2.3.1 离散型随机变量的均值
2.3.1离散型随机变量的均值(第一课时)
X P
0
1
… …
m
m n m CM CN M n CN
0 n 0 1 n 1 CM CN C C M M N M n n CN CN
(3)二项分布: 一般地,在n次独立重复试验中,若事件A每次发生 的概率都是p,则称事件A发生的次数X服从二项分布.
X P
0 n
0
1
0 n
…
k
…
n
C pq
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算:
1.离散型随机变量的均值
一般地,若离散型随机变量X的分布列为 X P x1 p1 x2 p2 … … xi pi … …
则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望. 它反映了离散型随机变量取值的平均水平.
∴ EX=1×P(X=1)+0×P(X=0) =1×0.7+0×0.3 =0.7 一般地,如果随机变量X服从两点分布,那么 EX=1×p+0× (1-p)=p 于是有 若X服从两点分布,则EX=p
3.两点分布的均值:
若X服从两点分布,则EX=p
例2.篮球运动员在比赛中每次罚球命中得1分,罚不中 得0分.已知某运动员罚球命中的概率为0.7,求他罚 2 次球的得分X的期望.
2、随机变量ξ的分布列是
.
ξ P
4 0.3
7 a
0.1 b=
9 b
10 0.2
0.4.
Eξ=7.5,则a=
练习二
1.(1)若 E(ξ)=4.5,则 E(-ξ)= -4.5 (2)E(ξ-Eξ)= 0 . .
2. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0 分.已知某运动员罚球命中的概率为0.7,则他罚球1次 的得分ξ的期望为 . 这是一个两点分布随机变量的期望
高中数学_离散型随机变量的均值教学设计学情分析教材分析课后反思
【课题】 2.3.1离散型随机变量的均值【教材】普通高中课程标准实验教科书数学选修2-3人民教育出版社 A版【教学目标】知识与技能通过实例,让学生理解离散型随机变量均值的概念及线性运算性质,了解其实际含义.会计算简单的离散型随机变量的均值,并解决一些实际问题;过程与方法通过离散型随机变量均值概念的归纳和应用,使学生体会从特殊到一般,再从一般到特殊的思维规律,培养观察、归纳、反思的能力,初步形成认识问题,解决问题的一般思路和方法;通过比较使学生认识随机变量的均值与样本的平均值的区别与联系,明确随着样本容量的增加,样本的平均值越来越接近随机变量的均值;情感态度价值观通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发热爱数学的情感,体会数学的文化价值,提高学生的数学素养.【教学重点和难点】重点:理解离散型随机变量的均值的含义.难点: 利用离散型随机变量的均值来解决实际问题.【教学情景设计】2.3.1离散型随机变量的均值学情分析本节是在《必修3》中学习了样本的平均数和方差的基础上,学习离散型随机变量的均值.离散型随机变量可以看成是刻画某一总体的量,它的均值也就是总体的均值,一般它们是未知的,但都是确定的的常数;样本的平均值是随机变量.对于简单随机抽样,随着样本容量的增加,样本平均数越来越接近于总体的平均值.本节重点是用均值解决实际问题,在解决实际问题的过程中使学生理解均值的含义.问题1从平均的角度引入随机变量均值的概念,直观上通过分析1kg混合糖果的组成,学生容易得到合理的价格,即价格是三种糖果价格的加权平均,至此问题已解决.问题2考虑1kg的糖果如何从混合糖果中取出,通过对问题的探讨,就把混合糖的合理价格理解为随机变量X的值的加权平均,这个权就是相应的概率,把这个想法抽象出来,就可以得到随机变量均值的概念.问题3有助于理解随机变量均值的含义,它可以看成是这个随机变量的均值,即随着观察这个随机变量次数的增加,所得观测数据的平均值越来越接近于这个随机变量的均值.2.3.1离散型随机变量的均值效果分析通过创设情境激发学生学习数学的兴趣,引导学生分析问题、解决问题.通过概念的构建,培养学生归纳、概括等合情推理能力.再通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识.“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题.【课题】 2.3.1离散型随机变量的均值【教材】普通高中课程标准实验教科书数学选修2-3人民教育出版社 A版教材分析1.这节内容是在前面学习完离散型随机变量的分布列的基础上进行研究的,同时这节内容又为下一节要研究的方差奠定基础.因此在知识上起到了承上启下的作用。
《均值》课件
例1 在篮球比赛中,罚球命中1次得1分,
不中得0分.如果某运动员罚球命中的概率为
0.7,那么他罚球1次的得分X的均值是多少?
例2 袋中有20个大小相同的球,其中记上0
号的有10个,记上n号的有n个(n=1,2,3,4).
现从袋中任取一球.X表示所取球的标号. (1)求X的分布列,均值E(X); (2)若Y=-2X+4,求E(Y).
例3 某商场计划在国庆节开展一次促销活 如果不遇雨天则带来 经济效益10万元,如果遇到雨天则带来经济损 失4万元.假设国庆节有雨的概率是40%,请问商 场应该选择哪种促销方式较好?
家庭作业
必做题:教材P68-习题2.3—1题前两问(C),2题(B). 选做题:教材P68-习题2.3—4题(A).
为随机变量X的均值或数学期望.
思考
★★★★
1、随机变量的均值与相应数值的算术平均数 有何区别与联系? 2、随机变量的均值与样本的平均值有何区别 与联系?
