数控机床的驱动与控制系统
(FANUC 0i-mate-TC)数控车床主轴驱动系统的装调
2.
三菱E700变频器参数设置
(1)、三菱E700变频器操作要领
将所有参数 恢复至出厂 值
变更参数设定值
Pr.160 用户参数组读取选择= “1”,用户参数组中未登录 Pr.79 。Pr.77= “1”,禁止写入参数。
需要设置的参数
四、任务检查
(1) 操作数控系统FANUC 0i-mate-TC ,运行模式为“手动”运行模 式,摁下“主轴正转”键,则主轴电机正向旋转。摁下“主轴倍率”增 加键(减少键),主轴转速增大(减小); (2)操作数控系统FANUC 0i-mate-TC ,运行模式为“手动”运行模 式,摁下“主轴反转”键,则主轴电机反向旋转。摁下“主轴倍率”增 加键(减少键),主轴转速增大(减小); ; (3) 操作数控系统FANUC 0i-mate-TC ,运行模式为“手动”运行模式 ,摁下“主轴停”键,则主轴电机停止旋转; (4) 操作数控系统FANUC 0i-mate-TC ,运行模式为“MDI”运行模式, 输入“M03S800”,或者“M04S800”或者“M05”主轴能正确动作。
编码器用在主轴系统上: (1)测主轴转速显示在NC屏幕上; (2)车削螺纹时,不至于乱牙;
(二)MITSUBISHI E700 系列变频器
主轴伺服驱动装置
主轴电机
1. 变频器连接图
变频器
三相异步电机
端 子 、任务实施
(一)电气线路测绘
每一组随机抽检2份PPT课件,并通过PPT汇报展示电气测绘的成 果,教师现场打分。
60 f 1 n 1 s n0 1 s p 1 变频调速 (无级调速)
f=50Hz +
整流器 逆变器
三种电气 调速方法
f1、U1可调 M
数控机床控制系统设计
数控机床控制系统设计数控机床控制系统是现代机械加工中的重要设备,不仅减轻了人工操作的负担,还能够实现高效精确加工。
本文将从数控机床控制系统的设计原理、控制器的分类以及系统设计中需要考虑的因素等各方面进行详细阐述。
一、数控机床控制系统设计原理数控机床是一种以计算机控制的工具设备。
数控机床的工作原理是通过加工程序与自动化机床相连接,由计算机系统对机床运动进行控制。
数控机床的加工程序是一种由G代码和M 代码组成的程序,G代码主要用于控制机床的直线运动和圆弧运动、刀具半径、零点位置等,M代码则是用于控制机床的主轴转速、冷却液开关等控制信号。
基本上数控机床可以实现加工各种形状的物件,而且加工精度高,生产效率高。
二、控制器的分类数控机床控制器根据其构成和结构可以大致分为以下几个类型:1、点位控制器(P控制器):点位控制器可以控制每一个轴单独移动到预定的位置后,马上停止这一轴的运动,使其它轴继续运动。
2、直线插补控制器(L控制器):直线插补控制器是比点位控制器更为先进的控制器,它不仅在每个轴位置上进行控制,还可以控制各轴在不同的位置上同时启动或同时停止。
3、圆弧插补控制器(C控制器):圆弧插补控制器是对圆弧运动进行控制的控制器。
它可以自动地计算和控制机床在坐标平面或变位平面上的转折点、曲线半径以及运动方向等,圆心和半径的计算完全由控制器来完成。
4、模态控制器(M控制器):模态控制器是负责管理机床程序重复执行的控制器。
它只需输入一次程序,就可以重复地使用该程序。
换言之,它可以使用多个程序段,从而实现切换各种不同加工方式,同时还可以根据不同的工件要求随时更改程序的具体内容。
三、系统设计中需要考虑的因素在设计数控机床控制系统时,需要考虑如下因素:1、系统稳定性:稳定性是数控机床控制系统设计的重要指标,必须保证系统在加工过程中不会出现任何一个运动轴的失控。
系统设计时需要合理选用现代控制技术,同时要对硬件和软件进行完整测试,保证系统的稳定性。
数控机床主轴驱动变频控制
数控机床主轴驱动变频控制一、前言数控机床是传统机床向智能化方向发展的结果,其操作简单、精度高、效率高等特点,使得其在现代制造业中大有用处。
数控机床中的主轴驱动控制是其中的一个重要环节,其精度和可靠性对整个机床的操作效果有着至关重要的作用。
本篇文档将主要介绍数控机床主轴驱动变频控制相关知识。
二、数控机床主轴驱动变频控制的原理数控机床的主轴驱动控制系统主要是由相关电气元件组成的变频器控制系统。
变频器就是将市电通过整流、滤波、逆变后输出一定的频率、电压并控制电机转速的电子装置。
在数控机床的主轴驱动系统中,变频器通过对电机控制进行电压和频率的调整,来实现主轴的旋转,进而控制其转速和输出功率。
变频器输出的频率、电压均可调整,因此可以通过控制变频器的输出,来实现对主轴的速度调节。
电气控制系统通过实时监测机床运行状态、主轴运行状态、机床速度、主轴转速等信息,根据预先设定的运转条件,通过控制变频器输出的电压、频率实现对机床的工作状态并实现对主轴的速度调节。
