教版九年级数学中考复习二次函数真题专练(解析版)

人教版九年级数学中考复习二次函数真题专练(解析版)

二次函数----真题专练一、选择题1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A. B.C. D.2.若二次函数的图象经过,,三点则关于,,大小关系正确的是A. B. C. D.3.将抛物线平移,得到抛物线,下列平移方式中,正确的是A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位4.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a-b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个5.在二次函数的图象中,若y随x的增大而减少,则x的取值范围是A. B. C. D.6.2下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当-1<x<5时,y<0.其中正确的有()A. 1个B. 2个C. 3个D. 4个8.抛物线y=(x-2)2-3的顶点坐标是()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴如图所示,则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.B.C.D.二、填空题11.函数y=-中自变量x的取值范围是______.12.已知抛物线y=x2-(k+2)x+9的顶点在坐标轴上,则k的值为______.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=-1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论是______ (填写序号).14.二次函数y=-x2+2x+2图象的顶点坐标是______.15.若二次函数y=mx2+x+m(m-2)的图象经过原点,则m的值为______ .16.如图,抛物线C1:y=x2经过平移得到抛物线C2:y=x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______三、解答题17.如图,抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.18.如图,抛物线经过A(-1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.20.如图,二次函数y=-x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.22.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.答案和解析1.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2-bx 来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选C.2.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.【解答】解:二次函数对称轴为直线x=-=3,3-(-1)=4,3-1=2,3+-3=,∵a=1>0,开口向上,离对称轴越远,y值越大,又∵4>2>,∴y1>y2>y3.故选A.3.【答案】D【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=-3x2的顶点坐标为(0,0),y=-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y=-3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=-3(x-1)2-2.故选D.4.【答案】B【解析】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:-1<x<0,∴当x=-1时,y=a-b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.5.【答案】B【解析】【分析】本题考查了二次函数的性质有关知识,先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.【解答】解:y=-x2+2x+1=-(x-1)2+2,抛物线的对称轴为直线x=1,∵a=-1<0,开口向下,∴当x>1时,y随x的增大而减少.故选B.6.【答案】B【解析】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选:B.根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.7.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系有关知识,根据函数图象可得各系数的关系:a>0,b<0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=-=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=2,∴-=2,∴b=-4a<0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴-=2,∴b=-4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(-1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当-1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.8.【答案】B【解析】【分析】此题考查了二次函数顶点式的性质有关知识,已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为的是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,-3).故选B.9.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=-=1,∴b=-2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-=1,∴b=-2a,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,所以④错误.故选:C.由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴->0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(-1,0),∴a-b+c=0,故②正确;③∵a-b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a-b+c=0,∴c=b-a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b-a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(-1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b-a代入即可判断④正确.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】-2<x≤3【解析】【分析】本题考查的是函数自变量取值范围,分式有意义的条件,二次根式的概念.根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:-2<x≤3,则自变量x的取值范围是-2<x≤3.故答案为-2<x≤3.12.【答案】4,-8,-2【解析】解:当抛物线y=x2-(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2-4×9=0,解得k=4或k=-8;当抛物线y=x2-(k+2)x+9的顶点在y轴上时,x=-==0,解得k=-2.故答案为:4,-8,-2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.13.【答案】①②④【解析】解:∵抛物线对称轴是直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=-1时,y=a-b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2-4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a-b+c的符号是解题关键.14.【答案】(1,3)【解析】解:∵y=-x2+2x+2=-(x2-2x+1)+3=-(x-1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.15.【答案】2【解析】【分析】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.本题中已知二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m-2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m-2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案为2.16.【答案】4【解析】解:抛物线C1:y=x2的顶点坐标为(0,0),∵y=x2+2x=(x+2)2-2,∴平移后抛物线的顶点坐标为(-2,2),对称轴为直线x=-2,当x=-2时,y=×(-2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:(2+2)×2=4,故答案为:4.确定出抛物线y=x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.【答案】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),∴,解得,,即此抛物线的解析式是y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴此抛物线顶点D的坐标是(1,-4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=-,即点P的坐标为(1,-);当DA=DP时,=,解得,y=-4±,即点P的坐标为(1,-4-2)或(1,-4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,-)或(1,-4-2)或(1,-4+)或(1,4).【解析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.18.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c (a≠0),∵A(-1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2-2x-;(2)∵抛物线的解析式为:y=x2-2x-,∴其对称轴为直线x=-=-=2,连接BC,如图1所示,∵B(5,0),C(0,-),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x-,当x=2时,y=1-=-,∴P(2,-);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2-2x-=,解得x=2+或x=2-,∴N 2(2+,),N3(2-,).综上所述,符合条件的点N的坐标为(4,-),(2+,)或(2-,).【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.19.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,-4),∴D(0,-2),∴P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,-2);(3)∵点P在抛物线上,∴可设P(t,t2-3t-4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,-4),∴直线BC解析式为y=x-4,∴F(t,t-4),∴PF=(t-4)-(t2-3t-4)=-t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(-t2+4t)×4=-2(t-2)2+8,∴当t=2时,S△PBC最大值为8,此时t2-3t-4=-6,∴当P点坐标为(2,-6)时,△PBC的最大面积为8.【解析】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF 的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.20.【答案】解:(1)将B(4,0)代入y=-x2+3x+m,解得,m=4,∴二次函数解析式为y=-x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=-x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2-4x+b=0,∴△=16-4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,-m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=-m2+3m+4,∴m=1±,∴P(1+,1+)或P(1-,1-),②如图,设点P(t,-t2+3t+4),过点P作y轴的平行线l交BC于点D,交x轴于点E,过点C作l的垂线交l于点F,∵点D在直线BC上,∴D(t,-t+4),∵PD=-t2+3t+4-(-t+4)=-t2+4t,BE+CF=4,∴S四边形PBQC=2S△PBC=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=-4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=16【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.21.【答案】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=-x2+4x+5;(2)①设P(x,-x2+4x+5),则E(x,x+1),D(x,0),则PE=|-x2+4x+5-(x+1)|=|-x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|-x2+3x+4|=2|x+1|,当-x2+3x+4=2(x+1)时,解得x=-1或x=2,但当x=-1时,P与A重合不合题意,舍去,∴P(2,9);当-x2+3x+4=-2(x+1)时,解得x=-1或x=6,但当x=-1时,P与A重合不合题意,舍去,∴P(6,-7);综上可知P点坐标为(2,9)或(6,-7);②设P(x,-x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x-4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x-4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x-4|=,解得x=4+或x=4-,此时P点坐标为(4+,-4-8)或(4-,4-8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,-4-8)或(4-,4-8)或(0,5).【解析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.22.【答案】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x-1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3-1)2+4,解得a=-1,∴抛物线解析式为y=-(x-1)2+4,即y=-x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=-1,∴直线BD解析式为y=-x+3;(2)设P点横坐标为m(m>0),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,-x2+2x+3),则G(x,-x+3),∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|-x2+3x|=4,当-x2+3x=4时,△=9-16<0,方程无实数根,当-x2+3x=-4时,解得x=-1或x=4,∴Q(-1,0)或(4,-5),综上可知存在满足条件的点Q,其坐标为(-1,0)或(4,-5).【解析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。