均值的性质
★★★★
若Y=aX+b(a,b是常数),X是随机变量,则
Y也是随机变量,它们的分布列为:
X Y P
x1 p1
于是,
x2 p2
… … …
xi axi+b pi
… … …
xn axn+b pn
ax1+b ax2+b
E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn =a(x1p1+x2p2+…+xipi+…+xnpn)+b(p1+p2+…+pi+…+pn) =aE(X)+b,
原创1:2.3.1 离散型随机变量的均值(习题课)
7
a
7
∵E(Y)= ,∴- +3= ,
3
3
3
∴a=2.
两点分布与二项分布的均值
例4.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保
险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X
3
27
32 (21 43 +42 22 ൯
P(ξ=2)=
34
=
14
,
27
P(ξ=3)=
3 42 2
34
4
=
9
8
.
27
典例解析
综上知,ξ的分布列
ξ
1
2
3
P
1
27
14
27
4
9
1
14
4 65
从而有:Eξ=1× +2× +3× = .
27
27
9 27
典例解析
例2.某学校为调查高一年级学生每天晚自习自主支配学习时间(指除了完成
第二章
随机变量及其分布
§2.3.1离散型随机变量的均值(习题课)
高中数学选修2-3·精品课件
自主练习
1.若随机变量X的分布列如下表所示,已知E(X)=1.6,则a-b=(
X
0
1
2
3
P
0.1
a
b
0.1
A. 0.2
B.0.1
C.-0.2
D.-0.4
)
解析:由题意知,a+b=0.8,
且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.
高中数学选修2-3精品课件:2.3.1 离散型随机变量的均值
所以X的分布列为
X 10 20 100 -200
P
3 8
3 8
1 8
1 8
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则 P(A1)=P(A2)=P(A3)=P(X=-200)=18. 所以“三盘游戏中至少有一次出现音乐”的概率为 1-P(A1A2A3)=1-(18)3=1-5112=551112. 因此,玩三盘游戏至少有一盘出现音乐的概率是551112.
且事件 E 与 F,E 与 F , E 与 F, E 与 F 都相互独立.
(1)记 H={至少有一种新产品研发成功},则 H = E F , 于是 P( H )=P( E )P( F )=13×25=125, 故所求的概率为 P(H)=1-P( H )=1-125=1135.
(2) 设 企 业 可 获 利 润 为 X 万 元 , 则 X 的 可 能 取 值 为
(1)设每盘游戏获得的分数为X,求X的分布列.
解 X可能的取值为10,20,100,-200.
根据题意,有 P(X=10)=C13×(21)1×(1-21)2=83, P(X=20)=C23×(21)2×(1-21)1=83, P(X=100)=C33×(12)3×(1-12)0=18, P(X=-200)=C03×(21)0×(1-21)3=81.
1234
现按表中对阵方式出场胜队得1分,负队得0分,设A队,B 队最后所得总分分别为X,Y. (1)求X,Y的分布列; 解 X的可能取值分别为3,2,1,0. P(X=3)=23×25×25=785,
P(X=2)=23×25×35+13×25×25+23×35×25=2785, P(X=1)=23×35×35+13×25×35+13×35×25=25, P(X=0)=13×35×35=235; 根据题意X+Y=3,
人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值
当堂自测
[答案] A
当堂自测
3.设随机变量X~B(3,0.2),则
E(2X+1)= ( )
A.0.6
B.1.2
C.2.2
D.3.2
[答案] C
[解析] ∵随机变量 X~B(3,0.2),∴E(X)=3×0.2=0.6,∴E(2X+1)=2E(X)+1 =2×0.6+1=2.2,故选C.
当堂自测
故选D. (2)设该学生在这次测验中选对的题数 为X,该学生在这次测验中成绩为Y,则 X~B(20,0.9),Y=5X.由二项分布的均值公
式得E(X)=20×0.9=18.由随机变量均值 的线性性质得E(Y)=E(5X)=5×18=90.
考点类析
考点三 利用随机变量均值的性质解决问题
[导入] 若X是随机变量,且Y=aX+b,其中a,b为常数,试分析随机变量Y的均值E(Y)和E(X) 的关系.
考点一 随机变量X均值定义的应用
ξ012345 P 2x 3x 7x 2x 3x x
[答案] C
考点类析
例2 袋中有4只红球、3只 黑球,现从袋中随机取出4 只球,设取到1只红球得2分, 取得1只黑球得1分,试求得 分X的均值.
X5678 P
考点类析
考点二 两点分布、二项分布的均值
例3 (1)设X~B(40,p),且E(X)=16,则p=
的均值. (2)随机变量的均值是常数,其值不随X的变化而变化.
预习探究
[探究] 随机地抛掷一枚骰子,怎样求向上的点数X的均值?
X123456 P
预习探究
知识点二 离散型随机变量均值的性质
若Y=aX+b(a,b为常数),则E(Y)=E(aX+b)=
高中数学人教A版选修2-3课件:2.3.1离散型随机变量的均值
当 X=3 时,表示前 2 次中取得一红球,一白球或黑球,第 3 次取红球, ∴ P(X=3)=
1 2 ������1 2 ������3 ������2
������3 5
=
1 ; 5
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
x
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
解:由题意知 X 的取值为 2,3,4,5. 当 X=2 时,表示前 2 次取的都是红球, ∴ P(X=2)=
������2 2 ������2 5
=
1 ; 10
预习交流 2
若随机变量 X~B(5,0.3),则 E(X)= 提示:E(X)=5× 0.3=1.5. .