三、数控机床主轴驱动变频控制的优点与传统机床的主轴驱动方式相比,数控机床主轴驱动变频控制有诸多优点,主要体现在以下几个方面:1.可调性强:通过对变频器的控制,可以实现精确的主轴转速调节,可以满足不同需求的工件加工。
2.精度高:由于采用了电气控制系统,可以实现主轴转速的精确控制,进而实现加工精度的提高。
3.效率高:数控机床主轴驱动变频控制由于能够实现电气控制,减少了机械传动过程中的机械损耗,因此其效率远高于传统机床主轴驱动方式。
4.运转平稳:变频器可以调节输出电压和频率,可以进一步实现对主轴转速的控制,从而实现机床运转的平稳。
四、数控机床主轴驱动变频控制的应用数控机床主轴驱动变频控制技术的应用相当广泛,可以应用于各种数控机床类型,包括数控车床、数控加工中心、数控铣床等。
特别是在高速、高精度、高效率的加工应用中,其优势更加明显。
五、数控机床主轴驱动变频控制的维护和保养为了确保数控机床主轴驱动变频控制系统的长期稳定运行,必须进行日常的维护和保养。
第五章 数控机床的伺服驱动系统
(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统
的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控机床的伺服驱动系统
5.2 位置控制
D/A 转换器
伺服放大器
伺服 电动机
Pf 反馈脉冲
位置检测
脉冲处理
图 5-2 脉冲比较伺服系统结构框图
工作台
光栅或光 电编码器
数控机床的伺服驱动系统
(1) 由计算机数控制装置提供指令的脉冲。 (2) 反映机床工作台实际位置的位置检测器。 (3) 完成指令信号与反馈信号相比较的比较器。 (4) 将比较器输出数字信号转变成伺服电动机模拟控制 信号的数/模转换器。 (5) 执行元件(伺服电动机)。
数控机床的伺服驱动系统
(1)指令脉冲PC=0,这时反馈脉冲Pf=0,则Pe=0,则伺
服电动机的速度给定为零,工作台继续保持静止不动。
(2)现有正向指令PC+=2,可逆计数器加2,在工作台尚 未移动之前,反馈脉冲Pf+=0,可逆计数器输出Pe=Pc+-Pf+=2
-0=2,经转换,速度指令为正,伺服电动机正转,工作台 正向进给。
CP A9 ≥1
CP
RC
+Vcc B
A A10 RD Q +Vcc
A3
DS
A4
Q CP
≥1
A7
DS
CPQ
A8 ≥1
RC
+Vcc BQ
A A11 RD +Vcc
D Q7 A12
数控机床原理图
数控机床原理图
对不起,我无法提供图片。
但是我可以用文字简单描述数控机床的原理。
数控机床原理图如下:
1. 控制器:数控机床的核心部件,包括计算机系统和控制软件,用于接收和处理数控指令。
2. 电机驱动系统:将控制器发送的指令转化为电信号,并驱动电机实现各轴的运动。
3. 传感器系统:用于测量和监测机床各个部件的位置、速度和力等参数,将检测结果反馈给控制器。
4. 运动系统:包括各轴的导轨、滚珠丝杠等机械传动装置,用于实现工件在空间中的各向运动。
5. 夹具装置:用于固定和夹紧工件,保证其在加工过程中的稳定性。
6. 冷却装置:用于冷却刀具和工件,减少加工过程中的热变形和刀具磨损。
7. 刀具系统:包括主轴和刀架等装置,用于切削和加工工件。
8. 加工润滑系统:用于为机床提供润滑和冷却的液体,减少摩擦和磨损。
以上是数控机床的简单原理描述,希望对你有所帮助。
数控机床主轴驱动与控制
特点,还可以实现定向和进给功能,当然价格也是最高的, 通常是同功率变频器主轴驱动系统的2--3倍以上。
伺服主轴驱动系统主要应用于加工中心上,用以满足系 统自动换刀、刚性攻丝、主轴C轴进给功能等对主轴位置 控制性能要求很高的加工。
6.2.3主轴分段无级调速
6.2主轴驱动与控制(Spindle Drive and Control)
图6.3所示为西 门子802C数控系 统的变频调速控 制连接图。主轴 电机的正反转通 过继电器KA2和 KA3控制,转速 大小通过X7口模 拟电压值大小控 制。
6.2主轴驱动与控制(Spindle Drive and Control)
6.1 概述
1.主轴驱动系统的功能
主轴驱动系统通过控制主轴电机的旋转方向和转速, 从而调节主轴上安装的刀具或工件的切削力矩和切削速度, 配合进给运动,加工出理想的零件。因此,主轴驱动的主 要功能是为各类工件的加工提供所需的切削功率。
此外,当数控机床具有螺纹加工、恒线速加工以及准 停要求(比如加工中心换刀)时,对主轴也提出了相应的 位置控制要求,所以此类数控机床还具有主轴与进给联动 功能和准停控制功能。
6.1 概述
(3)DANFOSS(丹佛斯)公司系列变频器 该公司目前应用于数控机床上的变频器系列常用的有:
VLT2800,可并列式安装方式,具有宽范围配接电机功率: 0.37KW-7.5KW 200V/400;VLT5000,可在整个转速范围内进行 精确的滑差补偿,并在3ms内完成。在使用串行通讯时,VLT 5000对每条指令的响应时间为0.1ms,可使用任何标准电机与VLT 5000匹配。
