等差数列求和公式复习过程
数列的求和-高考数学一轮复习(新高考专用)
第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。
第九讲等差数列求和
第九讲等差数列求和计算能力是重要的数学能力,计算要准确、熟练,还要运用运算定律简化计算。
对特殊规律的计算还要研究解决它的特殊规律和公式。
本讲介绍等差数列的求和问题。
一、从高斯求和故事谈起高斯是数学发展史上有很大影响的伟大数学家之一。
高斯10岁的时候,数学教师出了一道数学题:1+2+3+………+100。
老师刚写完题目,高斯就把解题用的小石板交给老师,过了很久其他同学才写出答案。
老师非常吃惊地发现高斯的石板上只写了一个答数5050。
(后来高斯经过刻苦努力,终于成了世界著名的数学家。
)大家想想,高斯是怎样算的呢?其实奥妙在于高斯是发现了以下规律:两两搭配,共有(100÷2)50个101,总和是5050。
以上思考方法可用一个算式表示如下:(1+100)×(100÷2)=5050这个故事,使我们受到启发,要想算得又巧又快,就必须善于观察,注意题目的构造规律,以上问题是从1开始的连续自然数求和。
相邻两个自然数的差都是相等的(差都等于1)思考求和:(1)1+2+3+…+50(2)1+2+3+…+200(3)1+2+3+…+149(4)51+52+53+…+100(5)101+102+103+…+200(6)101+102+103+…+149二、等差数列求和按一定规律排列的一列数叫做数列。
数列中的每一个数叫做这个数列的一项,排在第一个位置的叫第一项,也叫首项;第二个叫第二项;第三个数叫第三项;…。
最后一项又叫末项。
第一项(首项)用a1表示,第二项用a2表示,…,第n项用a n表示。
如数列1,3,5,7, (99)a1=1,a2=3,a3=5,a4=7,…。
对于一个数列,往往需要确定它的每个项或者计算某些项的和等等,这就要求我们首先研究数列的构造规律。
前面的故事说明,小高斯正是这样做的。
1.等差数列观察以下数列:2,4,6,8,…;1,4,7,10,…。
第一个数列的相邻两项的差都是2,第二个数列相邻两项之差都是3。
等差数列、等比数列相关性质和公式以及数列的求和方法
等差、等比的公式性质以及数列的求和方法 第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差推广公式:()n m a a n m d =+-变形推广:mn a a d mn --=3、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
4.2.2等差数列的前n项和公式
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2
= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,
高考数学一轮复习 等差数列求和方法学案(含解析)苏教
等差数列求和方法【考点1】等差数列的前n 项和公式 (1)等差数列的前n 项和公式:2)(1n n a a n S +=,或d n n na S n 2)1(1-+=,此式还可变形为n da n d S n )2(212-+=.(2)倒序相加法:将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项公式的推导所用方法).例1在等差数列{a n }中,(1)已知S 12=84,S 20=460,求S 28; (2)已知a 6=10,S 5=5,求a 8和S 8.【点拨】利用等差数列前n 项和公式的变形形式n da n d S n )2(212-+=待定系数法求解. 【解析】(1)不妨设S n =An 2+Bn ,∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A ∴S n =2n 2-17n∴S 28=2×282-17×28=1092.(2)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5而d =31616=--a a ∴a 8=a 6+2 d =16S 8=442)(881=+a a .【答案】(1)1092;(2)44.【小结】本题考查等差数列前n 项和公式.例2设等差数列{}n a 的第10项为23,第25项为22-,求:(1)数列{}n a 的通项公式; (2)数列{}n a 前50项的绝对值之和.【点拨】通过通项公式找到数列{}n a 中的正.负分界项,利用等差数列前n 项和公式求解. 【解析】(1)由已知可知22,232510-==a a ,d a a 151025=-d 152322=--∴,解得3-=d .509101=-=d a a 533+-=∴n a n .(2)此数列的前17项均为正数,从第18项开始均为负数.前50项的绝对值之和()()()20591175442225017175017501918173211321=--⨯=-=--=+++-++++=+++++=-S S S S S a a a a a a a a a a a a S n n ΛΛΛ.【答案】(1)353n a n =-+;(2)2059. 【小结】本题考查等差数列前n 项和公式练习1:已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和. 【解题过程】【解析】112,5211,6n n n n b a n n -≤⎧==⎨-≥⎩,当5n ≤时,2(9112)102n n S n n n =+-=-当6n ≥时,255525(1211)10502n n n S S S n n n --=+=++-=-+ ∴⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n .