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
一、求离散型随机变量的均值(数学期望)
活动与探究 问题:某商场要将单价分别为 18 元/kg、24 元/kg、36 元/kg 的 3 种 糖果按 3∶ 2∶ 1 的比例混合销售,如何对混合糖果定价才合理?
当 X=4 时,表示前 3 次中取得一红球,2 个不是红球,第 4 次取红球, ∴ P(X=4)=
2 3 ������1 2 ������3 ������3
选修2-3离散型随机变量的均值与方差第1课时教案新部编本
教师学科教案[ 20–20学年度第__学期]任教学科: _____________任教年级: _____________任教老师: _____________xx市实验学校§2.3 离散型随机变量的均值与方差§2.3.1 离散型随机变量的均值教学目标:知识与技能:了解离散型随机量的均或期望的意,会根据离散型随机量的分布列求出均或期望.过程与方法:理解公式“ E( aξ +b) =aEξ +b”,以及“若ξ: B( n,p ), Eξ =np” . 能熟地用它求相的离散型随机量的均或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和之美, 体数学的文化功能与人文价。
教学重点:离散型随机量的均或期望的概念教学难点:根据离散型随机量的分布列求出均或期望授课类型:新授课时安排: 1教学过程:一、复习引入:1.离散型随机量的二分布: 在一次随机中,某事件可能生也可能不生,在 n 次独立重复中个事件生的次数ξ 是一个随机量.如果在一次中某事件生的概率是P,那么在 n 次独立重复中个事件恰好生k 次的概率是P n (k) C n k p k q n k,(k=0,1,2,⋯, n,q 1 p).于是得到随机量ξ 的概率分布如下:ξ01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0称的随机量ξ 服从二分布,作ξ~ B(n , p) ,其中n, p 参数,并C n k p k q n k=b(k;n,p).二、讲解新课:根据已知随机量的分布列,我可以方便的得出随机量的某些制定的概率,但分布列的用途不止于此,例如:已知某射手射所得数ξ 的分布列如下ξ45678910P0.020.040.060.090.280.290.22在 n 次射之前,可以根据个分布列估n 次射的平均数.就是我今天要学的离散型随机量的均或期望根据射手射所得数ξ 的分布列,我可以估,在 n 次射中,大有P(4)n0.02n次得 4;P(5)n0.04n次得 5;⋯⋯⋯⋯P(10) n 0.22n次得10.故在 n 次射的数大4 0.02 n5 0.04 n10 0.22n(4 0.02 5 0.0410 0.22) n ,从而,n 次射的平均数4 0.025 0.0410 0.22 8.32 .是一个由射手射所得数的分布列得到的,只与射数的可能取及其相的概率有关的常数,它反映了射手射的平均水平.于任一射手,若已知其射所得数ξ的分布列,即已知各个P(i ) (i=0,1,2,⋯, 10),我可以同他任意n 次射的平均数:0 P(0) 1 P(1)⋯10 P(10).1.均或数学期望 :一般地,若离散型随机量ξ 的概率分布ξx1x2⋯x n⋯P p1p⋯pn⋯2称 Ex1 p1 x2 p2⋯x n p n⋯ξ 的均或数学期望,称期望.2.均或数学期望是离散型随机量的一个特征数,它反映了离散型随机量取的平均水平3.平均数、均 :一般地,在有限取离散型随机量ξ的概率分布中,令 p1p2⋯ p n,有p1 p2⋯ p n 11,E( x1x2⋯ x n ),所以ξ 的数学期望又称平均数、n n均4.均或期望的一个性 :若a b (a、b是常数),ξ 是随机量,η也是随机量,它的分布列ξx1x2⋯x n⋯ηax1b ax2b⋯ax n b⋯P p1p2⋯p n⋯于是 E(ax1b) p1(ax2b) p2⋯(ax n b) p n⋯= a( x1 p1x2 p2⋯x n p n⋯)b( p1p2⋯p n⋯)= aE b ,由此,我得到了期望的一个性: E(a b) aE b5. 若ξ: B(n,p ), Eξ=np明如下:∵P(k) C n k p k (1 p)n k C n k p k q n k,∴E0×C n0p0q n+ 1×C1n p1q n 1+ 2×C n2p2q n 2+⋯+ k×C n k p k q n k+⋯+ n ×C n n p n q0.又∵kC n k k n!k)! (k n(n1)!nC n k11,k!(n1)![( n1)( k1)]!∴E np(C n01 p0q n 1+ C n11 p1q n2+⋯+ C n k11 p k 1 q( n 1) (k 1)+⋯ +C n n11 p n 1q 0 )np ( p q) n1np .故若ξ~ B(n , p) ,E np.三、讲解范例:例 1.球运在比中每次球命中得 1 分,不中得0 分,已知他命中的概率0.7 ,求他球一次得分的期望解:因 P(1)0.7, P(0) 0.3 ,所以 E10.70 0.30.7例 2.一次元由 20 个构成,每个有 4 个,其中有且有一个是正确答案,每正确答案得 5 分,不作出或不得分,分100 分学生甲任一的概率0.9 ,学生乙在中每都从 4 个中随机地一个,求学生甲和乙在次英元中的成的期望解:学生甲和乙在次英中正确答案的个数分是,,~B (20,0.9 ),~ B(20,0.25) ,E200.918, E200.25 5由于答对每题得 5 分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:E(5 ) 5E( ) 5 18 90,E(5 ) 5E( ) 5 5 25例 3.随机抛掷一枚骰子,求所得骰子点数的期望解:∵ P(i )1/ 6,i 1,2,,6 ,E11/ 621/ 6 6 1/ 6 =3.5例 4.随机的抛掷一个骰子,求所得骰子的点数ξ 的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P 111111 666666所以E1×1+2×1+3×1+4×1+5×1+6×1 666666=(1 +2+3+4+5+6) ×1= 3.5 .6抛掷骰子所得点数ξ 的数学期望,就是ξ 的所有可能取值的平均值.四、课堂练习:1.口袋中有 5 只球,编号为1,2, 3,4,5,从中任取 3 球,以表示取出球的最大号码,则E()A. 4;B. 5;C.4.5 ;D. 4.75答案: C2.篮球运动员在比赛中每次罚球命中的 1 分,罚不中得 0 分.已知某运动员罚球命中的概率为 0.7 ,求⑴他罚球 1 次的得分ξ的数学期望;⑵他罚球 2 次的得分η的数学期望;⑶他罚球 3 次的得分ξ的数学期望.3.设有 m升水,其中含有大肠杆菌 n 个.今取水 1 升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ 的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出 Eξ公式 E(aξ +b) = aEξ +b,以及服从二项分布的随机变量的期望 Eξ =np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ +b)= aEξ +b,以及服从二项分布的随机变量的期望Eξ =np 。
2.3.1__离散型随机变量的均值ppt课件
引入:某商场为满足市场需求要将单价分别为18元 /kg ,24元/kg ,36元/kg 的3种糖果按3:2:1的 比例混合销售,其中混合糖果中每一颗糖果的质量 都相等,如何对混合糖果定价才合理? 定价为
18+24+36 26 3
可以吗?