对于中档数控机床而言主要采用这种方案。其主轴传动仅采用两 挡变速甚至仅一挡即可实现100—200 r/min左右时车、铣的重力切 削。一些有定向功能的还可以应用于要求精镗加工的数控镗铣床。 但若应用在加工中心上,还不很理想,必须采用其他辅助机构完成 定向换刀的功能,而且也不能达到刚性攻丝的要求。
数控车床驱动系统的安装与调试指导书
数控车床驱动系统的安装与调试指导书一、引言数控车床是一种装备有数控装置的机床,能够通过数字编程来控制刀具在工件上的运动,实现自动加工工序的机床。
而数控车床驱动系统是数控车床的核心部件之一,负责控制刀架和刀具的运动。
本指导书旨在向用户提供数控车床驱动系统的安装与调试指导,以确保系统的正确安装和可靠运行。
二、安装前的准备工作1. 确保车床和驱动系统都处于关机状态,并断开电源。
2. 提前准备好所需的安装工具和设备,如扳手、螺丝刀、电缆等。
3. 仔细阅读驱动系统的产品说明书和安装手册,了解系统的组成和安装要求。
三、安装步骤1. 解包并检查设备:将驱动系统从包装箱中取出,检查是否有任何损坏或缺陷。
请务必保存所有包装材料和配件,以备之后的维修和保养。
2. 安装电源线:将驱动系统的电源线插入电源插座,并确保插头牢固连接。
3. 连接信号线:使用所提供的信号线将驱动系统与数控控制器连接。
依据系统的连接图和说明书,逐一连接各个信号线。
4. 安装驱动模块:根据系统的结构和布局,将驱动模块安装到指定位置。
使用所提供的螺丝和螺母将驱动模块牢固固定。
5. 连接电机:根据车床与驱动系统的配合,将电机与驱动系统连接。
确保连接正确无误,且电机固定可靠。
6. 接通电源:检查所有连接点是否牢固,并确保电源线与插座连接稳定。
接通电源,启动驱动系统,并观察指示灯是否亮起,以确认系统是否正常启动。
四、调试步骤1. 检查连接:仔细检查所有连接点,确保电机和控制器之间的连接正确稳定。
2. 参数设置:根据车床的具体参数和加工要求,在数控控制器上进行参数设置。
确保速度、行程、加速度等参数设置符合实际需求。
3. 轴向校准:采用数控控制器的校准功能,对车床的各个坐标轴进行校准。
校准时需注意安全,避免车床在校准过程中受到损坏。
4. 运行测试:在调试模式下,通过数控控制器发送指令,观察刀架和刀具的运动是否符合预期。
根据测试结果,对系统进行必要的调整和校准。
数控机床伺服系统的分类
数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。
1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。
主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。
进给驱动系统一般包括速度控制环和位置控制环。
(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。
主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。
2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。
其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。
(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。
其优点是操作维护方便,可靠性高。
其中,1)直流伺服系统其进给运动系统采用大惯量宽调速永磁直流伺服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺服电机。
其优点是调速性能好;其缺点是有电刷,速度不高。
2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。
优点是结构简单、不需维护、适合于在恶劣环境下工作;动态响应好、转速高和容量大。
3.按控制原理分(1)开环伺服系统系统中没有位置测量装置,信号流是单向的(数控装置→进给系统),故系统稳定性好。
开环伺服系统的特点:1. 一般以功率步进电机作为伺服驱动元件。
2. 无位置反馈,精度相对闭环系统来讲不高,机床运动精度主要取决于伺服驱动电机和机械传动机构的性能和精度。
步进电机步距误差,齿轮副、丝杠螺母副的传动误差都会反映在零件上,影响零件的精度。
数控机床的伺服驱动系统
上一页 下一页 返回
6.2 二维数组
6.2.3二维数组的初始化
一维数组初始化也是在类型说明时给各下标变量赋以初值。 一维数组可按行分段赋值,也可按行连续赋值。
6.2 步进电机及其驱动控制系统
