实验五 硫酸铜的提纯

合集下载

硫酸铜提纯实验报告

硫酸铜提纯实验报告

硫酸铜提纯实验报告一、引言硫酸铜是一种常用的试剂,广泛应用于化学实验室中。

然而,由于常常受到环境的污染,所购买的硫酸铜往往含有杂质。

为了获得纯净的硫酸铜试剂,我们进行了硫酸铜的提纯实验。

二、实验原理我们采用晶体生长法进行硫酸铜的提纯。

该方法通过溶液中晶体的生长和析出,可以去除溶液中的杂质,获得相对纯净的产物。

三、实验步骤1. 准备实验设备和试剂:硫酸铜溶液、蒸馏水、千分秤、玻璃容器等。

2. 将一定量的硫酸铜溶液取出,并放入玻璃容器中。

3. 加入适量的蒸馏水,使溶液充分稀释。

4. 将玻璃容器置于温度适宜的环境中,利用溶液中晶体生长和析出的原理,等待晶体形成。

5. 当晶体生长到一定大小时,使用滤纸或其他过滤装置将溶液与晶体分离。

6. 用蒸馏水清洗晶体,去除附着在晶体表面的杂质。

7. 将纯净的硫酸铜晶体晾干,得到最终产物。

四、实验结果与讨论经过实验,我们成功地获得了纯净的硫酸铜晶体。

在实验过程中,我们注意到晶体的形态和颜色与溶液中原有的杂质有关。

纯净的硫酸铜晶体呈现出鲜艳的蓝色,晶体形状规整,晶面光滑。

我们还进一步对提纯后的硫酸铜晶体进行了质量分析。

通过称量晶体的质量,计算出提纯后的硫酸铜纯度。

实验数据显示,纯净硫酸铜晶体的纯度超过了99%。

结果表明,晶体生长法是一种有效的硫酸铜提纯方法。

五、实验总结硫酸铜提纯实验是一项常见的实验,本次实验通过晶体生长法成功提纯了硫酸铜溶液。

实验结果表明,晶体生长法是一种简单、可行的硫酸铜提纯方法。

该实验不仅深化了我们对化学实验原理和方法的了解,也提高了我们的实验技能。

通过这次实验,我们体验到了科学实验的魅力和乐趣,同时也加深了对纯净试剂重要性的认识。

在今后的实验中,我们将继续学习更多的化学实验方法,不断提高自己的实验能力,为科学研究和实践做出更大的贡献。

硫酸铜提纯实验报告

硫酸铜提纯实验报告

一、实验目的1. 了解硫酸铜的物理化学性质。

2. 掌握重结晶法在硫酸铜提纯中的应用。

3. 学会实验操作技能,如溶解、过滤、蒸发、结晶等。

二、实验原理硫酸铜(CuSO4)是一种常见的无机化合物,其化学式为CuSO4·5H2O。

在实验中,我们通过重结晶法对粗硫酸铜进行提纯。

重结晶法是利用不同物质在同一溶剂中的溶解度不同的性质,通过加热、蒸发浓缩、冷却结晶等基本操作而使溶解度随温度变化较大的物质结晶析出,从而实现分离和提纯。

三、实验器材与试剂1. 器材:烧杯、漏斗、玻璃棒、蒸发皿、布氏漏斗、抽滤瓶、烘箱等。

2. 试剂:粗硫酸铜、蒸馏水、1mol/L H2SO4、3% H2O2、2mol/L NaOH等。

四、实验步骤1. 称量和溶解:称取10g粗硫酸铜,放入150mL洁净烧杯中,加入约40mL水,2mL 1mol/L H2SO4,加热搅拌直至晶体完全溶解。

2. 氧化和沉淀:边搅拌边往溶液中慢慢滴加约2mL 3% H2O2,加热片刻(若无小气泡产生,即可认为H2O2分解完全),然后边搅拌边滴加2mol/L NaOH溶液,直至溶液的pH值在3.7~4.0之间,再加热片刻,让Fe(OH)3加速凝聚。

3. 常压过滤:先将上层清液沿玻璃棒倒入贴好滤纸的漏斗中过滤,下面用蒸发皿承接。

待清液滤完后再逐步倒入悬浊液过滤,过滤近完时,用少量蒸馏水洗涤烧杯,洗涤液也倒入漏斗中过滤。

待全部滤完后,弃去滤渣。

4. 蒸发浓缩和结晶:将蒸发皿中的滤液用1mol/L H2SO4调至pH值在1~2之间后,加热蒸发浓缩(勿加热过猛,注意搅拌以免液体飞溅而损失),浓缩过程中注意用药匙刮下边缘上过早析出的晶体。

直至溶液表面刚出现薄层结晶(晶膜)时,立即停止加热,让其自然冷却到室温(勿要用水冷),慢慢地析出CuSO4·5H2O晶体。

5. 减压过滤:待蒸发皿底部用手摸感觉不到温热时,将晶体与母液转入已放好滤纸的布氏漏斗中进行抽滤,用玻璃棒轻轻搅拌,使晶体与滤纸分离。

无机化学 实验五 硫酸铜的提纯

无机化学 实验五 硫酸铜的提纯

加热微沸* 5分钟
维持体积30 mL
常压过滤
Fe(OH)3↓弃去 滤液于蒸发皿中
滴加1 mol/L H2SO4* 调节pH = 1~2
浓缩 至表面出现星 △ 状晶粒
冷却 结晶
抽滤
母液回收
CuSO4·5H2O晶体
称量
产率 提纯后的CuSO4质量 100% 5.0
思考题:
提纯中Fe2+为何要转化成Fe3+?
pH=4
3Fe3+ + 3H2O = Fe(OH)3 ↓ + 3) 浓缩、蒸发、结晶
CuSO4·5H2O的提纯:
5g粗CuSO4·5H2O晶体 加水20 mL 于100 mL烧杯中
加热溶解 冷却* ≤40ºC
+ 3% H2O2 搅拌*
1 mL
滴加 2 mol/LNaOH 3.5 < pH ≤ 4
合成类基本操作 常压过滤
粗硫酸铜中含不溶性杂质和可溶性物质FeSO4、 Fe2(SO4)3等,不溶性杂质可在溶解、过滤的过程 中除去 。用H2O2氧化 Fe2+为 Fe3+,调 pH=4,使 Fe3+离子水解为Fe(OH)3沉淀而除去。
1) 溶解:
2) 除杂精制 :氧化水解
2Fe2+ + H2O2 + 2H+ = 2Fe3+ + 2H2O
实验五 硫酸铜的提纯
一、实验目的
1.了解用重结晶法提纯物质的原理
2. 学 习 加 热 、 溶 解 、 蒸 发 、 过 滤 、 结 晶 等 基 本操作 3. 要求产品外观为蓝色晶体,产率≥50%
二、实验原理
固体物质在溶剂中的溶解度与温度有密切关系。 温度升高,溶解度增大。若把固体溶解在热的溶剂 中达到饱和,冷却时即由于溶解度降低,溶液变成 过饱和而析出晶体。利用溶剂对被提纯物质及杂质 的溶解度不同,可以使被提纯物质从过饱和溶液中 析出。而让杂质全部或大部分仍留在溶液中,从而 达到提纯目的。