中考数学总复习之二次函数专题复习

中考数学总复习之二次函数专题复习

中考数学总复习之二次函数专题复习一.选择题(共8小题)1.二次函数y=2x2+8x+5的图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.把二次函数y=x2+2x﹣6配方成顶点式为()A.y=(x﹣1)2﹣7B.y=(x+1)2﹣7C.y=(x+2)2﹣10D.y=(x﹣3)2+33.已知二次函数y=(a﹣2)x2,当x>0时,y随x的增大而减小,则实数a的取值范围是()A.a>0B.a>2C.a≠2D.a<24.关于抛物线y=(x﹣1)2﹣2,以下说法正确的是()A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的5.2019年在武汉市举行了军运会,在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y=x2+x+的一部分(如图),其中出球点B离地面O点的距离是米,球落点的距离是()A.1米B.3米C.5米D.米6.二次函数y=x2﹣3x+1的图象大致是()A.B.C.D.7.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.8.如图,已知开口向上的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列结论:①abc>0;②2a+b=0;③若关于x的方程ax2+bx+c+1=0一定有两个不相等的实数根;④a>.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m,门宽为2m.这个矩形花圃的最大面积是.10.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m的取值范围是.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C 在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.12.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.13.已知二次函数y=(x﹣3)2+3,当x=时,y取得最小值.14.已知抛物线y=x2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(6,0),若关于x的方程x2﹣mx+t=0(t为实数)在1≤x<5的范围内有解,则t的取值范围是.16.二次函数y=ax2+bx﹣3(a≠0)的图象经过点(1,4),则代数式a+b的值为.三.解答题(共4小题)17.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A(﹣1,0)和点B,点P是直线BC上方的抛物线上一动点.(1)求二次函数的表达式;(2)求BC所在直线的函数解析式;(3)过点P作PM∥y轴交直线BC于点M,求线段PM长度的最大值.18.如图,直线y=x+2与x轴交于点B,与y轴交于点D.抛物线y=ax2+bx﹣4与x轴交于点A(4,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,点P为抛物线在直线AC下方的一动点,作PH∥y轴,PF⊥AC,分别交AC 于点H、F,求PH+PF的最大值和此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4沿射线AC平移个单位长度,得到新抛物线,点R在新抛物线的对称轴上,点S在抛物线y=ax2+bx﹣4上.当以点D、P、R、S为顶点的四边形是平行四边形时,写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求抛物线与坐标轴的交点所围成的三角形面积;(3)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.。

中考数学《二次函数》复习练习题及答案

中考数学《二次函数》复习练习题及答案

年级数学中考专题复习二次函数一、选择题:1、将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2+6 D.y=x22、已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33、已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34、函数y=(x﹣1)2﹣k与y=(k≠0)在同一坐标系中的图象大致为()A. B. C. D.5、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个 B.4个 C.3个 D.2个6、在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)图象可能是( )7、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2C.3D.28、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、已知a<﹣1,点(a﹣1,y1)、(a,y2)、(a+1,y3)都在函数y=x2﹣2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y310、在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0) B.(﹣6,0) C.(6,0) D.(9,0)11、二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b 中,值大于0的个数为()A.5 B.4 C.3 D.212、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.2613、如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于轴的直线从轴出发,沿轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形OABC的两边分别交于点M、N(点M在点N 的上方),若△OMN的面积S,直线的运动时间为秒(),则能大致反映S与的函数关系的图像是( )14、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤;④4ac-b2>8a.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④15、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题:16、如图,点E是抛物线y=a(x﹣2)2+k的顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D.点A是对称轴上一点,连结AC、AB.若△ABC是等边三角形,则图中阴影部分图形的面积之和是.17、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为.18、有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式:.(答案不惟一)19、二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.20、如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为________.21、若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=______.22、小明在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L是m.23、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.24、已知抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,若D为AB中点,则CD长为.25、如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为.26、如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.27、如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少个时,网球可以落入桶内.28、如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,的值总是正数;②;③当x=0时,;④AB+AC=10;⑤,其中正确结论的个数是:.29、如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则= .30、如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、简答题:31、如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.32、如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.33、某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看做一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)每月的利润z(万元)与销售单价x(元)之间的函数关系式为;(2)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?34、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?35、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.36、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.37、某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?38、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.39、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.40、如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.参考答案1、D.2、B.3、B.4、C.5、B.6、D.7、B.8、C.9、C.10、D.11、C.12、C.13、C.14、D.15、B.16、答案为:2.17、答案为:y=13﹣x.18、答案为:y=x2﹣x+3.19、答案为:520、答案为:(,2) 21、答案是:9.22、答案为:4.5.23、答案为:2米.24、答案为:.25、答案为:6.26、答案为:_1 27、答案为:8. 28、答案为:4.29、答案为:3﹣.30、答案为:①③⑤.31【解答】解:(1)把A(﹣1,0)、B(3,0)两点代入y=x2+bx+c得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,4);(2)如图1,连接BC、CD、BD,DM⊥x轴,DN⊥y轴,垂足分别为M、N,∵y=x2﹣2x﹣3与y轴的交点C(O,﹣3),A(﹣1,0)、B(3,0),D(1,4),∴BC==3,CD==,BD==2,∵(3)2+()2=(2)2∴BC2+CD2=BD2∴△BCD是直角三角形;(3)如图2,①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4,当x=﹣4时,y=21;当x=4时,y=5;所以此时点P1的坐标为(﹣4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q 点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=﹣3,∴这是有符合条件的点P3(2,﹣3),∴所以符合条件的点为:P1的坐标为(﹣4,21),P2的坐标为(4,5);P3(2,﹣3).32、【解答】解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.∴点P的坐标为(1+2,4)或(1﹣2,4).33、【解答】解:(1)由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800.故答案是:z=﹣2x2+136x﹣1800;(2)设月销售利润为w,则w=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,当x=35时,w取得最大,最大利润为450万元.答:当销售单价为35元时,厂商每月能获得最大利润,最大利润是450万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,故当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),因此,所求每月最低制造成本为648万元.34、【解答】解:(1)设y(千克)与x(元)(x>0)的函数关系式为:y=kx+b,根据题意可得:,解得:.故y(千克)与x(元)(x>0)的函数关系式为:y=﹣40x+560;(2)∵W=280元,∴280=(﹣40x+560)×(x﹣6)解得:x1=7,x2=13.答:当销售单价为7元或13元时,每天可获得的利润达到W=280元;(3)∵利润=销售量×(销售单价﹣进价)∴W=(﹣40x+560)(x﹣6)=﹣40x2+800x﹣3360=﹣40(x﹣10)2+640,当售价为10元,则y=560﹣400=160,160×6=960(元)>720元,则当(﹣40x+560)×6=720,解得:x=11.即当销售单价为11元时,每天可获得的利润最大,最大利润是600元.35、【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).36【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.37、【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.38、【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∴a=﹣2<0,∴二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得:20≤x<70,因此利润不低于4800元的天数是20≤x<50,共30天;②当50≤x≤90时,y=﹣120x+12000≥4800,解得:x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.39、【解答】解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.40、解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分两种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);综上所述点N坐标(5,2)或(2,﹣1).。