【考点2】等差数列前n 项和的最值 (1)在等差数列{a n }中当a 1>0,d <0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定; 当a 1<0,d >0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定. (2)因为S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最______值;当d <0时,S n 有最______值;且n 取最接近对称轴的自然数时,S n 取到最值. 一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.例3设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.【点拨】找到数列{}n a 中的正.负分界项是解题关键.【解析】(1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13a 1+a 132=13a 7<0,∴a 7<0.又S 12=12a 1+a 122=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0.∴数列{a n }的前6项和S 6最大.【答案】(1)-247<d <-3;(2)数列{a n }的前6项和S 6最大.【小结】本题考查等差数列的最值.练习1:设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是________(只填序号).①d <0;②a 7=0;③S 9>S 5;④S 6与S 7均为S n 的最大值 【解题过程】【解析】由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.故①②正确.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5故③错误,④正确.【考点3】等差数列前n 项和的性质(1)数列{}{}{}212n n n a a ka b -+,,仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列;(2)若n 为偶数,则2nS S d -=偶 奇;若n 为奇数,则S S a -=偶 奇中(中间项);例4一个等差数列的前10项之和为100,前100项之和为10,则前110项之和是________.【点拨】利用232n n n n n S S S S S --,,……成等差数列求解.【解析】数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D=100+10×(-22)=-120.∴S 110=-120+S 100=-110. 【答案】-110.【小结】本题考查等差数列前n 项和的性质.练习1:等差数列{}n a 的前n 项和为n S ,若363,7,S S ==则9S 等于 . 【解答过程】【解析】由{}n a 是等差数列知36396,,S S S S S --成等差数列,即()92437S ⨯=+-,解得912S =.例5已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________. 【点拨】根据S 偶-S 奇=n2d 求解.【解析】当项数n 为偶数时,由S 偶-S 奇=n2d 知30-15=5d ,∴d =3.【答案】3【小结】本题考查等差数列的前n 项和公式.当项数n 为偶数时,由S 偶-S 奇=n2d ;含21n +项的等差数列,其奇数项的和与偶数项的和之比为1=S n S n+奇偶,之差为1=n S S a +-奇偶. 练习1:等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________. 【解题过程】【解析】设数列公差为d ,首项为1a ,奇数项共1n +项:令其和为1319n S +=;偶数项共n 项:令其和为290n T =.有()()()12121432212131929029n n n n n n S T a a a a a a a a nd ++-+-=--+-++-=-=-=⎡⎤⎣⎦L ,有211129n n a nd a nd a ++-=+==.基础练习1.(2014·福建卷) 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于___________. 2.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于____________.3.在等差数列{}n a 中,10120S =,则29a a +=____________.4.等差数列{}n a 中,39a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是____. 5.若数列{}n a 是等差数列,首项10a >,200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大自然数n 是________.6.(2014·北京卷) 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.7.若{a n }为等差数列,S n 为其前n 项和,若a 1>0,d<0,S 4=S 8,则S n >0成立的最大自然数n 为________.8.设n S 是等差数列{}n a 的前n 项和,若361,3S S =,则612SS 等于____________. 9.已知等差数列}{n a 的前n 项和是n S ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则=m ___.10.