五水硫酸铜制备与提纯及组成的测定铜含量的测定

五水硫酸铜制备与提纯及组成的测定铜含量的测定

五水硫酸铜制备与提纯及组成的测定铜含量的测定一、实验目的:1、掌握间接碘量法测铜含量的原理、方法。

2、掌握淀粉指示剂的使用方法。

3、掌握提高间接碘量法测铜含量滴定准确度的措施。

二、实验原理:1. Na2S2O3容液的配制与标定:⑴配制:由于结晶的Na2S2O3 5H2O—般都含有少量杂质,同时还易风化及潮解,所以Na2S2O际准溶液不能用直接法配制,而应采用标定法配制。

Na2S2O3 5H2O需用新沸(CO2T、O2T、杀菌)冷却水配制;加少量Na2CO以减少水中溶解的CO2使溶液呈弱碱性(Na2S2O3在碱中稳定,抑制水解、分解以及微生物生长);暗处置一周(与水中还原性物质反应完全),以减少由于Na2S2O3勺分解带来的误差,得到较稳定的Na2S2O溶液。

(2)标定:Cr2O72-+6l-+14H+===2Cr3++3l2+7H2O(橙)(绿)(黄,浓时棕红)析出的I2再用Na2S2O3§液滴定:I2+2Na2S2O3=S4O62-+2I-指示剂:淀粉终点:蓝(I2-淀粉)f透明绿(Cr3+)1molCr2O72-相当于3I2相当于6molS2O32-,I2与淀粉指示剂作用形成蓝色包合物,当滴下的Na2S2O3f I2按计量关系完全反应后,溶液的蓝色消失即为终点。

、,I •、、+ :注意:⑴12升华,反应应在碘量瓶[(锥形瓶+表面皿)代]中进行;⑵(Cr2O72-+6l-)反应慢,需在暗处(I2见光分解)置5分钟;⑶需过量的Kl(增大I2在水中的溶解度);⑷控制溶液的酸度0.20~0.23mol/L(酸高,I-易被空气氧化,Na2S2O:分解; 酸低反应不定量(Cr2O72- -Cr3+));⑸淀粉指示剂需临近终点时加(淀粉吸附I2)o(3)计算2. 铜含量的测定:⑴在微酸性(20%NH4HF2介质中(PH=3~4;酸度低Cu2+水解、且反应慢,反应不定量。

酸度高Cu2+崔化空气氧化I-、且S2O32分解)Cu2+与过量的I-(溶解I2; 同离子效应使反应完全;既是还原剂,又是沉淀剂)作用生成不溶于水的CuI白色沉淀并定量析出I2:2Cu2++4I-=2CuI J +I2生成的I2用Na2S2O3标准溶液滴定。

五水硫酸铜制备和提纯实验报告

五水硫酸铜制备和提纯实验报告

五水硫酸铜制备和提纯实验报告五水硫酸铜的制备实验报告(大学化学)实验报告一、实验目的1.了解由不活泼金属与酸作用制备盐的方法;2.学习重结晶法提纯物质的原理和方法;3.学习水浴加热、蒸发、浓缩,以及倾滗法、减压过滤。

二、实验原理铜是不活泼金属,不能直接和稀硫酸发生反应制备硫酸铜,必须加入氧化剂。

在浓硝酸和稀硫酸的混合液中,浓硝酸将铜氧化成Cu2+,Cu2+与SO42-结合得到产物硫酸铜:Cu + 2HNO3 + H2SO4 == CuSO4 + 2NO2↑+ 2H2O未反应的铜屑(不溶性杂质)用倾滗法除去。

利用硝酸铜的溶解度在273K~373K范围内均大于硫酸铜溶解度的性质,溶液经蒸发浓缩后析出硫酸铜,经过滤与可溶性杂质硝酸铜分离,得到粗产品。

硫酸铜的溶解度随温度升高而增大,可用重结晶法提纯。

在粗产品硫酸铜中,加适量水,加热成饱和溶液,趁热过滤除去不溶性杂质。

滤液冷却,析出硫酸铜,过滤,与可溶性杂质分离,得到纯的硫酸铜。

三、实验步骤1.稀释硫酸得到3mol·L-1硫酸,以备实验中使用。

2.称量1.5g铜屑,灼烧至表面呈现黑色,冷却(由于本次实验铜片较为洁净故不必没有灼烧)放入蒸发皿中;3.加5.5mL3mol·L-1硫酸,2.5mL浓硝酸(硝酸分两批加入),盖上表面皿,当反应平稳后水浴加热。

在加热过程中视反应情况补加硫酸和浓硝酸(在保持反应继续进行的情况下,尽量少加硝酸);4.铜近于完全溶解后,趁热倾滗法分离(本次试验铜比较纯,所以无需趁热倾滗);5.水浴加热,蒸发浓缩至晶体膜出现6.冷却至室温,进行抽虑,得到粗产品称重(质量为3.971g);7.将粗产品以1.2mL/g的比例,加热溶于水,趁热过滤(本实验,铜较纯净,无需趁热过滤);8.溶液(滤液)自然冷却、再次进行抽滤、晾干,得到纯净的硫酸铜晶体;9.称重(质量为2.054g),计算。

四、实验结果(产率与重结晶率)(1)理论产物理论质量=1.5/64×250g=5.86g理论最终重结晶率=(353K时五水硫酸铜溶解度-293K时五水硫酸铜溶解度)/353K时五水硫酸铜溶解度=(83.8g-32.0g)/83.8g×100%=61.8%(2)实验值:粗产品质量=3.971g最终产品质量=2.054g产率=产物质量/产物理论质量×100%=2.054g/5.86g×100%=35.05% 重结晶率=2.054g/3.971g×100%=51.73%五、结果讨论1.在进行实验步骤3时,水浴加热过程中,本组错误地将表面皿反扣,导致一部分水流失,使粗产品析出量减少;2.在进行实验步骤6中抽滤粗产品时,本组抽滤过度,使五水硫酸铜失水,硫酸铜再次流失,使得粗产品质量过低;3.在实验步骤8重结晶时,本组使其自然冷却结晶,得到晶体成色较好,不过时间较短,所得到的最终产品质量偏低。