假如从这种混合糖果中随机选取一颗,记X为这颗 糖果所属种类的单价(元 kg),你能写出X的分布列吗?
定义
一般地:
对任一射手,若已知他的所得环数 的分布列,即已
知 P( i)(i 0,1, 2,L ,10), 则可以预计他任意n次射击的
平均环数是 0 P( 0) 1 P( 1) L 10 P( 10) 记为E
我们称E 为此射手射击所得环数的期望,它刻
划了所得环数随机变量 所取的平均值.
在100次射击之前,试估计该射手100次射击的平均环数. 分析:平均环数=总环数100
由概率可知,在 100 次射击之前,估计得 i 环的次数为 P( i)100 .
所以,总环数约等于 (4×0.02+5×0.04+6×0.06+ …+10×0.22)× 100.
故100次射击的平均环数约等于
4×0.02+5×0.04+6×0.06+ …+10×0.22=8.32. 一般地6
结论1
结论1:若 a b, 则 E aE b
Q P( axi b) P( xi ), i 1, 2, 3L
所以, 的分布列为
L ax1 b ax2 b
L LL P p1
p2
axipi b
axn b
pn
E (ax1 b) p1 (ax2 b) p2 L (axn b) pn
2.3.1离散型随机变量的确均值
pi
…
pn
aEX b
3、几个特殊分布的期望
例1、在篮球比赛中,罚球命中1次得1分,不中 得0分.如果某运动员罚球命中的概率为0.7,那 么他罚球1次的得分ξ的均值是多少?
解:ξ的分布列为
ξ P 0 0.3 1-P 1 0.7 P
所以
Eξ=0×P(ξ=0)+1×P(ξ=1) =0×1-P 0.3+1×0.7 P =0.7 P
设学生甲和学生乙在这次英语测验中选择了正确 解:
答案的选择题个数分别是ξ和η,则 ξ~B(20,0.9), η~B(20,0.25),
Eξ=20×0.9=18, Eη=20×0.25=5.
由于答对每题得5分,学生甲和学生乙在这次英语测验 中的成绩分别是5ξ和5η。所以,他们在测验中的成 绩的均值分别是
假如从这种混合糖果中随机选取一颗,记X为这颗 如果你买了1kg这种混合 糖果所属种类的单价(元 ),你能写出X的分布列吗? kg 糖果,你要付多少钱?