一个等差数列的前12项和为354,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是____________.11.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a += (1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn S b n c=+,求非零常数c . 12.(2014·全国卷) 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .13.设数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S na n n =--. (1)求2a ,3a ,4a ,并求出数列{}n a 的通项公式;(2)设数列11{}n n a a +⋅的前n 项和为n T ,求证:41<n T .参考答案1.【解析】 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.2.【解析】∵a n +1=a n +3,∴a n +1-a n =3为常数,故{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63 ∴a n =0时,n =21;a n >0时,n>21;a n <0时,n<21 ∴S 30′=|a 1|+|a 2|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.3.【解析】本题考查等差数列的前n 项和公式及等差数列的质.()11010102a a S +=.()295120a a =+=2924.a a ∴+=4.【解析】本题考查等差数列的性质.39,a a =-由题意可知即390a a +=所以63920a a a =+=,又因为公差0d <,所以70a <,n S 取得最大值的自然数n 是5或6.【答案】5或65.【解析】本题考查等差数列的性质及前n 项和公式.由200320040a a +>,200320040a a ⋅<得200320040,0a a ><()1400620032004400640064600()=022a a a a S ++=>140072004200440074007()4007()022a a a a S ++==<,所以前n 项和0n S >成立的最大自然数n 是4006. 【答案】40066.【解析】∵a 7+a 8+a 9=3a 8>0,a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0,∴n=8时,数列{a n }的前n 项和最大.7.【解析】S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0, 又a 1>0,d<0,S 12=a 1+a 12·122=0,故n<12时,S n >0.即S n >0成立的最大自然数n 为11.8.【解析】本题考查等差数列的性质232,,,n n n n n S S S S S --L 成等差数列. 由36396129,,,S S S S S S S ---成等差数列得设36,3S x S x ==,则9636S S x x =+=, 129410S S x x =+=,612310S S =. 9.【解析】10. 10.【解析】 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11.则⎩⎪⎨⎪⎧ S 奇+S 偶=354S 偶÷S 奇=32∶27,∴S 奇=162,S 偶=192,∴S 偶-S 奇=6d =30,d =5.11.【解析】本题考查等差数列的概念及其性质. 由公差大于零的等差数列{}n a ,m n p q m n p q a a a a +=++=+,解得34,a a 的值,从而求得通项公式;{}n b 是等差数列, 只需计算前三项的的值就可以求得c 的值.【答案】(1)设等差数列{}n a 的公差为d ,且0d >.342522a a a a +=+=Q ,又34117a a ⋅=,34,a a ∴是方程2221170x x -+=的两个根. 又公差0d >,34a a ∴<,349,13a a ∴==.1129313a d a d +=⎧⎨+=⎩,114a d =⎧∴⎨=⎩, 43n a n ∴=-.()2由()1知,()211422n n n S n n n -=⨯+⨯=-, 22n n S n n b n c n c -∴==++ 1231615,,123b b b c c c∴===+++ {}n b Q 是等差数列,2132b b b ∴=+,2120,2c c c ∴+=∴=-(0c =舍去).12.【解析】(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52, 因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 13.【解析】(Ⅰ)由)1(2--=n n na S n n 得n na a n S S a n n n n n 4)1(111--+=-=+++ .41=-∴+n n a a 所以,数列}{n a 是以1为首项,4为公差的等差数列34-=∴n a n ,13,9,5432===a a a (Ⅱ))14)(34(1139195151111113221+-++⨯+⨯+⨯=+++=+n n a a a a a a T n n n ΛΛΘ 41)1411(41]141341131919151511[41<+-=+-+++-+-+-=n n n Λ。
等差数列求和公式讲解
等差数列求和公式讲解等差数列求和公式,这可是数学中的一个重要知识点啊!咱们先来说说啥是等差数列。