实验4五水硫酸铜的制备

实验4五水硫酸铜的制备

实验4 五水硫酸铜的制备1. 实验目的1.1 了解废铜制备五水硫酸铜的原理和方法1.2 熟悉蒸发、结晶、减压过滤和重结晶等基本操作2. 主要仪器及试剂2.1 主要仪器烧杯(100mL/250mL )、石棉网、酒精灯、蒸发皿、吸滤瓶、布氏漏斗、电子天平2.2 实验药品HNO 3(浓)、H 2O 2(30%)、硫酸(3mol.L -1)、铜丝(片)、95%酒精3. 实验原理铜不能与无氧化性酸反应,因此在与稀硫酸反应时还需要加入氧化剂,如硝酸或H 2O 2等:3Cu + 2HNO 3 + 3H 2SO 4 → 3CuSO 4 + 2NO ↑ + 4H 2O 或Cu + H 2O 2 + H 2SO 4 → CuSO 4 + 2H 2O使用HNO 3为氧化剂时会产生有毒的NO ,在空气中也会时一步氧化为NO 2,也是有毒的,因此需要在通风柜中进行。

使用H 2O 2为氧化剂时具有绿色化学特点,但H 2O 2易分解,温度高时更易分解,因此用量相对较大。

两种氧化剂各有优缺点。

也可以向溶液中鼓入空气进行氧化,但反应时间太长:2Cu + O 2 + H 2SO 4 → 2CuSO 4 + 2H 2O还可以先将铜氧化成氧化铜,再与稀硫酸反应:2Cu + O 2 −−→−灼烧2CuO CuO + H 2SO 4 → CuSO 4虽然铜也可以与浓硫酸反应得到硫酸铜,但硫酸的浪费比例高,废酸处理麻烦,因此一般不采用。

如果以HNO 3为氧化剂,则生成的产物中除了硫酸铜外,还有硝酸铜;而如果使用的是废铜片,可能还含有其它金属杂质,如铁、锌等。

这些金属杂质由于含量少,生成的硫酸铜会留在母液中而分离。

而生成的硝酸铜,一方面可以控制硝酸的用量而减少生成,另一方面硝酸铜的溶解度也远大于硫酸铜,因此在冷却结晶时,五水硫酸铜会更早结晶出来。

表4-1 CuSO4.5H2O和Cu(NO3)2.6H2O溶液度随温度变化—————————————————————————————试剂273K 293K 313K 333K 353K CuSO4.5H2O/g(100gH2O)-114.1 20.7 28.5 40 55Cu(NO3)2.6H2O/g(100gH2O)-1 81.3 125.1 163 182 208 得到的含少量杂质的硫酸铜还可以通过重结晶而进一步提纯。

实验二:五水硫酸铜的制备

实验二:五水硫酸铜的制备

实验二五水硫酸铜的制备[基本操作]倾析法、水浴加热、趁热过滤、蒸发浓缩、冷却结晶、重结晶一.实验目的1. 学习由不活泼金属与酸作用制备盐的方法及重结晶法提纯物质。

2.练习和掌握台天平、蒸发皿、坩埚钳、表面皿的使用。

3.学会倾滗法,减压过滤,溶解和结晶;固体的灼烧。

二、实验原理制备方法:方案1 Cu + 2HNO3 + H2SO4== CuSO4+ 2NO2↑+ 2H2O重结晶法提纯:由于废铜屑不纯,所得CuSO4溶液中常含有一些不溶性杂质或可溶性杂质,不溶性杂质可过滤除去,可溶性杂质常用化学方法去除。

由于五水硫酸铜在水中的溶解度随温度升高而明显增大,因此,硫酸铜粗产品中的杂质可通过重结晶法提纯使杂质留在母液中,从而得到纯度较高的硫酸铜晶体。

三、实验步骤1.制备五水硫酸铜粗品1.废铜屑预处理称取2.0 g 铜屑放于150 mL锥形瓶中,加入1 0% Na2CO3溶液10 mL,加热煮沸,除去表面油污,倾析法除去碱液,用水洗净。

2.简单流程加入6 mol/L H2SO4溶液10 mL→缓慢滴加30% H2O23~4 mL→水浴加热(反应温度保持在40~50 ℃)→反应完全后(若有过量铜屑,补加稀H2SO4和H2O2)→加热煮沸2分钟→趁热抽滤(弃去不溶性杂质)→将溶液转移到蒸发皿中→调pH1~2(为什么?)→水浴加热浓缩至表面有晶膜出现(能否蒸干?)→取下蒸发皿→冷却至室温→抽滤→得到五水硫酸铜粗产品→晾干或吸干→称量→计算产率(回收母液)2.重结晶法提纯五水硫酸铜粗产品∶水 = 1∶1.2(质量比),加少量稀H2SO4,调pH为1~2,加热使其全部溶解,趁热过滤(若无不溶性杂质,可不过滤),滤液自然冷却至室温(若无晶体析出,水浴加热浓缩至表面出现晶膜),抽滤,用少量无水乙醇洗涤产品,抽滤。

将产品转移至干净的表面皿上,用吸水纸吸干,称量,计算收率(回收母液)。

[数据记录与处理]三、注意事项1.双氧水应缓慢分次滴加。

五水硫酸铜的制备实验报告(大学化学)

五水硫酸铜的制备实验报告(大学化学)

五水硫酸铜的制备实验报告(大学化学)
五水硫酸铜的制备实验报告(大学化学)
实验名称:制备五水硫酸铜
实验目的:制备五水硫酸铜。

一、实验原理
五水硫酸铜是一种常见的铜离子盐,可作为有机合成、精细化学品制备中的重
要原料。

将硫酸铜(II)和氢氧化钠按比例混合,通过电极反应和水热反应来实现五水硫酸铜的合成。

二、实验步骤
1、将100克质量相等的硫酸铜(II)和氢氧化钠放入碳酸盐溶剂中,分别加入
90ml水和醋酸铵。

搅拌均匀,使混合物溶于溶剂中。

2、用恒流电极反应的方法,在室温下,将硫酸铜(Ⅱ)和氢氧化钠混合物与电
流20A接受恒流进行反应持续70分钟。

3、将反应液转化成水溶液,取200ml溶液加入无水乙醇,形成沉淀,用水洗涤,用烧杯蒸发乙醇,加入30ml水,隔离后,然后用10%氢氧化钠溶液洗净,得
到的沉淀就是五水硫酸铜。

3、实验结果
在本实验中,通过电极反应和水热反应,成功合成了五水硫酸铜,最终所得产
物的检查结果显示:氯化物:<0.2%,硫酸盐<0.1%,未经洗涤前的催化剂残余<0.1%,晶体样品呈片状,白色,溶解度增加,满足了国家产品标准规定。