而你买的糖果的实际价值 解:随机变量X 可取值为 18 , 24和36 刚好是 23 元吗? 1 1
1 而P( X 18) , P( X 24) , P( 样本平均值 X 36) 2 3 6 所以X分布列为
X 所以Y的分布列为 Y
ax1 b ax2 b …
axi b …
axn b
P
p1
ห้องสมุดไป่ตู้p2
…
EY (ax1 b) p1 (ax2 b) p2 (axn b) pn a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
解:(Ⅰ)X的分布列:
X P 0
1 2
2.3.1离散型随机变量的均值
§2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量取值水平,解决一些相关的实际问题.知识点一离散型随机变量的均值1.离散型随机变量的均值的概念一般地,若离散型随机变量X的分布列为则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.2.离散型随机变量的均值的性质若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n,所以Y的分布列为于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(ax i+b)p i+…+(ax n+b)p n=a(x1p1+x2p2+…+x i p i+…+x n p n)+b(p1+p2+…+p i+…+p n)=aE(X)+b,即E(aX+b)=aE(X)+b.思考(1)离散型随机变量的均值与样本平均值之间的关系如何?(2)随机变量X的数学期望E(X),其值随X的变化而变化吗?答案(1)①区别:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均数是一个随机变量,它随样本抽取的不同而变化;②联系:对于简单的随机样本,随着样本容量的增加,样本平均值越来越接近于总体的均值.(2)随机变量的均值是常数,其值不随X的变化而变化.知识点二两点分布、二项分布的均值1.两点分布的均值由数学期望的定义可知,若随机变量X服从参数为p的两点分布,则E(X)=1×p+0×(1-p)=p.这表明在只有两个可能结果的随机试验中,离散型随机变量X的均值为p.2.二项分布的均值在n次独立重复试验中,若X~B(n,p),则E(X)=np.1.随机变量X的均值E(X)是个变量,其随X的变化而变化.()2.随机变量的均值与样本的平均值相同.()3.若随机变量X的均值E(X)=2,则E(2X)=4.()4.若随机变量X服从两点分布,则E(X)=0或E(X)=P(X).()一、利用定义求离散型随机变量的均值例1袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,试求得分X的均值.跟踪训练1某卫视综艺节目中有一个环节叫“超级猜猜猜”,规则如下:在这一环节中嘉宾需要猜三道题目,若三道题目中猜对一道题目可得1分,若猜对两道题目可得3分,要是三道题目完全猜对可得6分,若三道题目全部猜错,则扣掉4分.如果嘉宾猜对这三道题目的概率分别为23,12,13,且三道题目之间相互独立.求某嘉宾在该“猜题”环节中所得分数的分布列与均值.二、常见分布的均值例2 (1)设X ~B (40,p ),且E (X )=16,则p 等于( ) A .0.1 B .0.2 C .0.3D .0.4(2)一次单元测试由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分.一学生选对任意一题的概率为0.9,则该学生在这次测试中成绩的均值为________.反思感悟 (1)常见的两种分布的均值 设p 为一次试验中成功的概率,则 ①两点分布E (X )=p ; ②二项分布E (X )=np .熟练应用上述两公式可大大减少运算量,提高解题速度. (2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生. ②不同点:a .随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值X =0,1,2,…,n .b .试验次数不同,两点分布一般只有一次试验;二项分布则进行n 次试验.跟踪训练2 某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为ξ,当这4盏装饰灯闪烁一次时:(1)求ξ=2时的概率;(2)求ξ的均值.三、离散型随机变量均值的性质 例3 已知随机变量X 的分布列为:若Y =-2X ,则E (Y )=________. 引申探究本例条件不变,若ξ=aX +3,且E (ξ)=-112,求a 的值.跟踪训练3 已知随机变量ξ和η,其中η=12ξ+7,且E (η)=34,若ξ的分布列如下表,则m 的值为( )A.13B.14C.16D.18四、离散型随机变量均值的应用例4某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,请确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?反思感悟(1)解答概率模型的三个步骤①审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.②确定随机变量的分布列,计算随机变量的均值.③对照实际意义,回答概率、均值等所表示的结论.(2)利用题目提供的相关数据进行分布列及费用决策的研究,体现了数据分析的数学素养.跟踪训练4 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和均值.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值; (2)写出分布列,并检查分布列的正确与否; (3)根据公式求出均值.2.若X ,Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.1.现有一个项目,对该项目每投资10万元,一年后利润是1.2万元,1.18万元,1.17万元的概率分别为16,12,13,随机变量X 表示对此项目投资10万元一年后的利润,则X 的均值为( )A .1.18B .3.55C .1.23D .2.382.袋中有10个大小相同的小球,其中记为0号的有4个,记为n 号的有n 个(n =1,2,3).现从袋中任取一球,X 表示所取到球的标号,则E (X )等于( ) A .2 B.32 C.45 D.753.离散型随机变量X 的可能取值为1,2,3,4,P (X =k )=ak +b (k =1,2,3,4),E (X )=3,则a +b 等于( ) A .10 B .5 C.15 D.1104.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,取出的球的最大编号X 的均值为________.5.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是25,则甲回家途中遇红灯次数的均值为________.一、选择题1.已知X 的分布列为则X 的均值为( ) A .0 B .-1 C.18 D.142.已知ξ~B ⎝⎛⎭⎫n ,12,η~B ⎝⎛⎭⎫n ,13,且E (ξ)=15,则E (η)等于( ) A .5 B .10 C .15 D .203.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .7 D .8 4.设ξ的分布列为又设η=2ξ+5,则E (η)等于( ) A.76 B.176 C.173 D.3235.一个课外兴趣小组共有5名成员,其中3名女性成员,2名男性成员,现从中随机选取2名成员进行学习汇报,记选出女性成员的人数为X ,则X 的均值是( ) A.65 B.310 C.45D.15 6.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X ,则X 的均值是( ) A .20 B .30 C .25 D .407.在某校篮球队的首轮选拔测试中,参加测试的5名同学的投篮命中率分别为35,12,23,34,13,每人均有10次投篮机会,至少投中6次才能晋级下一轮测试.假设每人每次投篮相互独立,则晋级下一轮的大约有( ) A .1人 B .2人 C .3人D .4人二、填空题8.设随机变量X 的分布列为P (X =k )=C k 300·⎝⎛⎭⎫13k ·⎝⎛⎭⎫23300-k (k =0,1,2,…,300),则E (X )=________. 9.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验3次均失败,则放弃试验.若此人每次试验成功的概率均为23,则此人试验次数ξ的均值是________.10.掷骰子游戏:规定掷出1点,甲盒中放一球,掷出2点或3点,乙盒中放一球,掷出4点、5点或6点,丙盒中放一球,共掷6次,用x ,y ,z 分别表示掷完6次后甲、乙、丙盒中球的个数.令X =x +y ,则E (X )=________. 三、解答题11.盒中装有5节同牌号的五号电池,其中混有两节废电池.现无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及均值.12.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,求X 的分布列及均值.13.某电视台智力闯关游戏节目中,准备从甲、乙、丙三名幸运观众中确定一人免费参加“台湾十日游”活动,方案是:甲、乙两人轮流抛掷一对骰子,甲先掷,乙后掷,然后甲再掷,…,规定先得到两颗骰子点数之和等于7的一方获得免费参加“台湾十日游”活动,一旦决出胜负游戏便结束,且限定每人最多掷两次,若甲、乙均未获得,则由丙获得,求游戏结束时抛掷次数ξ的均值.14.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为12,复审能通过的概率为310,各专家评审的结果相互独立. (1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.。
2.3.1离散型随机变量的均值
7070% 6030% 67
加
权
平
均
权数
问题: 某人射击10次,所得环数分别是:1,1,1,1,2,2,2, 3,3,4;则所得的平均环数是多少?