比如说,1,3,5,7,9 这样的数列,每一项跟前一项的差值都一样,这个差值就叫公差。
那求和公式是啥呢?就是“和 = (首项 + 末项)×项数÷ 2”。
我给您举个例子来说明这个公式怎么用。
有一天我去逛超市,看到货架上摆着一排巧克力,第一块巧克力 2 元,往后每块都比前一块多 1 元,一直到第 10 块。
这时候咱们就可以用等差数列求和来算算这 10块巧克力总共值多少钱。
首项就是第一块巧克力的价格 2 元,末项就是第 10 块巧克力的价格 2 + (10 - 1)× 1 = 11 元,项数就是 10 。
那总价就是(2 + 11)× 10 ÷ 2 = 65 元。
咱们再深入理解一下这个公式。
为啥要乘以项数再除以 2 呢?您想想,把这个数列的第一项和最后一项相加,第二项和倒数第二项相加,第三项和倒数第三项相加……是不是每一组的和都一样呀?而且正好能组成项数的一半那么多组。
所以就得乘以项数再除以 2 啦。
在解题的时候,一定要看清楚题目给的条件,找准首项、末项和项数。
比如说,有个数列 5,8,11,14,……一直到第 20 项,让咱们求总和。
首项是 5,公差是 3,那末项就是 5 + (20 - 1)× 3 = 62 。
然后就能用求和公式算出总和啦。
再比如,有一道题说一个等差数列的前 5 项和是 75,首项是 5,公差是 4,让咱们求末项。
咱们先用求和公式反推出(首项 + 末项)的值,也就是 75 × 2 ÷ 5 = 30 。
首项是 5 ,那末项就是 30 - 5 = 25 。
学习等差数列求和公式,就像是掌握了一把解题的神奇钥匙。
在面对各种各样的题目时,只要咱们能灵活运用这个公式,就能轻松找到答案。
您可别觉得这公式难,多做几道题,多琢磨琢磨,您就能发现其中的乐趣和窍门。
等差求和的计算公式
等差求和的计算公式
等差数列是数学中的一种基本数列,它的每一项与前一项之差相等,这个差值称为公差。
等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和。
等差数列的求和公式为:Sn = n(a1 + an) / 2,其中Sn表示等差数列的前n项和,a1表示等差数列的首项,an表示等差数列的第n 项,n表示等差数列的项数。
这个公式的推导过程比较简单,我们可以通过数学归纳法来证明它的正确性。
首先,当n=1时,Sn=a1,显然成立。
接着,假设当n=k时公式成立,即Sk = k(a1 + ak) / 2,那么当n=k+1时,我们可以将等差数列的前k+1项分成两部分,前k项的和为Sk,第k+1项为ak+1,那么前k+1项的和为Sk+ak+1,根据等差数列的性质,ak+1 = a1 + k*d,其中d为等差数列的公差,代入公式得到Sk+ak+1 = k(a1 + ak) / 2 + (a1 + k*d),化简得到Sk+ak+1 = (k+1)(a1 + ak+1) / 2,即公式在n=k+1时也成立。
通过这个公式,我们可以很方便地计算等差数列的和。
例如,对于等差数列1, 3, 5, 7, 9,它的首项a1=1,公差d=2,项数n=5,那么它的和为S5 = 5(1+9) / 2 = 25。
这个公式在数学中有着广泛的应用,例如在物理学中,可以用它来计算匀加速直线运动的位移;在经济学中,可以用它来计算等比数列的复利和等等。
等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和,具有广泛的应用价值。
我们可以通过数学归纳法来证明它的正确性,掌握这个公式可以帮助我们更好地理解和应用等差数列的知识。
2.2.2等差数列前n项和公式
练习3 已知一个共有n项的等差数列前4项之 和为26,末四项之和为110,且所有项的和为 187,求n.
n=11
提示:a1+a2+a3+a4=26
a1+an=34
an+an-1+an-2+an-3=110
Sn
n(a1 2
an )
34n 2
187,n
11
课堂小结
1.等差数列前n项和的公式;(两个)
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n
1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
+ S =100 + 99 + 98 + … + 3 + 2 + 1
2S = 101 +101+101 + … + 101 + 101 + 101
100101
S=
2
=5050
实例2
如图,表示堆放的钢管共8层,自上而下各 层的钢管数组成等差数列4, 5, 6, 7, 8, 9, 10, 11, 求钢管的总数 .
Sn
n(a1 2
an )
Sn
na1
n(n 1) 2
d
2.等差数列前n项和公式的推导方法— —倒序相加法;
数列知识点:等差数列的通项求和公式
数列知识点:等差数列的通项求和公式高中数列知识点:等差数列的通项求和公式学好数学的关键是公式的掌握,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等,为了学好数学,下面是小编为大家整理的数列知识点:等差数列的通项求和公式,希望能帮助到大家!等差数列的通项求和公式an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。
等差数列n项求和公式
等差数列n项求和公式等差数列是指数列中任意两个相邻项之间的差都相等的数列。
要求给出等差数列的n项求和公式。
设等差数列的首项为a1,公差为d,第n项为an。
首先,需要知道等差数列的通项公式。
通项公式可以表达为:an = a1 + (n-1)d其中an表示第n项,a1是首项,d是公差。
接下来,我们将n项求和的公式推导如下:设等差数列的首项为a1,末项为an,共有n项。