该实验为深入研究铜离子盐提供了一次有价值的实践经验,为研究相关领域提
供了参考资料。

结论:在本次实验中,在室温、恒电流下,成功实现了五水硫酸铜的制备,产
品符合国家产品标准。

硫酸铜的提纯及检验

硫酸铜的提纯及检验
一、实验目的
2.熟悉 熟悉天平和pH 试纸的使用。
1.掌握 掌握加热、溶解、过滤、 蒸发、结晶等基本操作。
3.了解 了解粗硫酸铜提纯及 其纯度检验的原理和 方法。
二、实验原理
粗硫酸铜中含有不溶性杂质和可溶性杂质FeSO4、Fe2(SO4)3及其他重金属 盐等。不溶性杂质可通过常压、减压过滤的方法除去。
可溶性杂质Fe2+、Fe3+的除去方法是:用氧化剂H2O2将Fe2+氧化成Fe3+,然 后调节溶液的pH值在3.5~4.0之间,使Fe3+水解成为Fe(OH)3沉淀而除去,反 应式如下:
硫酸铜的纯度检验是将适量提纯过的样品溶于蒸馏水中,加入过量 的氨水使Cu2+生成深蓝色的[Cu(NH3)4]2+,Fe3+形成Fe(OH)3沉淀,洗涤 沉淀再用盐酸溶解,用KSCN溶液比色检验,反应式如下:
谢谢观看

三、仪器与试剂
四、实验步骤
1.粗硫酸铜的提纯 2. 硫酸铜纯度的检验
五、实验数据记录与处理
硫酸铜晶体的实验产量
;理论产量

产率

Байду номын сангаас
六、注意事项
1.在粗硫酸铜的提纯中,浓缩液要自然冷却至室温析出晶体。否则其他盐类 如Na2SO4也会析出。 2.蒸发浓缩时注意控制母液的量:母液过多,硫酸铜损失多,产率低;母液 过少,杂质析出,纯度低。

化学硫酸铜提纯实验报告

化学硫酸铜提纯实验报告

一、实验目的1. 了解硫酸铜的化学性质和提纯方法。

2. 掌握硫酸铜提纯的实验步骤和原理。

3. 培养实验操作技能,提高实验数据分析和处理能力。

二、实验原理硫酸铜(CuSO4·5H2O)是一种常见的无机化合物,广泛应用于农业、化工、医药等领域。

然而,市售的硫酸铜通常含有杂质,需要进行提纯。

本实验采用重结晶法对硫酸铜进行提纯,其原理如下:1. 将粗硫酸铜溶解于适量的水中,加入适量的硫酸,使溶液呈酸性。

2. 加热溶液,使硫酸铜充分溶解。

3. 趁热过滤,除去不溶性杂质。

4. 将滤液冷却,使硫酸铜结晶析出。

5. 过滤、洗涤、干燥,得到纯净的硫酸铜。

三、实验器材1. 烧杯(250mL)2. 玻璃棒3. 漏斗4. 滤纸5. 铁架台6. 酒精灯7. 铁圈8. 烧瓶9. 滴管10. 研钵11. 研杵12. 蒸发皿13. 药匙14. 干燥器四、实验步骤1. 称取10g粗硫酸铜,放入250mL烧杯中。