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案一、单选题1.二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2B .y=(x ﹣1)2+3C .y=(x ﹣2)2+2D .y=(x ﹣2)2+42.抛物线y=x 2﹣2x ﹣3的对称轴和顶点坐标分别是( ).A .x=1,(1,﹣4)B .x=1(1,4)C .x=﹣1,(﹣1,4)D .x=﹣1,(﹣1,﹣4)3.把y=4x 2﹣4x+2配方成y=a (x ﹣h )2+k 的形式是( )A .y=(2x ﹣1)2+1B .y=(2x ﹣1)2+2C .y=(x ﹣ 12)2+1D .y=4(x ﹣ 12)2+24.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为( ) A .b =2,c =-2 B .b =-8,c =14 C .b =-6,c =6D .b =-8,c =185.直角坐标平面上将二次函数y=x 2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( ) A .(0,0)B .(1,-1)C .(0,-1)D .(-1,-1)6.将二次函数y=x 2+4x ﹣8化为y=(x+m )2+n 的形式正确的是( )A .y=(x+2)2+8B .y=(x+2)2﹣8C .y=(x+2)2+12D .y=(x+2)2﹣127.若b<0,则二次函数y=x 2-bx-1的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.通过配方法将二次函数y=ax 2+bx+c (a≠0)化成y=a (x ﹣h )2+k 的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a9.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x+1)2+2C .y=(x ﹣1)2+4D .y=(x ﹣1)2+210.抛物线y=﹣ 15 x 2+ 25x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =15(x −1)2+45C .y =15(x −1)2−45D .y =15(x +1)2+4511.如图,在 ΔABC 中 ∠B =90° ,tan ∠C =34,AB=6cm.动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P,Q 两点分别从A,B 两点同时出发,在运动过程中 ΔPBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 212.如图,在平面直角坐标系中抛物线所表示的函数解析式为y=﹣2(x ﹣h )2+k ,则下列结论正确的是( )A .h >0,k >0B .h <0,k >0C .h <0,k <0D .h >0,k <0二、填空题13.二次函数 y =−x 2+2x +3 的图象与 x 轴交于 A 、 B 两点, P 为它的顶点,则S △PAB = .14.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k= 15.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则y= . 16.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= .17.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣h )2+k 的形式,则y= . 18.已知抛物线的表达式是y =2(x +2)2−1,那么它的顶点坐标是 ;三、综合题19.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021中考数学专题训练:二次函数的图象及其性质一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.43. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 2019·雅安在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象的顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到5. 二次函数y=ax2+bx+c的部分图象如图所示,顶点为D(-1,2),与x轴的一个交点A 在点(-3,0)和(-2,0)之间,有以下结论:①b2-4ac<0;②a+b+c<0;③c-a=0;④一元二次方程ax2+bx+c-2=0有两个相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个6. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个7. (2020·株洲)二次函数2y ax bx c =++,若0ab <,20a b ->,点()11,A x y ,()22,B x y 在该二次函数的图象上,其中12x x <,120x x +=,则( )A. 12y y =-B. 12y y >C. 12y y <D. 1y 、2y 的大小无法确定8. 如图,边长为2的等边△ABC 和边长为1的等边△A ′B ′C ′,它们的边B ′C ′,BC位于同一条直线l 上,开始时,点C ′与B 重合,△ABC 固定不动,然后把△A ′B ′C ′自左向右沿直线l 平移,移出△ABC 外(点B ′与C 重合)停止,设△A ′B ′C ′平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )二、填空题9. 已知二次函数y=x 2-4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .10.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.11. 若方程(x -m )(x -n )=3(m ,n为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)14. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.三、解答题15. 如图①,已知抛物线y =ax 2+bx +c 经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S(图②中阴影部分).16. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l 与直线y =35x -245有个交点的横坐标为x 0,且满足3≤x 0≤5,通过l 位置随h 变化的过程,直接写出h 的取值范围.17. 如图,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点.(1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.18. 如图,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1∶2时,求t的值.2021中考数学专题训练:二次函数的图象及其性质-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】B[解析]由抛物线过(-2,n)和(4,n),说明这两个点关于对称轴对称,即对称轴为直线x=1,所以-=1,又因为a=-1,所以可得b=2,即抛物线的解析式为y=-x2+2x+4,把x=-2代入解得n=-4.3. 【答案】C【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y=x2+2向下平移1个单位得y=x2+2-1=x2+1.4. 【答案】C5. 【答案】B序号逐项分析正误①∵b>a>0,∴对称轴-b2a<0,即对称轴在y轴左侧√②∵抛物线y=ax2+bx+c与x轴最多有一个交点,且抛物线开口向上,∴y=ax2+bx+c≥0,∴方程ax2+bx+c+2=0即ax2+bx+c=-2无实数根√③由②得y=ax2+bx+c≥0,∴当x=-1时,a-b+c≥0√④∵当x=-2时,y=4a-2b+c≥0,∴a+b+c≥3b-3a,a+b+c≥3(b-a),∵b>a,∴a+b+cb-a≥3√7. 【答案】B【解析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.∵20a b->,b2≥0,∴a>0.又∵0ab <, ∴b <0.∵12x x <,120x x +=, ∴21x x =-,x 1<0.∵点()11,A x y ,()22,B x y 在该二次函数2y ax bx c =++的图象上∴2111y ax bx c =++,2222211y ax bx c ax bx c =++=-+.∴y 1-y 2=2bx 1>0. ∴y 1>y 2.故选:B.8. 【答案】B【解析】由题意知:在△A ′B ′C ′移动的过程中,阴影部分总为等边三角形.当0<x ≤1时,边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为边长为1的等边三角形,此时y =12×1×32=34;当2<x ≤3时,边长为3-x ,此时y =12(3-x )×32(3-x ).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题9. 【答案】k<4 [解析]∵二次函数y=x 2-4x +k 的图象的顶点在x 轴下方, ∴二次函数y=x 2-4x +k 的图象与x 轴有两个公共点. ∴b 2-4ac>0,即(-4)2-4×1×k>0.解得 k<4.10. 【答案】下y 轴 (0,0) 减小 增大11. 【答案】a <m <n <b【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.12. 【答案】713. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.14. 【答案】⎝⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0, ∴m 的取值范围为0<m<14.故答案为0<m<14.三、解答题15. 【答案】解:(1)把(0,3),(3,0),(4,3)代入y =ax2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x2-4x +3. (2)因为y =x2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2.16. 【答案】解:(1)①将P (1,-4)代入y =(x -h )2-4,得(1-h )2-4=-4,解得h =1, ∴抛物线l 的解析式为y =(x -1)2-4,∴抛物线l 的对称轴为直线x =1,顶点坐标为(1,-4). ②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x 1=-102+1,x 2=102+1,∴点M 的坐标为(-102+1,-32)或(102+1,-32). (2)∵y =(x -h )2-4,∴抛物线的顶点在直线y =-4上. 对于直线y =35x -245, 当3≤x 0≤5时,-3≤y 0≤-95,即抛物线l 与直线y =35x -245在G (3,-3),H (5,-95)之间的一段有一个交点. 当抛物线经过点G 时,(3-h )2-4=-3,解得h =2或h =4.当抛物线经过点H 时,(5-h )2-4=-95,解得h =5+555或h =5-555. 随h 的逐渐增加,l 的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h ≤5-555或4≤h ≤5+555时,抛物线l 与直线在3≤x 0≤5段有一个交点.17. 【答案】(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++.(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=, 所以4sin 5AH OA AOH =⋅∠=. 图2所以35OH =,225BH OB OH =-=. 在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=. (3)直线AB 的解析式为112y x =+. 设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +, 那么2291(1)(1)422MN x x x x x =-++-+=-+. 当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4 考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标. 那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得27x =±(如图5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,57(27,)--,57(27,)++.图518. 【答案】 (1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2).(2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±. 如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQ CM OM=. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-.当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭. 而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.。

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。

2021年中考数学 专题训练:二次函数的图象及其性质(含答案)

2021年中考数学 专题训练:二次函数的图象及其性质(含答案)