4、根据结构分类 步进电机可制成轴向分相式和径向分相式,轴向分相式
又称多段式,径向分相式又称单段式。单段反应式步进电机, 是目前步进电机中使用最多的一种结构形式。还有一种反应 式步进电机是按轴向分相的,这种步进电机也称为多段反应 式步进电机。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
下一页 返回
6.2 步进电机及其驱动控制系统
6.2.1步进电机的分类
1、根据相数分类 步进电机有二、四、五、六相等几种,相数越多,步距
角越小,而且采用多相通电,可以提高步进电机的输出转矩。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
2、根据力矩产生的原理分类 分为反应式和永磁反应式(也称混合式)两类。 反应式步进电机的定子有多相磁极,其上有励磁绕组, 而转子无绕组,用软磁材料制成,由被励磁的定子绕组产生 反应力矩实现步进运行。永磁反应式步进电机的定子结构与 反应式相似,但转子用永磁材料制成或有励磁绕组、由电磁 力矩实现步进运行,这样可提高电机的输出转矩,减少定子 绕组的电流。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
1、三相三拍工作方式 在图6-2中,设A相通电,A相绕组的磁力线为保持磁阻
最小,给转子施加电磁力矩,使磁极A与相邻转子的1、3齿 对齐;接下来若B相通电,A相断电,磁极B又将距它最近的 2、4齿吸引过来与之对齐,使转子按逆时针方向旋转30°; 下一步C相通电,B相断电,
数控机床的系统组成及其功能
数控机床的系统组成及其功能数控机床是一种高度自动化的机床,它利用数字控制技术来加工金属或其他材料。
数控机床的系统组成包括以下几个主要部分:1.数控装置:数控装置是数控机床的核心部件,它通过接收输入的加工程序,将加工过程转化为一系列的指令,控制机床的各个部件进行精确的运动。
数控装置一般由计算机硬件、控制软件和输入输出接口等组成。
2.进给系统:进给系统是数控机床的重要部分,它负责将动力传递给机床的各个运动部件,包括工作台、主轴、刀架等。
进给系统通常由电动机、丝杠、齿轮、轴承等组成,通过改变电动机的转速和旋转方向来控制机床的运动速度和方向。
3.主轴系统:主轴系统是数控机床的关键部件,它负责驱动刀具进行切削加工。
主轴系统一般由电动机、主轴、轴承、刀具夹头等组成,通过调节电动机的转速和旋转方向来控制刀具的旋转速度和旋转方向。
4.辅助装置:数控机床的辅助装置包括冷却系统、润滑系统、排屑系统、照明系统等,它们分别负责提供冷却液、润滑油、排除切屑、照明等工作。
这些辅助装置对于保证机床的正常运转和加工过程的顺利进行至关重要。
5.控制系统:控制系统是数控机床的基础部分,它通过接收操作者输入的指令,将加工过程转化为一系列的数控指令,控制机床的各个部件进行精确的运动。
控制系统通常由控制器、操作面板、传感器等组成,通过调节电动机的转速和旋转方向来控制刀具的旋转速度和旋转方向。
数控机床的功能非常广泛,它可以加工各种类型的零件,包括金属和非金属材料,如钢、铸铁、有色金属、塑料等。
数控机床可以完成多种加工操作,如车削、铣削、钻孔、攻丝、磨削等。
此外,数控机床还可以进行精确的测量和检验,确保加工出的零件符合精度要求。
除了自动化和高精度,数控机床还具有高效率的特点。
由于数控机床可以同时控制多个坐标轴,因此它可以一次装夹多个工件,减少装夹和测量时间,提高生产效率。
此外,数控机床还可以进行在线监测和故障诊断,及时发现并解决问题,减少停机时间和维修成本。
数控机床的伺服驱动系统
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
数控机床主轴系统工作原理
数控机床主轴系统工作原理数控机床主轴系统是数控机床的核心部件之一,其工作原理是整个数控加工过程中的关键环节。
主轴系统的工作原理涉及到机床主轴的转动、传动方式、速度调节、加工精度控制等多个方面。
下面将详细介绍数控机床主轴系统的工作原理。
一、主轴的转动方式数控机床主轴一般采用电机驱动,其转动方式主要包括直流电机驱动、交流电机驱动和伺服电机驱动。
直流电机驱动主轴工作原理是通过直流电机产生磁场,通过电磁感应产生转矩来驱动主轴转动;交流电机驱动主轴则通过变频器调节电机的频率和电流,控制电机的转速,从而驱动主轴转动;伺服电机驱动主轴则是通过对电机进行闭环控制,实现高精度、高速度的转动。
二、主轴传动方式主轴传动方式主要包括皮带传动、齿轮传动和直联传动。
皮带传动简单、便于调节,但传动效率较低;齿轮传动传动效率高,但噪音大;直联传动是直接将电机轴与主轴连接,传动效率高,但需要考虑刚性和平衡性。
三、主轴速度调节数控机床主轴的速度调节是通过电机的转速和传动方式来实现的。