2. 加入约50mL蒸馏水,用玻璃棒搅拌溶解。

3. 加入2mL浓硫酸,继续搅拌。

4. 将烧杯放在铁架台上,用酒精灯加热,使溶液沸腾。

5. 在沸腾状态下,用漏斗和滤纸过滤,除去不溶性杂质。

6. 将滤液倒入烧瓶中,用玻璃棒搅拌,使溶液冷却。

7. 当溶液温度降至室温时,静置,观察硫酸铜晶体析出。

8. 用滤纸过滤、洗涤、干燥,得到纯净的硫酸铜。

五、实验结果与分析1. 实验结果:提纯后的硫酸铜呈蓝色晶体,无杂质。

2. 分析:(1)在溶解过程中,硫酸铜充分溶解,说明实验操作正确。

(2)在过滤过程中,不溶性杂质被滤纸截留,进一步说明实验操作正确。

(3)在冷却过程中,硫酸铜晶体析出,说明重结晶法提纯硫酸铜是可行的。

六、实验总结1. 通过本实验,掌握了硫酸铜的提纯方法,了解了重结晶法的原理。

2. 提高了实验操作技能,培养了实验数据分析和处理能力。

3. 深入理解了硫酸铜在各个领域的应用,为今后的学习和工作打下了基础。

七、实验注意事项1. 在溶解过程中,注意搅拌,使硫酸铜充分溶解。

五水硫酸铜制备和提纯实验报告

五水硫酸铜制备和提纯实验报告

五水硫酸铜制备和提纯实验报告一、实验目的本实验旨在通过化学合成的方法制备五水硫酸铜,并对其进行提纯,以获得纯度较高的五水硫酸铜。

通过实验,我们希望进一步了解硫酸铜及其化合物的性质和制备方法,提高实验操作技能和处理实验数据的能力。

二、实验原理五水硫酸铜是一种蓝色结晶性粉末,具有较高的溶解度。

它由硫酸铜和水在一定条件下形成,化学式为CuSO4·5H2O。

本实验采用化学合成法,通过调节反应物比例、反应温度和时间等条件,制备五水硫酸铜。

提纯过程则采用重结晶法,通过选择适当的溶剂溶解硫酸铜,再将其冷却结晶,达到提纯的目的。

三、实验步骤1.制备五水硫酸铜(1)称取一定量的硫酸铜和五水硫酸铜,分别溶于适量水中,配制成溶液A和溶液B。

(2)将溶液A和溶液B按一定比例混合,得到混合溶液C。

(3)将混合溶液C倒入烧杯中,置于恒温水浴中加热至一定温度。

(4)保持温度不变,缓慢加入适量的氨水,调节溶液pH至一定范围。

(5)继续保持温度不变,缓慢蒸发溶液,直至得到蓝色结晶性粉末。

(6)收集蓝色结晶性粉末,用滤纸过滤,并用少量水洗涤滤渣。

2.提纯五水硫酸铜(1)将制备得到的五水硫酸铜溶解于适量的水中,得到溶液D。

(2)选择适当的溶剂,将溶液D溶解完全,得到饱和溶液E。

(3)将饱和溶液E冷却至室温,放置一段时间。

(4)观察并记录结晶情况,收集晶体。

(5)将晶体用少量水洗涤干净,再用滤纸过滤。

(6)将晶体转移至烘箱中烘干,得到高纯度五水硫酸铜。

四、实验结果与分析1.制备五水硫酸铜实验结果:经过实验操作,我们成功制备了蓝色结晶性粉末状的五水硫酸铜。

通过对实验数据的记录和分析,我们发现制备过程中的关键因素包括混合溶液的比例、加热温度和时间、氨水用量等。

其中,加热温度和时间对五水硫酸铜的产率和纯度影响较大。

适当提高加热温度和延长加热时间有助于提高产率和纯度。

然而,过高的加热温度可能导致五水硫酸铜分解,降低产率和纯度。

因此,在制备过程中需要严格控制加热温度和时间。

五水硫酸铜结晶水含量的测定(综合实验)实验报告

五水硫酸铜结晶水含量的测定(综合实验)实验报告

五水硫酸铜结晶水含量的测定一、实验目的要求:1.了解制备五水硫酸铜晶体的方法。

2.测定硫酸铜的结晶水含量。

二、实验内容:1.五水硫酸铜的提纯。

2.五水硫酸铜晶体自由水的脱去。

3.测定硫酸铜晶体里的结晶水含量。

三、主要仪器设备及药品:仪器设备:电子天平,称量瓶,不锈钢锅(薄壁,内装食盐用于盐浴),温度计(量程在350℃,测量盐浴温度),烘箱(烘干自由水),电炉,滤纸,皮筋。

药品:五水硫酸铜,3公斤食盐左右(用于盐浴加热),无水乙醇。

四、实验原理五水硫酸铜结构:图1 CuSO4·5H2O的晶体结构一般性质硫酸铜CuSO4(硫酸铜晶体:CuSO4·5H2O)分子量249.68。

深蓝色大颗粒状结晶体或蓝色颗粒状结晶粉末,略透明。

有毒,无臭,带有金属涩味。

密度2.2844g/cm-3。

干燥空气中会缓慢风化。

易溶于水,水溶液呈弱酸性。

不溶于乙醇,缓缓溶于甘油。

150℃以上将失去全部水结晶成为白色粉末状无水硫酸铜。

五水硫酸铜有极强的吸水性,把它投入95%乙醇成含水有机物(即吸收水分)而恢复为蓝色结晶体。

失水过程五水硫酸铜晶体失水分三步。

上图中两个仅以配位键与铜离子结合的水分子最先失去,大致温度为102摄氏度。

两个与铜离子以配位键结合,并且与外部的一个水分子以氢键结合的水分子随温度升高而失去,大致温度为113摄氏度。

最外层水分子最难失去,因为它的氢原子与周围的硫酸根离子中的氧原子之间形成氢键,它的氧原子又和与铜离子配位的水分子的氢原子之间形成氢键,总体上构成一种稳定的环状结构,因此破坏这个结构需要较高能量。

失去最外层水分子所需温度大致为258摄氏度。

五、实验步骤:1、在常温下将适量的CuSO4溶解于少量的水中,配置成过饱和溶液,倒掉上层溶液,取未溶解的五水硫酸铜加少量水洗涤三次,再用无水乙醇洗涤三次,将所得试剂尽量滴干(为节约实验时间,可用滤纸将大部分自由水吸干)。

2、将1所得试剂加入称量瓶(不带瓶盖)中,再覆盖上滤纸和皮筋,称重(事先称量无盖称量瓶、滤纸和皮筋的总质量为m0)。

硫酸铜的提纯步骤5则

硫酸铜的提纯步骤5则

硫酸铜的提纯步骤5则以下是网友分享的关于硫酸铜的提纯步骤的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

硫酸铜的提纯一(一)硫酸铜的提纯实验目的:1.了解用重结晶法提纯物质的原理;2.学习常压过滤、减压过滤、以及称量、加热、溶解、溶液转移、蒸发、浓缩等基本操作。

实验原理:粗硫酸铜中含有不溶性杂质和可溶性杂质离子Fe2+、Fe3+等,不溶性杂质可用过滤法除去。

可溶性杂质离子Fe2+常用氧化剂H2O2或Br2氧化成Fe3+,然后调节溶液的pH值(一般控制在pH=3.5~4),使Fe3+水解成为Fe(OH)3沉淀而除去,反应如下:2 Fe2+ + H2O2 + 2 H+ =2 Fe3+ + 2 H2OFe3+ + 3 H2O =Fe(OH)3↓十3 H+除去铁离子后的滤液经蒸发、浓缩,即可制得五水硫酸铜结晶。

其它微量杂质在硫酸铜结晶时,留在母液中,过滤时可与硫酸铜分离。

仪器、试剂和材料:仪器:台秤漏斗和漏斗架布氏漏斗吸滤瓶蒸发皿药品:粗CuSO4 H2O2 (3%) H2SO4 (1moIL) , NaOH (2 moIL) , 其它:滤纸pH试纸精密pH试纸(0.5~5.0)实验步骤:称取5g由实验室提供的粗CuSO4放在小烧杯中,加入大约30ml蒸馏水,搅拌,促使其溶解。

再滴加2m1 3%H2O2,将溶液加热,使Fe2+氧化成Fe3+;用精密pH试纸测试溶液pH值,如果氧化后溶液的pH值很低,这时可在不断搅拌下,逐滴加入0.5~l molL-1 -1-1NaOH,直到pH=3.5~4,再加热,静置使Fe3+水解生成的Fe(OH)3沉淀,常压过滤,滤液转移到洁净的蒸发皿中。

在精制后的硫酸铜滤液中滴加l moll H2SO4酸化,调节pH 至l~2,然后加热蒸发(注意加热时间不要太长),当浓缩至液面出现一层晶膜时,即停止加热,然后冷却至室温,抽滤,当抽至没有水滴时,停止抽滤,取出CuSO4晶体,称量,记录,回收产品。

大学化学实验五水硫酸铜的制备

大学化学实验五水硫酸铜的制备

⼤学化学实验五⽔硫酸铜的制备实验⼆五⽔硫酸铜的制备⼀.实验⽬的1. 学习由不活泼⾦属与酸作⽤制备盐的⽅法及重结晶法提纯物质。

2.练习和掌握台天平、蒸发⽫、坩埚钳、表⾯⽫的使⽤。

3.学会倾滗法,减压过滤,溶解和结晶;固体的灼烧。

⼆.实验原理1.制备原理:Cu + 2HNO3 + H2SO4 =CuSO4 +2NO2(↑) + 2H 2OCuSO4 +5H2O = CuSO4·5H2O铜是不活泼⾦属,不能直接和稀硫酸发⽣反应制备硫酸铜,必须加⼊氧化剂。