2021中考数学专题训练:二次函数的图象及其性质一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是 ()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,13. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-24. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个5. 将抛物线y=-3x2平移,得到抛物线y=-3(x-1)2-2,下列平移方式中,正确的是()A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+37. (2019•成都)如图,二次函数2y ax bx c =++的图象经过点1,0A,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =8. (2019•咸宁)已知点()()()()1,,1,,2,0Am B m C m n n -->在同一个函数的图象上,这个函数可能是 A .y x = B .2y x=-C .2y x =D .2y x =﹣9. 已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A. 当a =1时,函数图象过点(-1,1)B. 当a =-2时,函数图象与x 轴没有交点C. 若a >0,则当x ≥1时,y 随x 的增大而减小D. 若a <0,则当x ≤1时,y 随x 的增大而增大10. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( ) A. y 3>y 2>y 1 B. y 3>y 1=y 2 C. y 1>y 2>y 3 D. y 1=y 2>y 3二、填空题11. 如果二次函数y =a (x -h )2+k 的图象的顶点坐标为(-1,-3),那么它的对称轴为直线x =________,k 的值为________.12. (2019•株洲)若二次函数2y ax bx =+的图象开口向下,则__________0(填“=”或“>”或“<”).13. 某学习小组为了探究函数y =x 2-|x |的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________. x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y … 2 0.75 0 -0.25 0 -0.25 0 m 2 …14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)三、解答题17. 如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1 m处的点A飞出,其飞行的最大高度是4 m,最高处距离飞出点的水平距离是6 m,且飞行的路线是抛物线的一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y(m)与飞行的水平距离x(m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m)(3)若对方一名1.7 m的队员在距落地点C 3 m的点H处跃起0.3 m进行拦截,则这名队员能拦到球吗?18. (2019•云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.20. 如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE.求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标.21. 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图22021中考数学 专题训练:二次函数的图象及其性质-答案一、选择题 1. 【答案】A2. 【答案】D 【解析】由y =(x -2)2+k 知此二次函数的顶点坐标为(2,k ),对称轴为x =2,由y =x 2+bx +5知其对称轴为x =-b 2,得-b2=2,所以b =-4;于是可以得到函数的解析式是y =x 2-4x +5,把(2,k )代入其中即得k =1.3. 【答案】B [解析] 把(1,0),(2,0),(3,4)分别代入y =ax 2+bx +c ,得⎩⎨⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎨⎧a =2,b =-6,c =4,所以y =2x 2-6x +4.故选B.4. 【答案】C[解析]①∵抛物线开口向上,∴a>0.∵抛物线的对称轴在y 轴右侧,∴->0, ∴b<0.∵抛物线与y 轴交于负半轴,∴c<0,∴abc>0,∴①错误; ②当x=-1时,y>0,∴a -b +c>0.∵-=1,∴b=-2a.把b=-2a 代入a -b +c>0中得3a +c>0,∴②正确; ③当x=1时,y<0,∴a +b +c<0,∴a +c<-b. ∵a +c>b ,∴|a +c|<|b|,即(a +c )2-b 2<0, ∴③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a +b +c , ∴a +b +c ≤am 2+mb +c ,即a +b ≤m (am +b ),∴④正确.故选C .5. 【答案】D[解析] ∵抛物线y =-3x 2的顶点坐标为(0,0),抛物线y =-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x 2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】C7. 【答案】D【解析】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0,A 选项错误;函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误; 观察图象可知x=-1时y=a-b+c>0,所以a-b+c>0,C 选项错误; 根据图象与x 轴交点可知,对称轴是(1,0),(5,0)两点的中垂线,1532x +==, 即x=3为函数对称轴,D 选项正确, 故选D .8. 【答案】D【解析】()()1,,1,A m B m -, ∴点A 与点B 关于y 轴对称;由于2y x y x==-,的图象关于原点对称,因此选项A ,B 错误;∵0n >,∴m n m -<,由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确,故选D .9. 【答案】D【解析】当a =1时,函数为y =x 2-2x -1,当x =-1时,y =1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A 选项错误;当a =-2时,函数为y =-2x 2+4x -1,b 2-4ac =16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B 错误;当a >0时,抛物线的开口向上,它的对称轴是直线x =--2a2a =1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a <0时,抛物线的开口向下,它的对称轴是直线x =--2a2a =1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.10. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.二、填空题11. 【答案】-1 -312. 【答案】<【解析】∵二次函数2y ax bx =+的图象开口向下, ∴0a <. 故答案为:<.13. 【答案】0.75【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x=-1.5时,y 的值相等.∴m =0.75.14. 【答案】21(4)2y x =-【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】3216. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.三、解答题17. 【答案】解:(1)由题意,设y =a(x -6)2+4. ∵A(0,1)在抛物线上, ∴1=a(0-6)2+4, 解得a =-112, ∴y =-112(x -6)2+4.(2)令y =0,则0=-112(x -6)2+4,解得x 1=4 3+6≈13,x 2=-4 3+6<0(舍去),∴在没有队员干扰的情况下,球飞行的最远水平距离约是13 m. (3)当x =13-3=10时,y =83>1.7+0.3=2, ∴这名队员不能拦到球.18. 【答案】(1)∵抛物线y=x 2+(k 2+k-6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=, 即k 2+k-6=0, 解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2,当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)将点B (1,4),E (3,0)的坐标代入抛物线的解析式得,0394⎩⎨⎧=+=+b a b a 解得,62⎩⎨⎧=-=b a ∴抛物线的解析式为y =-2x 2+6x ; (2)∵BD ⊥DE , ∴∠BDE =90°,∴∠BDC +∠EDO =90°,又∵∠ODE +∠DEO =90°, ∴∠BDC =∠DEO , 在△BDC 和△DEO 中,⎩⎨⎧∠BCD =∠DOE =90°∠BDC =∠DEOBD =DE, ∴△BDC ≌△DEO (AAS), ∴OD =BC =1,∴D (0,1);(3)如解图,作点B 关于抛物线的对称轴的对称点B ′,连接D B '交抛物线的对称轴于点M .解图∵抛物线对称轴为直线x =a b 2-=32, ∴点B ′的坐标为(2,4),∵点B 与点B ′关于x =32对称,∴MB =M B ',∴DM +MB =DM +MB ′,∴当点D 、M 、B ′在同一条直线上时,MD +MB 有最小值(即△BMD 的周长有最小值),∵DC =OC -OD =3,CB ′=2,CB =1,∴D B '=2'2CB DC +=13,BD =22BC DC +=10,∴△BDM 周长的最小值=10+13,设直线D B '的解析式为y =kx +t ,将点D 、B ′的坐标代入得⎩⎨⎧t =12k +t =4, 解得⎩⎪⎨⎪⎧k =32t =1,∴直线DB ′的解析式为y =32x +1, 将x =32代入得y =134,∴M (32,134).21. 【答案】 (1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G . 在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4。

2020-2021年中考数学专题复习9二次函数选择题和填空题(含答案)

2020-2021年中考数学专题复习9二次函数选择题和填空题(含答案)
【详解】
解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:
,解得: ,
∴二次函数的解析式是 ,
∴a=1>0,故①正确;
当 时,y有最小值 ,故②错误;
若点 ,点 在二次函数图象上,则 , ,∴ ,故③正确;
【详解】
由二次函数图象可知:a﹤0,对称轴 ﹥0,
∴a﹤0,b﹥0,
由反比例函数图象知:c﹥0,
∴ ﹤0,一次函数图象与y轴的交点在y轴的负半轴,
对照四个选项,只有B选项符合一次函数 的图象特征.
故选:B·
【点睛】
本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键·
6.B
【分析】
根据开口方向、对称轴、与 轴交点即可分别判断 符号,进而判断A选项;由 两点的横坐标分别为 和 可得两个方程,判断B选项;由当 时 判断C选项;由二次函数对称轴及增减性判断D选项.
【详解】
∵开口向下,与 轴交点在正半轴

∵ 两点的横坐标分别为 和


∴ ,故A选项正确,B选项错误
∵ 两点的横坐标分别为 和
专题九二次函数选择题和填空题
学校:___________姓名:__________班级:___________考号:___________
一、单选题
1.一次函数 与二次函数 在同一平面直角坐标系中的图象可能是()
A. B.
C. D.
2.已知在同一直角坐标系中二次函数 和反比例函数 的图象如图所示,则一次函数 的图象可能是()
∴正确的有①②④,共3个,
故选:C.
【点睛】
此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).