根据等差数列的性质可知,首项与末项的和等于二者的平均数乘以项数:(a1 + an) = (a1 + a1 + (n-1)d) = 2a1 + (n-1)d因此,等差数列的n项求和公式可表示为:S = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)简化之后得到:S=(n/2)(a1+a1+(n-1)d)=(n/2)(2a1+(n-1)d)这就是等差数列n项求和的公式。
下面我们可以通过示例来进一步理解和应用这个公式。
例题1:已知等差数列的首项a1=3,公差d=4,求前10项的和。
根据公式S=(n/2)(2a1+(n-1)d),带入数据:S=(10/2)(2*3+(10-1)*4)=5(6+9*4)=5(6+36)=5*42=210所以前10项的和为210。
例题2:已知等差数列的首项a1=-2,公差d=3,求前50项的和。
同样根据公式S=(n/2)(2a1+(n-1)d),带入数据:S=(50/2)(2*(-2)+(50-1)*3)=25*(-4+49*3)=25*(-4+147)=25*143=3575所以前50项的和为3575通过以上例题,我们可以看出等差数列n项求和的公式是非常有效且易于应用的。
只要给出等差数列的首项、公差和项数,就能轻松求出其和。
数列前n项和的求和公式复习进程
数列前n项和的求和公式数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n nna a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa aq q aq na S n n n3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.三、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例7] 求数列{n(n+1)(2n+1)}的前n 项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.。
等差数列求和公式详细教案等差数列求和公式教案
等差数列求和公式详细教案等差数列求和公式教案等差数列求和公式深圳市电子技术学校:黄静课前系统部分:大纲分析:高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列前n 项和公式的推导及其简单应用。
教材分析:数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。
学生分析:数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要教学目标:知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。
过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。
情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。
教学重点与难点:等差数列前n 项和公式是重点。
获得等差数列前n 项和公式推导的思路是难点。
教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段:问题呈现阶段探究发现阶段公式应用阶段问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。
问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的?S = 10 + 9 + + 2 + 12S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11?10=110110S ==552动画演示:由刚刚的计算我们已经知道,从10袋里面拿出的金币数共55个,如果这10袋都是真币,那么电子秤显示的数据应该是:两 55?2=110而实际显示的的数字是:102(两)可见比全是真币时少了8两又因为,每个假币比真币轻1两所以,可知在电子秤上有8个假币那么,第8袋全是假币。
设计说明:这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。
高三数学一轮复习课件:数列求和_高考复习优秀课件
= n 1 -1.
令 Sn=10, 解得 n=120. 故选 C.
考向2 裂项相消法求和 【例2】 (2013·江西高考)正项数列{an}满足:a2n-(2n- 1)an-2n=0. (1)求数列{an}的通项公式an; (2)令bn=n+11an,求数列{bn}的前n项和Tn. 【思路点拨】 (1)通过解关于an的一元二次方程及 an>0,求an; (2)用裂项相消法求Tn.
解析: (1)设等差数列{an}的首项为 a1,公差为 d, 由于 a3=7,a5+a7=26, 所以 a1+2d=7,2a1+10d=26,解得 a1=3,d=2. 由于 an=a1+(n-1)d,Sn=na12+an, 所以 an=2n+1,Sn=n(n+2).
(2)因为 an=2n+1,所以 an2-1=4n(n+1), 因此 bn=4nn1+1=141n-n+1 1. 故 Tn=b1+b2+…+bn =141-21+12-13+…+1n-n+1 1 =141-n+1 1=4nn+1. ∴所以数列{bn}的前 n 项和 Tn=4nn+1.
答案: B
2.已知数列{an}的通项公式是
an=
1
,若 Sn=10,则 n 的值
n n1
是( C )
(A)11
(B)99 (C)120
(D)121
解析:∵an=
1
= n 1 - n ,
n n 1
∴Sn=( 2 -1)+( 3
- 2 )+( 4 - 3 )+…
+( n - n 1 )+( n 1 - n )
一种思路 一般数列求和,应从通项入手,若无通项,先求通项, 然后通过对通项变形,转化为与特殊数列有关或具备某种方 法适用特点的形式,从而选择合适的方法求和.