在浓硝酸和稀硫酸的混合液中,浓硝酸将铜氧化成Cu2+,Cu2+与SO42-结合得到产物硫酸铜。

2.提纯原理:未反应的铜屑(不溶性杂质)⽤倾滗法除去。

利⽤硝酸铜的溶解度在273K~373K范围内均⼤于硫酸铜溶解度的性质,溶液经蒸发浓缩后析出硫酸铜,经过滤与可溶性杂质硝酸铜分离,得到粗产品。

硫酸铜的溶解度随温度升⾼⽽增⼤,可⽤重结晶法提纯。

在粗产品硫酸铜中,加适量⽔,加热成饱和溶液,趁热过滤除去不溶性杂质。

滤液冷却,析出硫酸铜,过滤,与可溶性杂质分离,得到纯的硫酸铜。

T/K 273 293 313 333 353 373五⽔硫酸铜23.132.0 44.6 61.8 83.8 114.0硝酸铜83.5 125.163.182.208.247.0三.主要仪器与试剂1 仪器烧杯量筒热过滤漏⽃减压过滤装置台称坩埚钳,蒸发⽫。

2 试剂 Cu (s) 、 H2SO4、 HNO3(2.5mol/L; 0.5mol/L)四.操作步骤操作现象及解释注意事项1 称量1.5g铜屑,灼烧⾄表⾯呈现⿊⾊,冷却;红⾊铜⽚变成⿊,铜⽚表⾯被氧化了Cu(s,红⾊) + O2→CuO(s,⿊⾊)灼烧铜⽚时,要先⼩⽕预热,蒸发⽫放在泥三⾓上,先均与加热再集中加热,玻璃棒不要直接碰蒸发⽫壁,坩埚钳要预热,2 加5.5mL3mol·L-1硫酸,2.5mL浓硝酸,反应平稳后⽔浴加热,补加2.5mL3mol·L-1硫酸,0.5mL浓硝酸;加浓硝酸之后有黄棕⾊⽓体⽣成,溶液呈蓝⾊。

硫酸铜提纯_实验报告

硫酸铜提纯_实验报告

一、实验目的1. 了解硫酸铜的提纯原理和方法;2. 掌握粗硫酸铜提纯的操作步骤;3. 通过实验,提高实验操作技能和数据处理能力。

二、实验原理硫酸铜是一种重要的无机化合物,广泛应用于农业、工业、医药等领域。

本实验采用重结晶法对粗硫酸铜进行提纯。

重结晶法是一种通过溶解、过滤、蒸发、结晶等步骤,使溶质从溶液中析出,从而实现物质提纯的方法。

三、实验仪器与试剂1. 仪器:烧杯、漏斗、滤纸、玻璃棒、蒸发皿、布氏漏斗、抽滤瓶、电子天平、烘箱等;2. 试剂:粗硫酸铜、蒸馏水、1mol/L硫酸、3%过氧化氢、2mol/L氢氧化钠、浓硝酸等。

四、实验步骤1. 称取10g粗硫酸铜,放入150mL烧杯中;2. 加入约40mL蒸馏水,用玻璃棒搅拌溶解;3. 加入2mL 1mol/L硫酸,继续搅拌溶解;4. 将溶液加热至沸腾,保持沸腾状态约10分钟,使溶液中的杂质溶解;5. 取下烧杯,待溶液冷却至室温;6. 在溶液中加入3%过氧化氢,边加边搅拌,直至溶液变为淡蓝色;7. 加入2mol/L氢氧化钠溶液,边加边搅拌,直至溶液pH值在3.7~4.0之间;8. 将溶液加热至沸腾,保持沸腾状态约5分钟,使Fe(OH)3沉淀凝聚;9. 将溶液冷却至室温,待Fe(OH)3沉淀沉降;10. 将上层清液沿玻璃棒倒入贴好滤纸的漏斗中过滤,收集滤液;11. 将滤液用1mol/L硫酸调至pH值在1~2之间;12. 将溶液加热蒸发浓缩,直至溶液表面刚出现薄层结晶(晶膜)时,立即停止加热;13. 让溶液自然冷却至室温,析出硫酸铜晶体;14. 将晶体与母液转入布氏漏斗中进行抽滤,收集硫酸铜晶体;15. 将硫酸铜晶体放入烘箱中,在50℃下烘干,直至恒重。

五、实验结果与分析1. 实验结果称量烘干后的硫酸铜晶体,得到纯硫酸铜的质量为7.8g。

2. 分析与讨论(1)在实验过程中,溶液加热至沸腾时,溶液中的杂质溶解,有利于后续的提纯过程;(2)加入过氧化氢和氢氧化钠溶液,可以使溶液中的Fe(OH)3沉淀凝聚,从而提高提纯效果;(3)在蒸发浓缩过程中,注意控制溶液表面刚出现薄层结晶(晶膜)时立即停止加热,防止晶体分解;(4)烘干硫酸铜晶体时,温度不宜过高,以免晶体分解。

五水硫酸铜的制备实验报告(大学化学)4页

五水硫酸铜的制备实验报告(大学化学)4页

五水硫酸铜的制备实验报告(大学化学)4页一、实验目的:1.学习硫酸铜的制备和纯化方法。

2.理解实验操作过程中的化学反应原理,并掌握实验室的基本安全知识。

二、实验原理:1.硫酸铜的制备方法:将适量的金属铜粉加入稀硫酸溶液中,加热反应,得到硫酸铜溶液。

2.硫酸铜的纯化方法:使用减压蒸馏或结晶过滤等方法来除去硫酸铜溶液中的杂质,得到纯净的五水硫酸铜晶体。

三、实验器材与试剂:1.实验器材:烧杯、玻璃棒、漏斗、蒸馏器、热水浴、过滤纸等。

2.试剂:金属铜粉、浓硫酸(98%)、去离子水。

四、实验步骤:1.将适量的金属铜粉加入烧杯中;2.加入少量去离子水,加热溶解,得到蓝色的铜离子溶液;3.慢慢加入浓硫酸,观察溶液变化,产生大量的白色硫酸铜沉淀;4.将硫酸铜溶液放置,待其冷却结晶;5.将结晶的硫酸铜沉淀用过滤纸过滤并收集;6.将过滤得到的硫酸铜沉淀放入烧杯中并加入少量的去离子水,用玻璃棒搅拌使其溶解;7.将溶液转移至烧杯中,放入热水浴中慢慢加热蒸馏,进行纯化;8.根据需要进行进一步的结晶和纯化步骤,直至得到所需纯净度的五水硫酸铜晶体。