中考数学《二次函数-动态几何问题》专项练习题(带答案)

中考数学《二次函数-动态几何问题》专项练习题(带答案)

中考数学《二次函数-动态几何问题》专项练习题(带答案)一、单选题1.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤122.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)3.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣34.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.5.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3 B.1C.5D.86.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17.如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a 和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t 的函数图象大致为()A.B.C.D.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC = DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A .B .C .D .10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .11.如图,抛物线 y =−12x 2+32x +2 与x 轴交于A 、B 两点与y 轴交于点C .若点P 是线段BC 上方的抛物线上一动点,当 △BCP 的面积取得最大值时,点P 的坐标是( )A .(2,3)B .(32,258)C .(1,3)D .(3,2)12.已知点A (0,2),B (2,0),点C 在y=x 2的图象上,若△ABC 的面积为2,则这样的C 点有( ) A .1 个B .2个C .3个D .4个二、填空题13.如图,抛物线与轴交于点C,点D(0,1),点P是抛物线上在第一象限的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.14.如图,已知直线y=﹣34 x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12 x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34 x+3于点Q,则当PQ=BQ时,a的值是.15.已知抛德物线y=14x2 +1有下性质:该抛物线上任意一点到定点F(0,2)的距离与到轴的距离始终相等,如图,点M的坐标为(√2,3),P是抛物线y=14x2 +1上一个动点,则△PMF周长的最小值是.16.把抛物线y=2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是。

最新二次函数中考选择填空题(带答案)

最新二次函数中考选择填空题(带答案)