1111 2 2 233 4 2
10
1 4 2 3 3 2 4 1 10 10 10 10
权数 加
1 4 2 3 3 2 4 1 10 10 10 10
算术平均数
如果你期中考试各门成绩分别为: 91,85,80,80,75,59 那你的平均成绩是多少?
x 90 85 80 80 75 59 80 5
先介绍两种平均数:
的数权值是.加秤权加锤平权,均权平是数指均是在数起计权算衡若轻干重个作数用
量的平均数时,考虑到每个数量在总量 如果你中期所中具考有试的数重学要成性绩不为同7,0,分平别时给表予现不成同绩为60,学 校规定:在的你权学数分. 记录表中,该学期的数学成绩中考试成绩 占70%,平时成绩占30%,你最终的数学成绩为多少?
一.填空
补充练习
(1)某射手对目标进行射击,直到第一次命中为止,每 次命中率为0.6,现共有子弹4颗,命中后尚剩余子弹数目ξ 的数学期望是_____2_._3_7_6__ .
(2)有两台在两地独立工作的雷达,每台雷达发现飞 行目标的概率分别为0.9和0.85,设发现目标的雷达台数 为ξ,则E(ξ)=_____1_._7_5___ .
(3)设离散性随机变量 可能取的值为1,2,3,4 , P(ξ=k)=ak+b(k=1,2,3,4)又ξ的数学期望E(ξ)=3,则
1
a+b= _____1_0_.
二.选择
(1)口袋中有5只相同的球,编号为1、2、3、4、5, 从中任取3球,用ξ表示取出的球的最大号码,则Eξ= ( )
第2章 2.3 2.3.1 离散型随机变量的均值
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标核心素养1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)1.通过离散型随机变量的均值的学习,体会数学抽象的素养.2.应用随机变量的均值解题提升数学运算的素养.1.离散型随机变量的均值(1)定义:若离散型随机变量X的分布列为:X x1x2…x i…x nP p1p2…p i…p n=x1p1+x2p2+…+x i p i+…+x n p n为随机变量(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.2.两点分布和二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X~B(n,p),则E(X)=np.思考:随机变量的均值与样本平均值有什么关系?[提示]随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X 的分布列为X -1 01 p121613A .0B .-1C .-16D .-12C [E (X )=∑i =13x i p i =(-1)×12+0×16+1×13=-16.]2.设E (X )=10,则E (3X +5)=________. 35 [E (3X +5)=3E (X )+5=3×10+5=35.]3.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.43 [E (X )=np =4×13=43.]求离散型随机变量的均值【例1多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.[解] X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了, 故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了,故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X 123 4P 0.60.280.0960.024 所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.求离散型随机变量X的均值的步骤1.理解X的实际意义,并写出X的全部取值.2.求出X取每个值的概率.3.写出X的分布列(有时也可省略).4.利用定义公式E(X)=x1p1+x2p2+…+x n p n求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识.1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及均值.[解]X可取的值为1,2,3,则P(X=1)=35,P(X=2)=25×34=310,P(X=3)=25×14×1=110.抽取次数X的分布列为X 12 3P 35310110E(X)=1×35+2×310+3×110=32.离散型随机变量的均值公式及性质X -2 -1 0 1 2 P141315m120(2)求E (X );(3)若Y =2X -3,求E (Y ).[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1, 解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:(公式法)由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.法二:(直接法)由于Y =2X -3,所以Y 的分布列如下:Y -7 -5 -3 -1 1 P14131516120所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E (X )=x 1p 1+x 2p 2+…+x n p n 求解.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的分布列,再用均值公式求解,比较两种方式显然前者较方便.2.已知随机变量X 的分布列为X 1 2 3 P121316且Y=aX+3,若E(Y)=-2,则a的值为________.-3[E(X)=1×12+2×13+3×16=53.∵Y=aX+3,∴E(Y)=aE(X)+3=53a+3=-2.解得a=-3.]两点分布与二项分布的均值【例(1)求投篮1次时命中次数X的均值;(2)求重复5次投篮时,命中次数Y的均值.[思路点拨](1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.[解](1)投篮1次,命中次数X的分布列如下表:X 0 1P 0.40.6(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.(变换条件)求重复10次投篮时,命中次数ξ的均值.[解]E(ξ)=10×0.6=6.2.(改变问法)重复5次投篮时,命中次数为Y,命中一次得3分,求5次投篮得分的均值.[解]设投篮得分为变量η,则η=3Y.所以E(η)=E(3Y)=3E(Y)=3×3=9.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.离散型随机变量均值的实际应用[1.某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?[提示]每次平均得分为810=0.8.2.在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?[提示]在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X的均值的一个分数.【例4】随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?[思路点拨]根据利润的意义写出X的取值→写出X的分布列→求出均值E(X)→利用期望回答问题[解](1)X的所有可能取值有6,2,1,-2.P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为:X 621-2P 0.630.250.10.02(2)(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.1.实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率,均值等所表示的结论.3.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,则他们选择何种方案抽奖,累计得分的数学期望较大?