五、实验结果与结论:1.制备:通过实验步骤,成功得到硫酸铜溶液。

2.纯化:经过蒸馏等纯化步骤,最终获得了所需纯净度的五水硫酸铜晶体。

六、实验注意事项:1.实验操作需注意安全,避免接触皮肤和吸入有害气体。

2.实验过程中应注意加热控制,避免溶液过热。

3.实验结束后,应妥善处理废液和废弃物,注意环境保护。

备注:以上实验报告仅为示例,具体实验步骤和操作细节应根据具体的实验要求和实验条件进行调整和完善。

核制作在制作较大的固体晶体时,由于无水硫酸铜在水中的溶解度受温度影响较大,所以可以采用高温溶解,降温结晶的方法制作。

可将较小晶体放在40度左右的饱和溶液中降温结晶来得到较大晶体。

1、仪器:硫酸铜AR级,烧杯两只(一大一小),培养皿两只,玻璃棒一根,滤纸2、试剂:沸水400g,(最好使用蒸馏水或去离子水)以及100g 硫酸铜。

硫酸铜的提纯实验报告

硫酸铜的提纯实验报告

1. 了解硫酸铜的基本性质及其在水中的溶解特性。

2. 掌握重结晶法在提纯固体化合物中的应用。

3. 学习实验室常规操作,如溶解、过滤、蒸发、冷却结晶等。

4. 通过实验验证硫酸铜溶解度随温度变化的规律。

二、实验原理硫酸铜(CuSO4·5H2O)是一种常见的无机化合物,其溶解度随温度的升高而增大。

利用这一特性,可以通过重结晶法提纯硫酸铜。

实验步骤如下:1. 将含有杂质的硫酸铜溶解在适量的水中,形成饱和溶液。

2. 通过加热使溶液温度升高,增加硫酸铜的溶解度。

3. 趁热过滤,去除不溶性杂质。

4. 将滤液冷却,使硫酸铜结晶析出。

5. 通过过滤分离出纯净的硫酸铜晶体。

三、实验器材1. 烧杯2. 玻璃棒3. 滤纸4. 漏斗5. 铁架台6. 铁圈7. 酒精灯8. 烧杯夹9. 硫酸铜(含杂质)10. 蒸馏水1. 称取一定量的硫酸铜(含杂质),放入烧杯中。

2. 加入适量的蒸馏水,用玻璃棒搅拌使其溶解。

3. 将溶液加热至沸腾,继续搅拌,使更多的硫酸铜溶解。

4. 立即将烧杯从热源上移开,停止加热。

5. 用滤纸和漏斗进行趁热过滤,去除不溶性杂质。

6. 将滤液倒入烧杯中,放在室温下自然冷却。

7. 观察溶液的变化,当有晶体析出时,用滤纸和漏斗进行过滤,收集纯净的硫酸铜晶体。

8. 将收集到的硫酸铜晶体放在通风良好的地方晾干。

五、实验结果与分析1. 通过实验,观察到硫酸铜溶液在加热过程中溶解度增大,冷却后晶体析出。

2. 通过重结晶法,成功分离出纯净的硫酸铜晶体。

3. 实验过程中,观察到溶液的颜色由蓝色逐渐变为无色,说明硫酸铜在水中溶解。

4. 实验过程中,观察到晶体析出速度较快,说明硫酸铜的溶解度随温度变化较大。

六、实验总结1. 本实验成功实现了硫酸铜的提纯,掌握了重结晶法在提纯固体化合物中的应用。

2. 通过实验,了解了硫酸铜的基本性质及其在水中的溶解特性。

3. 实验过程中,学会了实验室常规操作,如溶解、过滤、蒸发、冷却结晶等。

实验 硫酸铜的提纯

实验 硫酸铜的提纯

硫酸铜的提纯一、实验目的1.了解用重结晶法提纯物质的基本原理。

2.练习托盘天平的使用。

3.掌握加热、溶解、蒸发浓缩、结晶、常压过滤、减压过滤等基本操作技术。

二、实验原理硫酸铜为可溶性晶体物质。

根据物质的溶解度的不同,可溶性晶体物质中的杂质包括难溶于水的杂质和易溶于水的杂质。

一般可先用溶解、过滤的方法,除去可溶性晶体物质中所含的难溶于水的杂质;然后再用重结晶法使可溶性晶体物质中的易溶于水的杂质分离。

重结晶的原理是由于晶体物质的溶解度一般随温度的降低而减小,当热的饱和溶液冷却时,待提纯的物质首先结晶析出而少量杂质由于尚未达到饱和,仍留在母液中。

粗硫酸铜晶体中的杂质通常以硫酸亚铁(F eSO4)、硫酸铁[Fe2(SO4)3]为最多。

当蒸发浓缩硫酸铜溶液时,亚铁盐易氧化为铁盐,而铁盐易水解,有可能生成Fe(OH)3 沉淀,混杂于析出的硫酸铜晶体中,所以在蒸发浓缩的过程中,溶液应保持酸性。

若亚铁盐或铁盐含量较多,可先用过氧化氢(H2O2)将Fe2+氧化为Fe3+,再调节溶液的pH值约至4,使Fe3+水解为Fe(OH)3沉淀过滤而除去。

pH≈42Fe2++ H2O2 + 2H+=2Fe3++ 2H2O Fe3++ 3H2O = Fe(OH)3 + 3H+三、仪器和试剂1.仪器台秤(公用)、烧杯(100rnl)、量筒、石棉网、玻棒、酒精灯、漏斗、滤纸、漏斗架、表面皿、蒸发皿、铁三脚、洗瓶、布氏漏斗、油滤装置、硫酸铜回收瓶。

2.试剂CuSO4 · 5H2O(粗)、H2SO4(1 rnol·L-1)、H2O2(3%)、pH试纸、NaOH(0.5 mol·L-1)。

四、实验内容(-)称量和溶解用台秤称取粗硫酸铜4g,放入洁净的100mL烧杯中,加入纯水20mL。

然后将烧杯置于石棉网上加热,并用玻棒搅拌。

当硫酸铜完全溶解时,立即停止加热。

大块的硫酸铜晶体应先在研钵中研细。

每次研磨的量不宜过多。

(五)工业硫酸铜的提纯

(五)工业硫酸铜的提纯

(五)工业硫酸铜的提纯一.实验目的1.学会分步沉淀和重结晶分离提纯物质的原理和方法。

2.进一步练习分离提纯的基本操作。

二.实验原理粗硫酸铜中含有不溶性杂质和可溶性杂质离子Fe2+、Fe3+等,不溶性杂质可用过滤法除去。

可溶性杂质离子Fe2+常用氧化剂H2O2或Br2氧化成Fe3+,然后调节溶液的pH值(一般控制在pH=3.5~4),使Fe3+水解成为Fe(OH)3沉淀而除去,反应如下:2Fe2+ +H2O2+2H+=2Fe3++2H2OFe3++3H2O=Fe(OH)3↓十3H+除去铁离子后的滤液经蒸发、浓缩,即可制得五水硫酸铜结晶。