等差数列的求和公式
等差数列的求和公式数学中,等差数列是指一个数列中的每个数与它的前一个数之差都相等。
等差数列具有很多重要的性质和特点,其中求和公式是其中一个重要的内容。
本文将详细介绍等差数列的求和公式。
1. 等差数列的定义等差数列是指一个数列中的每个数与它前一个数之差都相等。
用数学符号表示,设等差数列的首项为a₁,公差为d,数列中的第n个数为aₙ,则等差数列可表示为:a₁, a₂, a₃, ..., aₙ.2. 等差数列的通项公式等差数列的通项公式能够给出任意一项的数值表示。
假设等差数列的首项为a₁,公差为d,n为数列的项数,则数列中的第n个数的数值表示为:aₙ = a₁ + (n - 1)d.3. 等差数列的部分和公式等差数列的部分和指的是数列中某个范围内的数的和。
设等差数列的首项为a₁,公差为d,数列中的第n个数为aₙ,则数列中前n个数的和为:Sn = (n/2)(a₁ + aₙ).4. 等差数列的求和公式等差数列的求和公式用来计算等差数列中所有项的和。
设等差数列的首项为a₁,公差为d,数列中的第n个数为aₙ,则数列中所有项的和为:S = n(a₁ + aₙ)/2.5. 等差数列求和公式的推导等差数列求和公式的推导过程比较简单,可以通过以下步骤来完成:1) 将等差数列的前n项和Sₙ表示为Sₙ = a₁ + (a₁ + d) + (a₁ +2d) + ... + aₙ-1 + aₙ.2) 对求和式中的每一项进行变换,得到 Sₙ = (aₙ + a₁) + (aₙ-1 +a₂) + ... + (a₂ + aₙ-1) + (a₁ + aₙ).3) 根据等差数列的性质,将每一对括号中的项的和都等于两倍的首项与公差之和,得到 Sₙ = n(a₁ + aₙ)/2.6. 等差数列求和公式的应用等差数列的求和公式在实际问题中有着广泛的应用。
例如,在数学、物理、经济等领域中,等差数列的求和公式可以用来计算某一过程中的总体变化量,或者计算某个时间段内的总体数量等。
等差数列求和(复习)
等差数列求和(复习)1、求2+4++6+8+10+12+14+16+18+20+22+24的和。
·2.求2+7+12+17+……+112的和。
#!3.求1+3+5+7+……+199的和。
)4.计算(2+4+6+......+100)–(1+3+5+ (99)/5.有一列数:3、8、13、18、21、……168、173 求这列数的和是多少【6、有一列数按如下规律排列:3、8、13、18……这列数中前35个数的和是多少$7、求首项是3,公差是5的等差数列的前1999项的和。
—8、观察数列规律1,4,7,10…问:第前100个数的和是多少、9、求首项是5,末项是95,公差是3的等差数列的和。
)10、某体育馆两侧看台有30 排座位,后一排比前一排多2个座位,最后一排有132个座位,这个体育馆两侧看台共有多少个座位[11、一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支,最上面一层是120支。
这个V形架共放着多少铅笔(12、求3+4+5+6+7+8+9+10+11+12+13+14的和。
}13、求192+189+186+183+……+12+9+3的和。
14、(2+4+6+...+2006)-(1+3+5+7+ (2005)[—15、求2+7+12+17+……+97的和{16、电影院的第一排有42个座位,后一排比前一排多4个座位,最后一排有90个座位,这个电影院有多少个座位,17、已知一列数:2,5,8,11,14,……,问:这列数中前51个数的和是多少~18、有一列数3、7、11、15……求前21 个数的总和。
*19、求首项是13 ,公差是5的等差数列的前60项的和。
~20、已知数列5、8、11、14……按照前几项的规律,求出该数列的前10项的和。
21、下面数列的每一项有3个数组成的数组表示,它们依次是:(1,3,5)(2,6,10)(3,9,15) ……问:第100个数组内3个数的和是多少22、电影院有13 排坐位,,后一排比前一排多4个座位,最后一排有90个座位,这个电影院有多少个座位。
等差数列求和公式
16
版权所有,反印必究
Copyright 2000 In alliance with BCD
SA, Switzerland All Right Reserved
17
跟踪练习
1. 已知数列{an}中,Sn=-n2+10n,数列{bn}的
每一项都有bn=|an|,求数列bn的前n项之和Tn的表
达式.
切 n N 都成立,求 k 的最大值。
版权所有,反印必究
Copyright 2000 In alliance with BCD
SA, Switzerland All Right Reserved
14
,
题型三
求数列{|an|}的前n项和
3 2 205
【例3】已知数列{an}的前 n 项和 Sn=-2n + 2 n,求数列
1.