2018二次函数中考选择填空题(难)一.选择题(共18 小题)1.(2018?杭州)四位同学在研究函数y=x2+bx+c(b,c 是常数)时,甲发现当x=1 时,函数有最小值;乙发现﹣ 1 是方程x2+bx+c=0 的一个根;丙发现函数的最小值为3;丁发现当x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁2.(2018?泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1 时,y的最大值为9,则a的值为()A.1 或﹣ 2 B.或C.D.13.(2018?齐齐哈尔)抛物线C1:y1=mx2﹣4mx+2n﹣1 与平行于x 轴的直线交于A、B两点,且 A 点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y 轴交点坐标为(0,﹣1);③ m> ;④若抛物线C2:y2=ax2 (a≠ 0)与线段AB 恰有一个公共点,则 a 的取值范围是≤ a<2;⑤不等式mx2﹣4mx+2n>0 的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2 个B.3 个C.4 个D.5 个4.(2018?连云港)已知学校航模组设计制作的火箭的升空高度h (m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A.点火后9s 和点火后13s 的升空高度相同B.点火后24s 火箭落于地面C.点火后10s 的升空高度为139mD.火箭升空的最大高度为145m5.(2018?贵阳)已知二次函数y=﹣x2+x+6 及一次函数y=﹣x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函﹣x+m 与新图象有 4 个交点时,m 的取值范围是()﹣ <m<2 C.﹣2<m<3 D.﹣6<m<﹣ 26.(2018?乐山)二次函数y=x2+(a﹣2)x+3 的图象与一次函数y=x (1≤x≤2)的图象有且仅有一个交点,则实数 a 的取值范围是()A.a=3±2 B.﹣1≤a<2C.a=3 或﹣≤a<2 D.a=3﹣2 或﹣1≤a<﹣7.(2018?宁波)如图,二次函数y=ax2+bx 的图象开口向下,且经过第三象限的点 P .若点 P 的横坐标为﹣ 1,则一次函数 y=(a ﹣b )x+b 的图象大致是( )8.(2018?达州)如图,二次函数 y=ax 2+bx+c 的图象与 x 轴交于点 A (﹣1,0), 与 y 轴的交点 B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线 下列结论:① abc <0;②9a+3b+c >0;③若点 M ( ,y 1),点 N ( ,y 2)是函 数图象上的两点,则 y 1< y 2;④﹣ <a <﹣ .其中正确结论有( )A .1 个B .2 个C .3 个D .4 个9.(2018?河北)对于题目 “一段抛物线 L :y=﹣x ( x ﹣3)+c ( 0≤x ≤3)与直线 l : y=x+2 有唯一公共点,若 c 为整数,确定所有 c 的值, ”甲的结果是 c=1,乙的结 果是 c=3 或 4,则( ) A .甲的结果正确x=2.B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确10.(2018?莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0 成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2 11.(2018?陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1 时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2018?呼和浩特)若满足 <x≤ 1 的任意实数x,都能使不等式2x3﹣x2﹣mx>2 成立,则实数m 的取值范围是()A.m<﹣1 B.m≥﹣ 5 C.m<﹣ 4 D.m≤﹣413.(2018?荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:① 4a+2b+c> 0;② 5a ﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1 有两个根x1 和x2,且x1< x2,则﹣5<x1<x2<1;④若方程| ax2+bx+c| =1 有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个14.(2018?湖州)在平面直角坐标系xOy中,已知点M,N 的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN 有两个不同的交点,则 a 的取值范围是()A.a≤﹣ 1 或≤a< B.≤a<C.a≤ 或a> D.a≤﹣ 1 或a≥15.(2018?绍兴)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2 个单位,再向下平移3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)16.(2018?兰州)如图,抛物线y= x2﹣7x+ 与x 轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x 轴交于点B、D,若直线y= x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.17.(2018?巴中)一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为 2.5m 时,达到最大高度 3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为 3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是( 3.5,0)D.篮球出手时离地面的高度是2m18.(2018?济南)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B 两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤ m<1 B. <m≤1 C.1< m≤2 D.1<m<2二.填空题(共 5 小题)19.(2018?湖州)如图,在平面直角坐标系xOy 中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x 轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则 b 的值是.20.(2018?长春)如图,在平面直角坐标系中,抛物线y=x2+mx 交x 轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x 轴的平行线交抛物线于另一点C.若点A′的横坐标为 1 ,则A′C的长为.21.(2018?黔西南州)已知:二次函数y=ax2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是.22.(2018?南充)如图,抛物线y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴交于A,B 两点,顶点P(m,n).给出下列结论:①2a+c< 0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0 有实数解,则k>c﹣n;④当n=﹣时,△ ABP为等腰直角三角形.23.(2018?淄博)已知抛物线y=x2+2x﹣3 与x 轴交于A,B 两点(点 A 在点 B 的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x 轴交于C,D 两点(点 C 在点 D 的左侧),若B,C 是线段AD 的三等分点,则m 的值为.2018年10月05日初中数学的初中数学组卷参考答案与试题解析一.选择题(共18 小题)1.(2018?杭州)四位同学在研究函数y=x2+bx+c(b,c 是常数)时,甲发现当x=1 时,函数有最小值;乙发现﹣ 1 是方程x2+bx+c=0 的一个根;丙发现函数的最小值为3;丁发现当x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c 的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论)解答】解:假设甲和丙的结论正确,则解得:∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1 时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2 时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c 值是解题的关键.2.(2018?泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1 时,y的最大值为9,则a的值为()A.1 或﹣ 2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x 是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y 的最大值为9,∴x=1 时,y=a+2a+3a2+3=9,∴ 3a2+3a﹣6=0,∴ a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a> 0 时,抛物线y=ax2+bx+c (a≠ 0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y 随x的增大而增大;x=﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a<0 时,抛物线y=ax2+bx+c (a≠0)的开口向下,x<﹣时,y 随x的增大而增大;x>﹣时,y 随x的增大而减小;x=﹣时,y 取得最大值,即顶点是抛物线的最高点.3.(2018?齐齐哈尔)抛物线C1:y1=mx2﹣4mx+2n﹣1 与平行于x 轴的直线交于A、B两点,且 A 点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y 轴交点坐标为(0,﹣1);③ m> ;④若抛物线C2:y2=ax2(a≠ 0)与线段AB 恰有一个公共点,则 a 的取值范围是≤ a<2;⑤不等式mx2﹣4mx+2n>0 的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2 个B.3 个C.4 个D.5 个【分析】①利用抛物线对称轴方程可判定;②与y 轴相交设x=0,问题可解;③ 当抛物线过A(﹣1,2)时,带入可以的到2n=3﹣5m,函数关系式中只含有参数m ,由抛物线与x 轴有两个公共点,则由一元二次方程根的判别式可求;④求出线段AB 端点坐标,画图象研究临界点问题可解;⑤把不等式问题转化为函数图象问题,答案易得.【解答】解:抛物线对称轴为直线x=﹣故①正确;当x=0时,y=2n﹣ 1 故②错误;把 A 点坐标(﹣1,2)代入抛物线解析式得:2=m+4m+2n﹣1整理得:2n=3﹣5m带入y1=mx2﹣4mx+2n﹣1整理的:y1=mx2﹣4mx+2﹣5m由图象可知,抛物线交y 轴于负半轴,则:2﹣5m<0即m > 故③正确;由抛物线的对称性,点B坐标为(5,2)当y2=ax2的图象分别过点A、B 时,其与线段分别有且只有一个公共点此时, a 的值分别为a=2、a=a 的取值范围是≤ a< 2;故④正确;不等式mx2﹣4mx+2n> 0 的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1 位于直线y=﹣1上方的部分,由图象可知,其此时x的取值范围使y1=mx2﹣4mx+2n﹣1 函数图象分别位于轴上下方故⑤错误;故选:B.【点评】本题为二次函数综合性问题,考查了二次函数对称轴、与坐标轴交点、对称性、抛物线与x 轴交点个数判定、与抛物线有关的临界点问题以及从函数的观点研究不等式.4.(2018?连云港)已知学校航模组设计制作的火箭的升空高度h (m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A.点火后9s 和点火后13s 的升空高度相同B.点火后24s 火箭落于地面C.点火后10s 的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h 的值可判断A、B、C三个选项,将解析式配方成顶点式可判断 D 选项.【解答】解:A、当t=9 时,h=136;当t=13 时,h=144;所以点火后9s 和点火后13s 的升空高度不相同,此选项错误;B、当t=24 时h=1≠0,所以点火后24s 火箭离地面的高度为1m,此选项错误;C、当t=10 时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145 知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.5.(2018?贵阳)已知二次函数y=﹣x2+x+6 及一次函数y=﹣x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函﹣x+m 与新图象有 4 个交点时,m 的取值范围是()A.﹣ <m<3 B.﹣ <m<2 C.﹣2<m<3D.﹣6<m<﹣ 2 【分析】如图,解方程﹣x2+x+6=0 得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线?y=﹣x+m 经过点A(﹣2,0)时m 的值和当直线y=﹣x+m 与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m 的值,从而得到当直线y=﹣x+m 与新图象有 4 个交点时,m 的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A (﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x 轴下方的部分图象的解析式为y= (x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤ x≤ 3),当直线?y=﹣x+m 经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m 与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x ﹣6=﹣x+m 有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m 与新图象有 4 个交点时,m 的取值范围为﹣6<m<﹣2.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.6.(2018?乐山)二次函数y=x2+(a﹣2)x+3 的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数 a 的取值范围是()A.a=3±2 B.﹣1≤a<2C.a=3 或﹣≤a<2 D.a=3﹣2 或﹣1≤a<﹣【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2 上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2 上只有一个解,当△=0 时,即(a﹣3)2﹣12=0a=3±2当a=3+2 时,此时x=﹣,不满足题意,当a=3﹣ 2 时,此时x= ,满足题意,当△> 0 时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤ 0解得:﹣1≤ a≤ ,当a=﹣1 时,此时x=1或3,满足题意;当a=﹣时,此时x=2 或x= ,不满足题意,综上所述,a=3﹣ 2 或﹣1≤ a< ,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.7.(2018?宁波)如图,二次函数y=ax2+bx 的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b 的图象大致是()【分析】根据二次函数的图象可以判断a、b、a﹣b 的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1 时,y=a﹣b<0,∴ y=(a﹣b)x+b 的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.8.(2018?