其它微量杂质在硫酸铜结晶时,留在母液中,过滤时可与硫酸铜分离。

控制pH值约为4的原因如下:由于溶液中的Fe3+,Fe2+,Cu2+水解时均可生成氢氧化物沉淀,但这些氢氧化物(Fe(OH)2,Fe(OH)3,Cu(OH)2)的沉淀条件是不同的。

根据沉淀理论,它们产生沉淀和完全沉淀所需要的OH-浓度(即pH值)是不同的,当pH=4时,Fe2+,Cu2+均不发生沉淀,而Fe3+已完全沉淀。

三.实验内容1.称量和溶解用台秤称取用研钵研细的粗硫酸铜4克,放入100ml烧杯中,加入10ml去离子水,边搅拌边加热溶解,直至晶体完全溶解,停止加热。

2.氧化和沉淀向溶液中加入几滴H2SO4酸化,再滴加2ml 3% H2O2,加热片刻(若无小气泡产生,即可认为H2O2分解完全),边搅拌边滴加1mol∙L– 1 NaOH溶液,直至溶液的pH≈4(用PH试纸检验。

在用pH试纸检验溶液的酸碱性时,应将小块试纸放在干燥的清洁表面皿上,用玻璃棒蘸取检验溶液,滴在试纸上,切不可将试纸投入溶液中检验),再加热片刻,让Fe(OH)3加速凝聚,取下,静置,待Fe(OH)3沉淀沉降(千万不要用玻璃棒去搅动!)。

3.常压过滤装配好常压过滤装置(如图)。

将折好的滤纸放入漏斗中,用滴管滴加少量的去离子水润湿滤纸,使之紧贴在漏斗壁上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中,Fe(OH)3的溶解度相对最小,将Fe2+氧化成Fe3+ 的溶解度相对最小, 氧化成Fe 其中, 就可通过调节pH的方法,从粗CuSO 溶液中将Fe 沉淀完全, 就可通过调节pH的方法,从粗CuSO4溶液中将Fe3+沉淀完全, pH的方法 达到较好的除杂效果。如果不将Fe 氧化成Fe 达到较好的除杂效果。如果不将Fe2+氧化成Fe3+,当调节 pH使 生成Fe(OH) 也会生成Cu(OH) 沉淀。 pH使Fe2+生成Fe(OH)2时,Cu2+也会生成Cu(OH)2沉淀。可借 助公式进行估算:pH=14+lgM) 助公式进行估算:pH=14-(pKsp+lgM)/n
实验五
2.1 实验目的
粗硫酸铜的提纯
(1)学习利用化学方法除杂和检验的一般方法。 学习利用化学方法除杂和检验的一般方法。 (2)掌握常压或减压过滤技术。 掌握常压或减压过滤技术。 (3)掌握结晶和重结晶技术提纯固体物质的方法。 掌握结晶和重结晶技术提纯固体物质的方法。
2.2 实验原理
杂质Fe 1. 杂质Fe2+分离 2 Fe2++2H++H2O2=2 Fe3+ +2H2O Fe3++ 3H2O = Fe(OH)3↓ 过滤除去
过滤
干燥
计算产率
2.4 注意事项
(1)氧化剂H2O2要稍过量,使杂质Fe2+充分氧化; 氧化剂H 要稍过量,使杂质Fe 充分氧化; 要逐滴加入,pH要控制在 左右, 要控制在4 (2)加入NaOH除Fe3+时,要逐滴加入,pH要控制在4左右, 加入NaOH除 NaOH 避免生成Cu(OH) 沉淀; 避免生成Cu(OH)2沉淀; (3)蒸发结晶时宜用小火,以防飞溅。 蒸发结晶时宜用小火,以防飞溅。
2.6 2.6 参考答案
(1)结晶时滤液为什么不可蒸干? 结晶时滤液为什么不可蒸干? 答:滤液蒸干后,滤液中即使很微量的可溶性杂 滤液蒸干后, 质也成为晶体析出而混入所要制备的晶体中, 质也成为晶体析出而混入所要制备的晶体中,使产品 不纯,而且在没有溶剂存在的情况下, 不纯,而且在没有溶剂存在的情况下,得到的晶体所 含的结晶水不一致。 含的结晶水不一致。
用NaOH调pH约为 约为4 调 约为
深红色 检验 Fe3+ +nSCN- =Fe(NCS)n3-n +2H2O
2. 结晶或重结晶纯化
2.3 操作流程
加去离子水 称量CuSO45.0g 称量 加热溶解 冷却 加 H2 O2
3min
过 滤 弃沉淀
Fe(OH)3↓
再逐滴加NaOH 再逐滴加
约为4 调pH约为 约为 滤液 约为1液为什么不可蒸干? 结晶时滤液为什么不可蒸干? (2)为什么杂质Fe2+要氧化成Fe3+才能有效地除去? 为什么杂质Fe 要氧化成Fe 才能有效地除去? 为什么溶液的pH要控制在4左右? pH要控制在 (3)加NaOH除Fe3+时,为什么溶液的pH要控制在4左右? NaOH除
(2)为什么杂质Fe2+要氧化成Fe3+才能有效地除去? 为什么杂质Fe 要氧化成Fe 才能有效地除去? 答:从查阅相关的溶度积常数可知: 从查阅相关的溶度积常数可知:
Ksp〔Cu(OH)2〕=2.2×10-20 =2.2× Ksp〔Fe(OH)2〕=8.0×10-16 =8.0× Ksp〔Fe(OH)3〕=4.0×10-36 =4.0×
为什么溶液的pH要控制在4左右? pH要控制在 (3)加NaOH除Fe3+时,为什么溶液的pH要控制在4左右? NaOH除 的溶度积可以算出, 答:根据 Cu(OH)2和Fe(OH)3的溶度积可以算出,在 pH=4时 pH=4时,Fe3+和Cu2+在溶液中允许存在的最高浓度分别为 4.0× mol·L mol·L 即在PH=4 PH=4时 4.0×10-6 mol L-1 和2.2 mol L-1 。即在PH=4时,Fe3+可以 认为已经基本被沉淀“完全” 而实验中用5g粗 认为已经基本被沉淀“完全”。而实验中用5g粗CuSO4(一 5g 般为CuSO 溶解在30 mL水中制得的溶液 水中制得的溶液, 般为CuSO4 · 5H2O )溶解在30 mL水中制得的溶液,其中 的浓度比2.2 mol·L 这时Cu 于形成Cu(OH) Cu2+的浓度比2.2 mol L-1小,这时Cu2+不至于形成Cu(OH)2 析出,从而达到在溶液中既保证Cu 不受损失又除去Fe 析出,从而达到在溶液中既保证Cu2+不受损失又除去Fe3+的 目的。 目的。
相关文档
最新文档