对于直流电机和交流电机,可以通过调节电机的输入电流和频率来控制转速;而对于伺服电机,则可以通过伺服控制系统实现对主轴速度的精确控制。
四、加工精度控制在数控机床主轴系统中,加工精度的控制是至关重要的。
主轴系统的动态特性、转动平稳性及轴向和径向刚度等参数都会直接影响到加工的精度。
在主轴系统设计中,需要考虑轴承选型、润滑方式、主轴动平衡、温升控制等因素,以确保加工精度的稳定性和精度。
五、主轴保护系统为了确保主轴系统的安全运行,常常需要配置主轴保护系统,例如过载保护、温升保护、振动监测等。
这些保护系统可以及时发现主轴系统的异常情况,并采取相应的保护措施,以避免主轴系统受损或加工质量受影响。
数控机床主轴系统的工作原理涉及到电机驱动、传动方式、速度调节、加工精度控制和保护系统等多个方面。
在数控加工中,主轴系统的稳定性和精度将直接影响到加工质量和效率,因此对主轴系统的设计和调试需要十分重视。
数控机床双轴驱动同步控制方法的探讨
数控机床双轴驱动同步控制方法的探讨随着工业自动化技术的发展,数控机床在制造业中扮演着越来越重要的角色。
数控机床的自动化生产不仅提高了生产效率,还大大提高了产品的加工精度和质量。
而数控机床的双轴驱动同步控制方法,更是关乎到数控机床的加工效率和加工质量的关键技术之一。
本文将探讨数控机床双轴驱动同步控制方法的现状和发展趋势。
一、双轴驱动同步控制的基本原理数控机床的双轴驱动同步控制方法,主要是指控制两个或多个轴的运动,使它们达到精确的同步运动。
在数控机床中,通常会有X、Y、Z轴等多个轴,这些轴需要进行精密的同步控制,以完成复杂的加工过程。
而双轴驱动同步控制方法,是通过控制系统对多个轴进行同步控制,使它们按照预定的路径和速度进行运动,从而实现精确的加工。
目前,关于数控机床双轴驱动同步控制方法的研究已经取得了一定的进展。
在控制算法方面,传统的PID控制、模糊控制、自适应控制等方法都被广泛应用在数控机床的双轴驱动同步控制中。
这些方法在不同的应用场景下,都有各自的优势和局限性。
在传感器和执行器方面,随着传感技术的发展,越来越精密的编码器、传感器和伺服驱动器被应用到数控机床的双轴驱动同步控制中。
这些高精度的传感器和执行器,使得数控机床能够更加精准地控制多个轴的位置、速度和加速度,从而实现更加精密的加工。
三、双轴驱动同步控制方法的挑战和发展趋势虽然数控机床的双轴驱动同步控制方法已经取得了一定的进展,但在实际应用中仍然面临着诸多挑战。
数控机床在进行复杂曲线加工时,对双轴驱动同步控制的精度和稳定性要求很高。
当前的控制算法和传感器技术仍然有待进一步提升,以满足复杂加工的需求。
数控机床的双轴驱动同步控制方法也需要克服机械传动系统的非线性和滞后等问题。
这需要研究更加高级的控制算法,以及设计更加精密的机械传动系统,来提高数控机床的加工精度和稳定性。
随着工业4.0的发展,数字化、网络化和智能化正在成为数控机床发展的新方向。
数控机床的双轴驱动同步控制方法也需要与这些新技术相结合,从而实现更加智能化的加工和生产。
数控机床控制系统设计
数控机床控制系统设计数控机床是一种高级自动化设备,主要应用于加工领域,具有高精度、高效率、高质量的特点,因此受到越来越多行业的追捧。
而数控机床控制系统也是数控机床能够完成高水平自动化加工的关键之一。
因此,数控机床控制系统的设计十分重要。
数控机床控制系统主要由数控系统、驱动系统和运动控制系统三部分组成。
其中,数控系统是数控机床控制系统的核心,包括数控芯片、显示屏等,用于控制机床的动作和加工工件的轮廓。
驱动系统用于驱动机床各轴运动部件,辅助数控系统的运动控制。
运动控制系统用于对加工工件的轮廓进行跟踪和调整,实现轨迹控制。
在进行数控机床控制系统设计时,需要考虑以下几个方面:1. 控制算法数控机床的控制算法决定了加工的精度和效率。
在设计数控机床控制系统时,需要根据机床的加工特点和要求,选择合适的控制算法,如PID控制算法、自适应控制算法等。
2. 控制器选择控制器是实现数控机床控制的主要设备之一,它包括数控系统、驱动系统和运动控制系统。
在选择控制器时,需要考虑可靠性、性能、可扩展性等。
3. 动力装置数控机床控制系统的动力装置是保障机床稳定运行的重要组成部分,包括伺服电机、伺服减速器等。
在进行动力装置的设计时,需要考虑能够稳定运行,快速响应和高精度的要求。
4. 通讯协议数控机床控制系统需要与上位计算机或其他设备进行通讯,因此需要使用通讯协议进行数据交互。
常用的通信协议有RS232C、RS422、RS485等,需要考虑通讯速率、数据可靠性和兼容性等。
综上所述,数控机床控制系统设计是一项复杂的工程,需要综合考虑机床加工特点、控制算法、控制器选择、动力装置和通讯协议等多方面因素。
只有设计出优秀的数控机床控制系统,才能够为机床的高精度加工提供良好的支持和保障。
数控机床的控制系统概述
数控机床的控制系统概述
数控装置是数控机床控制系统的核心设备,它主要包括数控系统的运