达州)如图,二次函数y=ax2+bx+c 的图象与x轴交于点A (﹣1,0),与y 轴的交点 B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:① abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1< y2;④﹣ <a<﹣.其中正确结论有()A.1 个B.2 个C.3 个D.4 个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x= >0,∴b>0,由抛物线与y 轴的交点可知:c>0,∴ abc< 0,故①正确;②∵抛物线与x 轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x 轴的另外一个交点为(5,0 ),∴x=3 时,y>0,∴ 9a+3b+c> 0,故②正确;③由于 < 2 ,且(,y2)关于直线x=2 的对称点的坐标为(,y2),∴y1<y2,故③正确,④∵=2,∴ b=﹣4a,∵x=﹣1,y=0,∴ a﹣b+c=0,∴ c=﹣5a,∵2<c<3,∴ 2<﹣5a< 3,∴﹣ <a<﹣,故④正确故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.9.(2018?河北)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2 有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3 或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分两种情况进行讨论,①当抛物线与直线相切,△ =0求得c=1,②当抛物线与直线不相切,但在0≤x≤3 上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c=1,3,4,5【解答】解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2 有唯一公共点∴①如图1,抛物线与直线相切,联立解析式得x2﹣2x+2﹣c=0 △=(﹣2)2﹣4(2﹣c)=0 解得c=1②如图2,抛物线与直线不相切,但在0≤x≤3 上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴ c min=2,但取不到,c max=5,能取到∴2<c≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5【点评】本题考查了二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点,数形结合是解此题的关键.10.(2018?莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y <0 成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2 【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x 轴下方所对应的自变量的范围即可.【解答】解:抛物线y=ax2+2ax+m 的对称轴为直线x=﹣=﹣1,而抛物线与x 轴的一个交点坐标为(2,0 ),∴抛物线与x 轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2 时,y<0.故选:A.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c (a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.11.(2018?陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1 时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.【解答】解:把x=1,y>0 代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.【点评】此题考查抛物线与x 轴的交点,关键是得出a的取值范围,利用二次函数的性质解答.12.(2018?呼和浩特)若满足 <x≤ 1 的任意实数x,都能使不等式2x3﹣x2﹣mx>2 成立,则实数m 的取值范围是()A.m<﹣1 B.m≥﹣ 5 C.m<﹣ 4 D.m≤﹣4 【分析】根据题意得到关于二次函数与反比例函数的函数值的大小关系,然后利用函数图象得到自变量为和1对应的关于m 的不等式,再解关于m的不等式组即可.【解答】解:∵ 2x3﹣x2﹣mx> 2,∴2x2﹣x﹣m > ,抛物线y=2x2﹣x﹣m 的开口向上,对称轴为直线x= ,而双曲线y= 分布在第一、三象限,∵ <x≤1,2x2﹣x﹣m> ,∴x= 时,2× ﹣﹣m≥4,解得m≤﹣4,x=1 时,2﹣1﹣m >2,解得 m <﹣ 1,∴实数 m 的取值范围是 m ≤﹣ 4.故选: D .【点评】本题考查二次函数的性质、反比例函数的性质、不等式的性质,解答本 题的关键是明确题意,求出相应的 m 的取值范围. 13.( 2018?荆门)二次函数 y=ax 2+bx+c (a ≠0)的大致图象如图所示,顶点坐标 为(﹣ 2,﹣ 9a ),下列结论:① 4a+2b+c > 0;② 5a ﹣ b+c=0;③若方程 a (x+5) (x ﹣1) =﹣1 有两个根 x 1 和 x 2,且 x 1< x 2,则﹣ 5<x 1<x 2<1;④若方程 | ax 2+bx+c| =1 有四个根,则这四个根的和为﹣ 4.其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个【分析】 根据二次函数的性质一一判断即可.∴ b=4a , c=﹣5a , ∴抛物线的解析式为 y=ax 2+4ax ﹣5a ,∴4a+2b+c=4a+8a ﹣5a=7a >0,故①正确,5a ﹣b+c=5a ﹣4a ﹣5a=﹣4a <0,故②错误,∵抛物线 y=ax 2+4ax ﹣ 5a 交 x 轴于(﹣ 5,0),(1,0),∴若方程 a (x+5)(x ﹣1)=﹣1 有两个根 x 1 和 x 2,且 x 1<x 2,则﹣5<x 1<x 2<1, 正确,故③正确,若方程 | ax 2+bx+c| =1 有四个根,则这四个根的和为﹣ 8,故④错误, 故选: B .解答】 解:∵抛物线的顶点坐标(﹣ 2,﹣ 9a ),=﹣2, =﹣9a ,点评】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识, 解题的关键是灵活运用所学知识解决问题, 属于中考常考 题型.14.(2018?湖州)在平面直角坐标系 xOy 中,已知点 M ,N 的坐标分别为(﹣ 1, 2),( 2, 1),若抛物线 y=ax 2﹣x+2(a ≠0)与线段 MN 有两个不同的交点,则 a 的取值范围是( )A .a ≤﹣ 1 或 ≤a <B . ≤a <C .a ≤ 或 a >D .a ≤﹣ 1 或 a ≥ 【分析】观察图象可知当 a <0时,x=﹣1 时,y ≤2 时,且﹣ ≥﹣ 1,满足条件,可得 a≤﹣1; 当 a >0时,x=2时,y ≥1,且抛物线与直线 MN 有交点,且﹣ ≤2满足条件,a ≥ , ∵直线 MN 的解析式为 y=﹣ x+ ,,消去 y 得到, 3ax 2﹣2x+1=0,∵△> 0,∴a < ,∴ ≤ a < 满足条件,综上所述,满足条件的 a 的值为 a ≤﹣1 或 ≤a < , 故选: A . 根据二次函数的性质分两种情形讨论求解即可;【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.15.(2018?绍兴)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移 2 个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3 时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.16.(2018?兰州)如图,抛物线y= x2﹣7x+ 与x 轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x 轴交于点B、D,若直线y= x+m与C1、C2共有3个不同的交点,则m 的取值范围是()A.﹣ < m<﹣B.﹣ <m<﹣C.﹣ < m<﹣D.﹣ <m<﹣分析】首先求出点 A 和点 B 的坐标,然后求出C2解析式,分别求出直线y= x+m与抛物线C2相切时m 的值以及直线y= x+m 过点B时m 的值,结合图形即可得到答案【解答】解:∵抛物线y= x2﹣7x+ 与x 轴交于点A、B ∴B(5,0),A(9,0)∴抛物线向左平移 4 个单位长度∴平移后解析式y= (x﹣3)2﹣2当直线y= x+m 过B点,有 2 个交点∴ 0= +m当直线y= x+m 与抛物线C2相切时,有 2 个交点∴ x+m= (x﹣3)2﹣ 2 x2﹣7x+5﹣2m=0∵相切∴△ =49﹣20+8m=0∴m=﹣如图∵若直线y= x+m 与C1、C2共有 3 个不同的交点,∴﹣﹣ <m <﹣故选:C.【点评】本题主要考查抛物线与x 轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.17.(2018?巴中)一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为 2.5m 时,达到最大高度 3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为 3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是( 3.5,0)D.篮球出手时离地面的高度是2m【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得 a 的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x= ﹣2,5 时,即可求得结论.【解答】解:A、∵抛物线的顶点坐标为(0, 3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a×1.52+3.5,∴ y=﹣x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是( 1.5, 3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5 时,h=﹣0.2×(﹣ 2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面 2.25m.故本选项错误.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.18.(2018?济南)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x 轴交于点A、B 两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m 的取值范围是()A.≤ m<1 B. <m≤1 C.1< m≤2 D.1<m<2【分析】画出图象,利用图象可得m 的取值范围【解答】解:∵ y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2 且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.将(1,﹣1)代入y=mx2﹣4mx+4m﹣ 2 得到﹣1=m﹣4m+4m﹣2.解得m=1.此时抛物线解析式为y=x2﹣4x+2.由y=0 得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+ ≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1 时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7 个整点符合题意.∴ m≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m=1 时)答案图2(m= 时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x 轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2 得到0=0﹣4m+0﹣2.解得m= .此时抛物线解析式为y= x2﹣2x.当x=1时,得y= ×1﹣2×1=﹣ <﹣1.∴点(1,﹣1)符合题意.当x=3 时,得y= ×9﹣2×3=﹣ <﹣1.∴点(3,﹣1)符合题意.综上可知:当m= 时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9 个整点符合题意,∴ m= 不符合题.∴ m> .综合①②可得:当 <m≤ 1 时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故选:B.【点评】本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.二.填空题(共 5 小题)19.(2018?湖州)如图,在平面直角坐标系xOy 中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x 轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则 b 的值是﹣ 2 .【分析】根据正方形的性质结合题意,可得出点 B 的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于 b 的方程,解之即可得出结论.解答】解:∵四边形ABOC是正方形,∴点 B 的坐标为(﹣,﹣).∵抛物线y=ax2过点B,解得:b1=0(舍去),b2=﹣2.故答案为:﹣ 2.【点评】本题考查了抛物线与 x 轴的交点、 二次函数图象上点的坐特征以及正方 形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于 b 的方程是解题的关键.20.(2018?长春)如图,在平面直角坐标系中,抛物线 y=x 2+mx 交 x 轴的负半轴 于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点 A ′恰好落在抛物线上.过 点 A ′作 x 轴的平行线交抛物线于另一点 C .若点 A ′的横坐标为 1 ,则 A ′C 的长为 3.【分析】解方程 x 2+mx=0得 A (﹣ m ,0),再利用对称的性质得到点 A 的坐标为 (﹣ 1,0),所以抛物线解析式为 y=x 2+x ,再计算自变量为 1 的函数值得到 A ′(1, 2),接着利用 C 点的纵坐标为 2 求出 C 点的横坐标,然后计算 A ′C 的长. 【解答】 解:当 y=0 时, x 2+mx=0,解得 x 1=0,x 2=﹣m ,则 A (﹣ m ,0), ∵点 A 关于点 B 的对称点为 A ′,点 A ′的横坐标为 1,∴点 A 的坐标为(﹣ 1,0),∴抛物线解析式为 y=x 2+x ,当 x=1 时, y=x 2+x=2,则 A ′(1, 2),当 y=2 时, x 2+x=2,解得 x 1=﹣ 2,x 2=1,则 C (﹣2,2),∴A ′C 的长为 1﹣(﹣ 2)=3.故答案为 3.【点评】 本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax 2+bx+c (a ,b ,c 是常数, a ≠0)与 x 轴的交点坐标问题转化为解关于x =a (﹣ ) 2,的一元二次方程.也考查了二次函数图象上点的坐标特征.21.(2018?黔西南州)已知:二次函数y=ax2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是(3,0).【分析】根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.【解答】解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x= =1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为:(3,0).【点评】本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.22.(2018?南充)如图,抛物线y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴交于A,B 两点,顶点P(m,n).给出下列结论:① 2a+c< 0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0 有实数解,则k>c﹣n;④当n=﹣时,△ ABP为等腰直角三角形.其中正确结论是②④ (填写序号).。