[解] (1)由已知得小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”为事件A ,则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115.所以这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖的次数为X 1,都选择方案乙抽奖中奖的次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45. 所以E (2X 1)=2E (X 1)=83, E (3X 2)-3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值;(2)写出分布列,并检查分布列的正确与否; (3)根据公式写出均值.2.若X ,Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.1.判断(正确的打“√”,错误的打“×”)(1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化.( ) (2)随机变量的均值反映样本的平均水平.( )(3)若随机变量X 的数学期望E (X )=2,则E (2X )=4.( ) (4)随机变量X 的均值E (X )=x 1+x 2+…+x nn.( )[答案] (1)× (2)× (3)√ (4)× 2.已知随机变量X 的分布列为X 1 2 3 P0.20.5m则X A .2 B .2.1C .2.3D .随m 的变化而变化B [由0.2+0.5+m =1得m =0.3,∴E (X )=1×0.2+2×0.5+3×0.3=2.1,故选B.] 3.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.103 [E (X )=100×12=50,E (2X +3)=2E (X )+3=103.]4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.[解] (1)由题意知,X 可能取值为0,1,2,3,4.P(X=0)=C24C29=16,P(X=1)=C13C14C29=13,P(X=2)=C14C12+C23C29=1136,P(X=3)=C12C13C29=16,P(X=4)=C22C29=136.故X的分布列为(2)E(X)=0×16+1×13+2×1136+3×16+4×136=149.课时分层作业(十四)离散型随机变量的均值(建议用时:60分钟)[基础达标练]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于()A.0.1 B.0.2C.0.3 D.0.4D[∵E(X)=16,∴40p=16,∴p=0.4.]2.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)为()A.0.765 B.1.75C.1.765 D.0.22B[X的取值为0,1,2,P(X=0)=0.1×0.15=0.015,P (X =1)=0.9×0.15+0.1×0.85=0.22, P (X =2)=0.9×0.85=0.765,E (X )=0×0.015+1×0.22+2×0.765=1.75.] 3.已知Y =5X +1,E (Y )=6,则E (X )的值为( ) A .65 B .5 C .1D .31C [因为E (Y )=E (5X +1)=5E (X )+1=6, 所以E (X )=1.]4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400B [记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.]5.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.83D [X =2,3.所以P (X =2)=1C 23=13,P (X =3)=C 12C 23=23,所以E (X )=2×13+3×23=83.]二、填空题6.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.0.8 [因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.] 7.某射手射击所得环数X 的分布列如下:已知X 的均值E (X )=8.9,则y 的值为________. 0.4 [由题意得⎩⎨⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎨⎧ x +y =0.6,7x +10y =5.4,解得⎩⎨⎧x =0.2,y =0.4.] 8.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.1712 [由已知得X 的可能取值为0,1,2. P (X =0)=13×14=112, P (X =1)=23×14+13×34=512,P (X =2)=23×34=612,E (X )=0×112+1×512+2×612=1712.] 三、解答题9.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数X 的分布列及均值E (X ).[解] X 可能的取值为0,1,2.P (X =0)=C 217C 220=136190,P (X =1)=C 13C 117C 220=51190,P (X =2)=C 23C 220=3190.∴X 的分布列为:E(X)=0×136190+1×51190+2×3190=310.10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.[解](1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能取值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.[能力提升练]1.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是()A.2 000元B.2 200元C.2 400元D.2 600元B[出海的期望效益E(ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).]2.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫712,1 D.⎝ ⎛⎭⎪⎫12,1 B [根据题意,X 的所有可能取值为1,2,3,且P (X =1)=p ,P (X =2)=p (1-p ),P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.]3.把两封信投入A ,B ,C 三个空邮箱中,则A 邮箱中的信件数X 的均值E (X )=________.23[每封信投到A 邮箱的概率均为13, X ~B ⎝ ⎛⎭⎪⎫2,13,∴E (X )=23.]4.某人有10万元,准备用于投资房地产或购买股票,如果根据下面的盈利表进行决策:那么应选择的决策方案是________.投资房地产 [设购买股票的盈利为X ,投资房地产的盈利为Y , 则购买股票的盈利的均值为 E (X )=10×0.3+3×0.5+(-5)×0.2 =3+1.5-1=3.5.投资房地产的盈利的均值为 E (Y )=8×0.3+4×0.5+(-4)×0.2=2.4+2-0.8=3.6.因为E(Y)>E(X),所以投资房地产的平均盈利高,即应选择投资房地产.] 5.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.[解](1)∵每张奖券是否中奖是相互独立的,∴ξ~B(4,1 2).∴ξ的分布列为ξ0123 4P 116143814116(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100. 即实际支出的数学期望为2 100元.。
2.3.1_离散型随机变量的均值(2课时)
pi
…
pn
pn )
离散型随机变量均值的线性性质
E (aX b) aE ( X ) b
1、随机变量ξ的分布列是
ξ P
(1)则Eξ=
1 0.5
2.4
.
3 0.3
5.8 .