动控制部分、进给控制部分和插补控制部分。
运动控制部分负责控制数控
电机的启停、方向和速度,实现各个轴向的运动控制。
进给控制部分负责
控制机床进给部件的运动,例如进给速度、进给量和加速度等。
插补控制
部分负责将数学模型中的插补算法转化为机床运动的轨迹控制。
数控电机是数控机床控制系统的执行机构,它通过与数控装置的连接,根据装置发出的指令进行相应的动作。
数控电机一般分为进给电机和主轴
电机。
进给电机主要负责机床的工作台或刀架的运动,而主轴电机主要负
责驱动主轴的旋转。
传感器是数控机床控制系统中的重要组成部分,它的主要作用是感知
机床运动状态和工件加工情况,并将这些信息反馈给数控装置。
常见的传
感器有角度传感器、位移传感器、压力传感器等。
数控初始程序是数控机床控制系统的基础程序,它是一组控制指令和
参数的集合。
数控初始程序一般包括机床坐标系的建立、工件的基准定位、工件的装夹和刀具的选择等。
数控加工程序是数控机床控制系统的核心程序,它是通过编写数学模
型和加工工艺参数来指导机床进行加工操作的。
数控加工程序一般包括几
何描述、速度描述、加工工艺参数和刀具路径等。
总之,数控机床的控制系统是实现机床运动和加工工艺的核心部分。
它通过硬件设备和软件程序的协同作用,实现机床的高精度、高效率和高
质量的加工。
随着计算机技术的不断发展,数控机床的控制系统也在不断
创新和完善,为机床行业的发展提供了有力支持。
数控机床知识点
第一章数字控制(numerical control, NC):是一种借助数字、字符或其它符号对某一工作过程(如加工、测量、装配等)进行可编程控制的自动化方法。
计算机数字控制(computerized numerical control, CNC):是用计算机实现数控所需的所有运算、控制功能和其它辅助功能的方法数字控制系统特点:可用不同字长表示不同的精度信息,表达信息准确;可进行逻辑运算、数字运算,也可进行复杂的信息处理;具有逻辑处理功能,可根据不同的指令进行不同方式的信息处理,从而可用软件来改变信息处理的方式或过程,而不用改动电路或机械机构,因而具有柔性化。
机床组成:1.程序载体2.数控装置3.伺服驱动系统4.机床本体5.数控机床的辅助装置数控机床分类:1. 按运动轨迹分类,点位控制系统;直线控制系统;轮廓控制系统2. 按工艺用途分类,一般数控机床,数控加工中心,多坐标数控机床。
3.按伺服系统控制方式分类,开环;闭环;半闭环伺服驱动系统。
4.按功能水平分类,高,中;低三挡。
数控机床特点:1.加工复杂零件2.更高的生产效率3.更高的加工精度和质量4.具有广泛的适用性和灵活性5.监控功能强,具有故障诊断能力6.可实现精确成本核算和进度安排开环、闭环和半闭环的优缺点:开环优点是结构简单,调试维修方便,成本较低,缺点是控制精度较低;闭环优点是可获得很高的加工精度,缺点是闭环系统的设计和调整存在较大困难,处理不当会导致系统不稳定;半闭环包括少量机械传动环节,系统稳定性中,结构简单,调试方便,精度较高。
柔性制造技术按规模大小可分为:柔性制造系统,柔性制造单元,柔性制造线,柔性制造工数控加工基本工作原理是将加工过程所需的各种操作步骤及工件的形状尺寸,用程序——数字化代码来表示,再由计算机数控装置对这些输入的信息进行处理和运算。
第二章笛卡尔坐标系,右手大拇指为X,食指为Y,中指为Z。
Z坐标轴的正方向是增大工件与刀具距离的方向(一律看作是工件相对静止,刀具运动)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章数控机床的驱动与控制系统学时章节教学内容重点、难点2 §4-1 位移、速度、位置传感器理解其应用情况1 §4-2 进给伺服驱动系统4 §4-3.1典型进给伺服系统(位置控制)——步进式伺服系统掌握系统的组成及工作原理1 §4-3.2 闭环、半闭环进给伺服系统第一节位移、速度、位置传感器数控机床若按伺服系统有无检测装置进行分类,可分为开环系统和闭环(或半环)系统。
也就是说检测装置是闭环(半闭环)系统的重要部件之一,它的作用是测量工作实际位移并反馈送至数控装置,使工作台按规定的路径精确移动。
因此对于闭环系统来说,检测装置决定了它的定位精度和加工精度。
数控机床对检测装置的主要要求为:(1)工作可靠,抗干扰性强;(2)使用维护方便,适应机床的工作环境;(3)满足精度和速度的要求;(4)成本低。
通常,数控装置要求位置检测的分辨率为0.001~0.0lmm;测量精度为±0.002~±0.02mm/m,能满足数控机床以1~l0m/min的最大速度移动.位置检测装置的分类列表于4-1中。
本章仅就其中常用的检测装置(旋转变压器感应同步器光栅、磁栅、编码盘)的结构和原理予以讲述。
旋转变压器位置检测装置分类是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。