版权所有,反印必究
Copyright 2000 In alliance with BCD
SA, Switzerland All Right Reserved
10
法二
(消 an):由上可知
2 Sn=an+1,∴2 Sn=Sn-Sn-1+1(n≥2),
化简可得( Sn-1)2=Sn-1,
( Sn+ Sn-1-1)( Sn- Sn-1-1)=0,
版权所有,反印必究
Copyright 2000 In alliance with BCD
SA, Switzerland All Right Reserved
12
(2)当 n≥2 时,an=Sn-Sn-1=(n2+n-1)-[(n-1)2+(n-1)-
1]=2n;
当 n=1
1,n=1,
时,a1=S1=1,∴an=
等差数列求和项数公式
等差数列求和项数公式
等差数列求和项数公式是数学中的一个重要公式,它可以帮助我们快速计算等差数列的和,从而更好地理解和应用等差数列的知识。
我们来回顾一下等差数列的定义。
等差数列是指一个数列,其中每一项与它的前一项之差相等。
例如,1、3、5、7、9就是一个等差数列,其中公差为2。
对于一个等差数列,我们可以用以下公式来求它的前n项和:
Sn = n/2 × [2a + (n-1)d]
其中,Sn表示前n项和,a表示首项,d表示公差。
这个公式的推导过程比较复杂,我们在这里不做详细讲解,感兴趣的读者可以自行查阅相关资料。
不过,我们可以通过一个简单的例子来理解这个公式的应用。
假设我们要求等差数列1、3、5、7、9的前3项和,那么根据公式,我们可以得到:
S3 = 3/2 × [2×1 + (3-1)×2] = 9
也就是说,1、3、5的和为9。
同样地,如果我们要求前4项和,那么可以得到:
S4 = 4/2 × [2×1 + (4-1)×2] = 16
也就是说,1、3、5、7的和为16。
需要注意的是,等差数列求和项数公式只适用于公差为常数的等差数列。
如果公差不是常数,那么就需要使用其他的方法来求和。
等差数列求和项数公式是数学中的一个重要公式,它可以帮助我们快速计算等差数列的和,从而更好地理解和应用等差数列的知识。
在学习数学的过程中,我们应该多加练习和应用,以便更好地掌握这个公式的使用方法。
等差数列求和
值
Байду номын сангаас
新疆 王新敞 奎屯
LOGO
典型例题
LOGO
典型例题 已知一个等差数列的前10 项的和是310 10项的和是 310, 20项 4. 已知一个等差数列的前 10 项的和是 310 , 前 20 项 的和是1220 由此可以确定求其前n 项和的公式吗? 1220, 的和是 1220 , 由此可以确定求其前 n 项和的公式吗 ?
n(n−1 n− ) d 又S10 = 310, S20 = 1220 解:∵Sn = na + 1 2
a1 = 4 10a1 + 45d = 310 ⇒ ∴ d = 6 20a1 + 190d = 1220
∴ n=4 +n n− )×6=3 2 +n S n ( 1 n 2
LOGO
a1
n
a1
(n − 1)d
an = a1 +(n−1)d
LOGO
典型例题
例2、等差数列-10,-6,-2,2,…前多少项 的和是54?
解 : 设 题 中 的 等 差 数 列 为 {a n }, 前 n 项 为 则
n ( n − 1) × 4 = 54 2 Sn ,
a 1 = − 10 , d = ( − 6 ) − ( − 10 ) = 4 , S n = 54 , − 10 n +
LOGO
等差数列求和
LOGO
复习回顾
如果正整数 p , q , l , k 满足 p + q = l + k , 是等差数列, 数列{a } 是等差数列,那么 ap +aq = al +ak .
n
一般地也有: 一般地也有
等差数列求和公式
等差数列求和一、1+2+3+4+5+6+7+8+9+10=?第一种方法:最原始的就是一个一个的相加1+2+3+4+5+6+7+.........................100=?1+2=3+3=6=4=10+5=15+6=21+7=28+8=36+9=45+10=55那1+2+3+4+5+6+7+8+...............100=?第一种方法很麻烦的。
举例:1+2+3+4+5+6+7+8+9+10=?1式也可以把1式看做把1式翻个个:10+9+8+7+6+5+4+3+2+1=?2式结果是一样的。
然后观察有什么规律,会发现:1式加2式: 2?=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)+(6+5)+(7+4)+(8+3)+(9+2)+(10+1)2?=11+11+11+11+11+11+11+11+11+11(10个11相加就是)2?=10乘以112?=10*112?=110?=110除以2?=100/2?=55第二种方法:再观察会发现:(把式子中的第一项1加上式子的最后一项10)乘以10(10代表:一共多少项相加的)除以2也得出同样的结果。
第二种方法:求证:(1+10)*10/2=11*10/2=110/2=55。