中考数学总复习《二次函数图像与系数的关系》练习题(带答案)

中考数学总复习《二次函数图像与系数的关系》练习题(带答案)

中考数学总复习《二次函数图像与系数的关系》练习题(带答案)班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=−1,给出下列四个结论:①b2<4ac;②b=2a;③abc>0;④3a+c>0.其中,正确结论的个数是()A.1个B.2个C.3个D.4个2.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1)、(-1,0),则y=a+b+c的取值范围是()A.y>1B.-1<y<1C.0<y<2D.1<y<23.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()A.二次函数图象与x轴交点有两个B.x≥2时y随x的增大而增大C.二次函数图象与x轴交点横坐标一个在-1~0之间,另一个在2~3之间D.对称轴为直线x=1.54.已知二次函数y=x2+bx-4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1B.x=2C.x=-1D.x=-25.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2B.3C.4D.56.二次函数y=x2+2x-3的图象的顶点坐标是()A.(-1,-4)B.(1,-4)C.(-1,-2)D.(1,-2)7.若点A(−1,m),B(3,m)在同一个函数图象上,这个函数可能为()A.y=(x−1)2+9B.y=(x+1)2+9C.y=(x+3)2−9D.y=(x−2)2−98.已知抛物线y=x2+3x+c经过三点(√2,y1),(−√3,y2),(−1,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y2>y3>y19.将抛物线y=(x+1)(x+3)绕坐标原点O旋转180°,所得抛物线的解析式为()A.y=x2−4x+3B.y=−x2+4x−3C.y=−x2+4x−5D.y=x2−4x+510.已知点A(1,y1),B(﹣2,y2),C(0,y3)是抛物线y=﹣x2+2x+1上的三个点,则()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y111.抛物线y=x2-2x+1的顶点坐标是()A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)12.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC 区域(包括边界),则a的取值范围是()A.a≤-1或a≥2B.12≤a≤2C.-1≤a<0或1<a≤ 12D.-1≤a<0或0<a≤2二、填空题13.已知二次函数y=x2−mx+3在x=0和x=2时的函数值相等,那么m的值是.14.若点A(﹣1,4)、B(m,4)都在抛物线y=a(x﹣3)2+h上,则m的值为.15.如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= x 23(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE△AC,交y2的图象于点E,则DEAB=.16.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有.17.点A(-1,y1)、B(1,y2)在二次函数y=x2−2x−1的图象上,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)18.已知点A(-1,y1),B(-2,y2),C(3,y3)在二次函数y=-(x-2)2+4的图象上,则y1,y2,y3的大小关系是三、综合题19.已知抛物线y=−x2+(m−1)x+m图象上一点(1,4).(1)求m的值;(2)求抛物线与x轴的交点坐标;(3)画出这条抛物线大致图象(草图),并根据图象回答:①当x取什么值时,y>0 ?②当x取什么值时,y的值随x的增大而减小?20.已知二次函数y=x2+px+q的图象经过A(0,1),B(2,-1)两点.(1)求p,q的值;(2)试判断点P(-1,2)是否在此函数图象上.21.如图,曲线BC是反比例函数y=k x(2≤x≤4)的一部分,其中B(2,2-m),C(4,-m),抛物线y=−x2+2bx的顶点记作A.(1)求k的值;(2)甲同学说,点A可以与点B重合;而乙同学说,点A也可以与点C重合,甲、乙的说法对吗?请说明理由.22.如图,已知抛物线y=−x2+4x,点P是第一象限内抛物线上一个动点,作PA⊥x轴于点A,点B是第一象限内抛物线上的另一个点(点B在AP的右侧),且BP=BA,作BC⊥x轴于点C.(1)当点P是抛物线的顶点时,求点B的坐标;(2)当点B关于AP的对称点B′恰好落在y轴上时,求OA的长.23.已知二次函数的表达式为y=-3(x-3)2+2.(1)写出该函数的顶点坐标;(2)判断点(1,-12)是否在这个函数的图象上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.甲、乙的结果合在一起也不正确
10.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )
A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2
11.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在( )
A.1个B.2个C.3个D.4个
14.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A.a≤﹣1或 ≤a< B. ≤a<
C.a≤ 或a> D.a≤﹣1或a≥
15.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A.第一象限B.第二象限C.第三象限D.第四象限
12.(2018•呼和浩特)若满足 <x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是( )
A.m<﹣1B.m≥﹣5C.m<﹣4D.m≤﹣4
13.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有( )
其中正确结论有( )
A.1个B.2个C.3个D.4个
9.(2018•河北)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则( )
A.甲的结果正确
B.乙的结果正确
CD.5个
4.(2018•连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是( )
A.点火后9s和点火后13s的升空高度相同
B.点火后24s火箭落于地面
C.点火后10s的升空高度为139m
D.火箭升空的最大高度为145m
A. B. C. D.
8.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.
下列结论:①abc<0;②9a+3b+c>0;③若点M( ,y1),点N( ,y2)是函数图象上的两点,则y1<y2;④﹣ <a<﹣ .
A.﹣ <m<﹣ B.﹣ <m<﹣ C.﹣ <m<﹣ D.﹣ <m<﹣
17.(2018•巴中)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是( )
6.(2018•乐山)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是( )
A.a=3±2 B.﹣1≤a<2
C.a=3 或﹣ ≤a<2D.a=3﹣2 或﹣1≤a<﹣
7.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是( )
A.此抛物线的解析式是y=﹣ x2+3.5
B.篮圈中心的坐标是(4,3.05)
C.此抛物线的顶点坐标是(3.5,0)
D.篮球出手时离地面的高度是2m
18.(2018•济南)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)
16.(2018•兰州)如图,抛物线y= x2﹣7x+ 与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y= x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.甲B.乙C.丙D.丁
2.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )
A.1或﹣2B. 或 C. D.1
3.(2018•齐齐哈尔)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m> ;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是 ≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有( )
5.(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是( )
A.﹣ <m<3B.﹣ <m<2C.﹣2<m<3D.﹣6<m<﹣2
2018二次函数中考选择填空题(难)
一.选择题(共18小题)
1.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
相关文档
最新文档