➢工作原理当转子绕组的磁轴与定子绕组的磁轴自垂直位置转动一角度θ时,绕组中产生的感应电势应为E1=nV1sinθ =nV m sinωt sinθ式中n——变压比;V1——定子的输入电压;V m——定子最大瞬时电压。
当转子转到两磁轴平行时(即θ=90o),转子绕组中感应电势最大,即E1=nV m sinωt➢旋转变压器的应用V3=nV m sinωt sinθ1 + nV m cosωt cosθ1=nV m cos(ωt –θ1)✧感应同步器感应同步器是一种电磁式位置检测元件,按其结构特点一般可分为直线式和旋转式两种。
直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。
前者用于直线位移的测量,后者用于角度位移的测量。
它们的工作原理都与旋转变压器相似。
感应同步器具有检测精度高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于高精度的数控机床。
本节主要以直线式感应同步器为例,对其结构特点和工作原理进行讲述。
1. 感应同步器的结构及分类❑ 结构❑ 分类2. 感应同步器的工作原理.感应同步器是利用励磁绕组与感应绕组间发生相对位移时,由于电磁耦合的变化,感应绕组中的感应电压随位移的变化而变化,借以进行位移量的检测。
感应同步器滑尺上的绕组是励磁绕组,定尺上的绕组是感应绕组。
✧ 光栅在高精度的数控机床上,目前大量使用光栅作为检测元件。
光栅与旋转变压器、感应同步器不同,它是一种将机械位移或模拟量转变为数字脉冲的测量装置。
常见的光栅从形状上可分为圆光栅和直线光栅两大类。
圆光栅用于测量转角位移;直线光栅用于检测直线位移。
光栅的检测精度较高,一般可达几微米。
本节主要以直线光栅为例讲述其构成和工作原理。
➢ 光栅检测装置的构成光栅检测装置是利用光的透射、衍射现象制成的光电检测元件。
它主要由光源、长光栅、短光栅和光电元件等组成 ➢ 工作原理常见光栅的工作原理都是基于物理上的莫尔条纹形成原理。
莫尔条纹的形成原因对粗光栅来说,主要是挡光积分效应;对细光栅来说,则是光线通过线纹衍射后,发生干涉的结果✧ 脉冲编码器脉冲编码器又称码盘,是一种回转式数字测量元件,通常装在被检测轴上,随被测轴一起转动,可将被测轴的角位移转换为增量脉冲形式或绝对式的代码形式。
根据内部结构和检测方式码盘可分为接触式、光电式和电磁式3种。
其中,光电码盘在数控机床上应用较多,而由霍尔效应构成的电磁码盘则可用作速度检测元件。
另外,它还可分为绝对式和增量式两种。
1. 增量脉冲编码器➢ 结构及工作原理2. 绝对式编码器信号处理装置ab z 码盘基片 透镜光源光敏元件透光狭缝 光欄板 节距τAA B B Z Z m+τ/4图4-6 光栅的构成❑ 结构和工作原理➢ 码盘基片上有多圈码道,且每码道的刻线数相等; ➢ 对应每圈都有光电传感器;➢ 输出信号的路数与码盘圈数成正比; ➢ 检测信号按某种规律编码输出,故可测得被测轴的周向绝对位置。
❑ 绝对编码盘的编码方式及特点➢ 二进制编码:✓ 特点:编码循序与位置循序相一致,但可能产生非单值性误差。
✓ 误差分析:3. 光电编码器的特点❑ 非接触测量,无接触磨损,码盘寿命长,精度保证性好; ❑ 允许测量转速高,精度较高;。
❑ 光电转换,抗干扰能力强;❑ 体积小,便于安装,适合于机床运行环境; ❑ 结构复杂,价格高,光源寿命短;❑ 码盘基片为玻璃,抗冲击和抗震动能力差。
第二节 进给伺服驱动系统一. 概述1. 进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制和驱动装置。
2. 驱动电机是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用的电机有:❑ 步进电机3 2 1 0❑直流伺服电机❑交流伺服电机❑直线电机。
3.速度单元是上述驱动电机及其控制和驱动装置,通常驱动电机与速度控制单元是相互配套供应的,其性能参数都是进行了相互匹配,这样才能获得高性能的系统指标。
4.速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节运算(目的是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其变换成电机的驱动电量,使驱动电机按要求运行。
简言之:调节、变换、功放。
5.进给驱动系统的特点(与主运动(主轴)系统比较):❑功率相对较小;❑控制精度要求高;❑控制性能要求高,尤其是动态性能。
二.步进电机及其驱动装置步进电机流行于70年代,该系统结构简单、控制容易、维修方面,且控制为全数字化。
随着计算机技术的发展,除功率驱动电路之外,其它部分均可由软件实现,从而进一步简化结构。
因此,这类系统目前仍有相当的市场。