公式:和=(首项+末项)乘以项数除以2.注意:后项和前项相差的公差为1时使用以上公式。
如果是从1+2+3+4+5+6+7+.........................100=?那1+2+3+4+5+6+7+8+...............100=?第一种方法很麻烦的。
第二种方法:1+2+3+4+5+6+7+8+...............100=(1+100)*100/2=101*100/2=10100/2=50501+2+3+4+......................88=(1+88)*88/2=89*88/2=偶数项数=中间相邻的两个数之和乘以项数除以2奇数项数=中间的数乘以项数二、后项和前项相差的公差为2或其他数时1+3+5+7+9+11=项数乘以首相加项数乘以(项数减1)乘以公差除以2=和证明:1+3+5+7+9+11=6*1+6*(6-1)*2/2=6+6*5*2/2=6+30*2/2=36*2/2=36证明:2+4+6+8+10+12+……98=首先要知道是多少项相加的,利用求项数的公式:(某数-首项)÷公差+1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sn
n(a1 an) 2
S1000100 (1 2 010)00500500
例2.已知一个等差数列的首项为-12,第 30项为18,求它的前30项的和
解:
Sn
n(a1 an) 2
S3030 (2 12 1)890
例3.已知一个等差数列的首项
解
Sn n1 an(n21)d
求它的前20项的和
和记作 S n 即 S n a 1 a 2 a 3 . .a .n
S n 1 2 .. ( .n 1 ) n
S n n (n 1 ) .. 2 . 1
2 S n n (n 1 )
Sn
n(n1) 2
12 3 (n 1 )nn (n 1 ) 2
泰姬陵坐落于印度古都阿格,是17世纪 莫卧儿帝国皇帝沙杰罕为纪念其去世的 爱妃所建,它宏伟壮观,纯白大理石砌 成的主体建筑叫人心醉神迷,成为世界 七大奇迹之一。
175个
4.请快速说出等差数 列前n项和公式
Sn
n(a1 an) 2
Sn n1 an(n21)d
5.前100个正偶数组成的等 差数列, 一共有几项?
50项
第二关
每4-6个人为一个小组,请思 考后在纸上解答,最后派代 表起来回答。
进入
第二关
1.在等差数列an 中,a136,a40126
,求它的前40项的和。
S 2 0 2 0 ( 5 ) 2 0 ( 2 2 0 1 ) 3
=470
第一关
思考片刻,请马上作答
1
2
3
4
5
1. 已知等差 an的 数首 列a项 1 1
公差 d2,a4等于()
A.5 C.7
B.6 D.9
C
2.△ABC三个内角A、B、C成等差数列
,
60
则B=__________.
3.李梅是某职高烹饪专业的一名 新生,在面点课上第一天10分钟 内可以包10个饺子,随着包饺子 技术的提高,在随后的6天里10 分钟内饺子数目每天递增5个, 问这个星期李梅包了几个饺子?
Sn = a1+a2 + a3 +…+ an-2 + an-1 +an Sn= an+an-1+an-2+…+ a3 + a2 +a1
2Sn = (a1+an )×n
Sn
n(a1 an) 2
由于
n(n1) Sn n1a 2 d
倒序 相加 法
例1,求前1000个正整数的和
解正整数从小到大排成一个等差数列,首项 : 为1,第1000项为1000,从而前1000个正
S40 1800
2.等差数列an 中,d 2 ,n 4,a n 0 7,求 9 a 1 与 S n .
ana1(n1)d
a1 1
Sn
n(a1 an) 2
Sn习等差数列的 前n项和公式
Sn
n(a1 an) 2
Sn n1 an(n21)d
巩
运
固
用
会灵活运用公式
P295 A组 6, 7 P295 B组 2, 3
陵寝以宝石镶嵌,图案之细致令人叫绝,传说陵寝中有一个 三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你 知道这个图案一共花了多少宝石吗?以下是以10层为例,请 大家观察下图的规律。
倒
序
相
加
法
思考:一般等差数列怎样求和呢?
设等差数列{an}的前n项和为Sn,即: Sn=a1+a2+…+an
德国数学家高斯 (数学王子)
高斯是伟大的数学家,天文学家,高 斯十岁时,有一次,老师出了这样一 道题目,1+2+3+4+……+100=?过了 两分钟,正当 大家都在 1+2=3,3+3=6,6+4=10……算得不亦 乐乎时,高斯站起来回答说: “1+2+3+4+……+100=5050.”老师忙问, 你是怎么算出来的呢?
(聪明的同学们,你们知道吗?) 下面听高斯是怎么回答.
高斯答: 1+2+3+4+…+97+98+99+100=
5050
1+100=101 2+99=101 3+ 98=101
……
50+ 51=101
动动脑: 1+2+3+4+……+n=?
101×50=5050
思考:问1+2+3+4+…+n=?
一般地,我们把等差数列 an 的前n项的