目前步进电机仅用于小容量、低速、精度要不高的场合,如经济型数控;打印机、绘图机等计算机的外部设备。
三.直流伺服电机及驱动直流电机的工作原理是建立在电磁力定律基础上的,电磁力的大小正比于电机中的气隙磁场,直流电机的励磁绕组所建立的磁场是电机的主磁场,按对励磁绕组的励磁方式不同,直流电机可分为:他激式、并激式、串激式、复激式、永磁式。
20世纪80~90年代中期,永磁式直流伺服电机在NC机床中广泛采用。
直流伺服电机的特点➢过载倍数大,时间长;➢具有大的转矩/惯量比,电机的加速大,响应快。
➢低速转矩大,惯量大,可与丝杆直接相联,省去了齿轮等传动机构。
可提高了机床的加工精度。
➢调速范围大,与高性能的速度控制单元组成速度控制系统时,调速范围超过1∶2000。
➢带有高精度的检测元件(包括速度和转子位置检测元件);➢电机允许温度可达150°~180℃,由于转子温度高,它可通过轴传到机械上去,这会影响机床的精度➢由于转子惯性较大,因此电源装置的容量以及机械传动件等的刚度都需相应增加。
➢电刷、维护不便四.交流伺服电机及驱动由于直流伺服电机具有优良的调速性能,80年代初至90年代中,在要求调速性能较高的场合,直流伺服电机调速系统的应用一直占据主导地位。
但其却存在一些固有的缺点,即:❑电刷和换向器易磨损,维护麻烦❑结构复杂,制造困难,成本高而交流伺服电机则没有上述缺点。
特别是在同样体积下,交流伺服电机的输出功率比直流电机提高10%~70%,且可达到的转速比直流电机高。
因此,人们一直在寻求交流电机调速方案来取代直流电机调速的方案。
1.分类2. 交流伺服电机的速度控制单元❑ 交流伺服电机转速 n 调速的理论基础结论:交流伺服电机变频调速的关键是要获得可调频调压的交流电源 ❑ 调频调压电源的分类磁滞式 永磁式 反应式电机的极对数转速的滑差率电源频率:::)1(60p s f s pfn -=θφφωφωcos 44.444.42I C M k f E U k f E m ==≈=⎪⎩⎪⎨⎧-⎩⎨⎧--交变频器(直接式)交电流型交变频器(间接式)直交变频器电压型可控硅整流器逆变器整流器逆变器电压型变频器方案示意图❑ 电压型变频器工作原理U V WA B C结论:变频器实现变频调压的关键是逆变器控制端获得要求的控制波形(如SPWM 波)。
❑ 控制波形的实现方式(电机调速的控制方式):➢ 相位控制; ➢ 矢量变换控制; ➢ PWM 控制; ➢ 磁场控制;第三节 典型进给伺服系统(位置控制)一 . 开环进给伺服系统(Open-Loop System)➢ 不带位置测量反馈装置的系统; ➢ 驱动电机只能用步进电机;➢ 主要用于经济型数控或普通机床的数控化改造一. 开环进给伺服系统1. 步进电机开环系统设计步进电机开环系统设计要解决的主要问题:①动力计算 、②传动计算、 ③驱动电路设计或选择目的:传动计算选择合适的参数以满足脉冲当量 和进给速度F 的要求。
图中:f —脉冲频率(HZ ) α— 步距角 (度)单相编码器 输出信号输出输入脉冲接口RS232 串型接口模拟接口Z1、Z2 — 传动齿轮齿数 t — 螺距(mm )传动比选择:为了凑脉冲当量δmm ,也为了增大传递的扭矩,在步进电机与丝杆之间,要增加一对齿轮传动副,那么,传动比i=Z1/Z2与α、 δ 、t 之间有如下关系:例: δ = 0.01 t = 6 mm α= 0.75°❑ 进给速度F :一般步进电机: 若 δ=0.01 mm 则: 若 δ=0.001mm 则:因此,当 一定时, 与δ成正比,故我们在谈到步进电机开环系统的最高速度时,都应指明是在多大的脉冲当量δ下的否则是没有意义的。
2.提高步进电机开环伺服系统传动精度的措施 ❑概述➢ 影响步进电机开环系统传动精度的因素:✓ 步进电机的步距角精度; ✓ 机械传动部件的精度;✓ 丝杆等机械传动部件、支承的传动间隙; ✓ 传动件和支承件的变形。
➢ 提高步进电机开环系统传动精度的措施✓ 适当提高系统组成环节的精度; ✓ 采取各种精度补偿措施。
❑ 传动间隙补偿❑在整个行程范围内测量传动机构传动间隙,取其平均值存放在数控系统中的间隙补偿单元,当进给系统反向运动时,数控系统自动将补偿值加到进给指令中,从而达到补偿目的。
❑螺矩误差补偿δαtZ Z i 36021==ti :360:=δα252025208.001.0675.03603602121==⎩⎨⎧==⨯⨯===Z Z t Z Z i αm in60mm f F δ=ZH f 16000~8000max ≤m in 9600~4800max mm F ≤m in 960~480max mm F ≤m ax f m ax F--❑滚珠丝杆在数控机床应用广泛,虽然滚珠丝杆精度较高,但是总不可做的绝对精确,总是将其精度控制在一定的范围内的,也就是它的螺距总是存在着一定的误差的,利用计算机的运算处理能力,可以补偿滚珠丝杠的螺矩累积误差,以提高进给位移精度。