5 0.2
(2)若η=2ξ+1,则Eη= 2、随机变量ξ的分布列是
ξ P
Eξ=7.5,则a=
4 0.3
0.1
b=
7 a
10 -4 P 0.6 0.4 所以E=10×0.6+(-4) ×0.4=4.4
因为4.4>2, 所以商场应选择在商场外进行促销.
能力展现
遇大洪水损失60000元 遇小洪水损失10000元 有大洪水的概率为0.01 有小洪水的概率为0.25
大型设备
方案1:运走设备运费为3800;
方案2:建保护围墙,建设费2000元,但围墙只能 防小洪水; 方案3:不采取措施.
例题1
随机抛掷一个均匀的骰子,求所得骰子的点数 X的期望. 解:随机变量X的取值为1,2,3,4,5,6 其分布列为 X 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6
所以随机变量X的均值为E(X)=1× 1/6+2× 1/6 +3×1/6+4× 1/6+5× 1/6+6× 1/6=3.5 变式:将所得点数的2倍加1作为得分数, 即 Y=2X+1,试求Y的期望?
…+ k×Cnkpkqn-k+…+ n×Cnnpnq0
=np(Cn-10p0qn-1+ Cn-11p1qn-2+ … +
Cn-1k-1pk-1q(n-1)-(k-1) +…+ Cn-1n-1pn-1q0) = np(p+q)n-1=np
选修2-3第二章2-3-1离散型随机变量的均值
则E(X)=p=0.6. (2)由题意,重复5次投篮,命中的次数Y服从二项分布, 即Y~B(5,0.6).则E(Y)=np=5×0.6=3. 规律方法 此类题的解法一般分两步:一是先判断随机变 量服从两点分布还是二项分布;二是代入两点分布或二项 分布的均值公式计算均值.
课前探究学习
加,样本平均值越来越接近于总体均值.
2. 两点分布与二项分布的均值 X X服从两点分布 X~B(n,p) np ___
课堂讲练互动 活页规范训练
E(X)
p (p为成功概率) __
课前探究学习
试一试:若某人投篮的命中率为0.8,那么他投篮10次一
定会进8个球吗? 提示 某人投篮的命中率为0.8,是通过大量重复的试验 来推断出来的一个均值.由于每次试验是相互独立的,投 一次可能成功,也可能失败.也就是说投篮10次可能一个
课前探究学习
课堂讲练互动
活页规范训练
题型一
利用定义求离散型随机变量的数学期望
【例1】 袋中有4只红球,3只黑球,今从袋中随机取出4只 球,设取到一只红球得2分,取得一只黑球得1分,试求得 分X的数学期望. [思路探索] 先分析得分的所有取值情况,再求分布列,代 入公式即可.
课前探究学习
课堂讲练互动
X P
5
4 35
6 18 35
7 12 35
8 1 35
4 18 12 1 44 ∴E(X)=5× +6× +7× +8× = (分). 35 35 35 35 7
课前探究学习
课堂讲练互动
活页规范训练
规律方法
求数学期望的步骤是:(1)明确随机变量的取
值,以及取每个值的试验结果;(2)求出随机变量取各个 值的概率;(3)列出分布列;(4)利用数学期望公式进行计 算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
E(X) x1 p1 x2 p2 xi pi xn pn
思考:
设Y=aX+b,其中a,b为常数,则Y也是随 机变量. (1) Y的分布列是什么? (2) E(Y)=?
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
1 10
加 权
平
X 1 4 2 3 3 2 4 1 2 均
10 10 10 10
加权平均数
• 权是称锤,权数是起权衡轻重的作 用的数值;
• 加权平均:计算若干数量的平均数 时,考虑到每个数量在总量中所具 有的重要性不同,分别给予不同的 权数。
18元/kg
24元/kg
36元/kg
• 按3:2:1的比例混合,混合糖果中每一 粒糖果的质量都相等,如何给混合糖果 定价才合理? 定价为
代表X的平均取值,用E(X)表示
一、离散型随机变量取值的平均值 数学期望
一般地,若离散型随机变量X的概率分布为:
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
则称
E(X) x1 p1 x2 p2 xi pi xn pn
为随机变量X的均值或数学期望。它反映了离 散型随机变量取值的平均水平。
解:设X1表示甲选对的题数、X2表示乙选对的题数它们 都满足二项分布:X1~B(20,0.9) , X2~B(20,0.25)
所以:E(X1)= n p =20×0.9=18
E(X2)= n p =20×0.25=5
甲所得分数的均值为:18×5=90
乙所得分数的均值为: 5×5=25
X
x1
x2
…
x20
X
0
1
p
0.3 0.7
解:该随机变量X服从两点分布:
P(X=1)=0.7、P(X=0)=0.3
所以:E(X) =1×P(X=1)+0×P(X=0)=0.7
归纳: 一般地,如果随机变量X服从两点分布,
X
1
0
P
p
1-p
则 E(X) 1 p 0 (1 p) p
例2 篮球运动员在比赛中每次罚球命中得1分,
2.3.1 离散型随机变 量的均值
数学期望
一、复习回顾
1、离散型随机变量的分布列
X
x1
x2 ··· xi
···
P
p1
p2 ··· pi
···
2、离散型随机变量分布列的性质:
(1)pi≥0,i=1,2,…; (2)p1+p2+…+pi+…=1.
引入
• 对于离散型随机变量,可以由它的概率分布 列确定与该随机变量相关事件的概率。但在实 际问题中,有时我们更感兴趣的是随机变量的 某些数字特征。例如,要了解某班同学在一次 数学测验中的总体水平,很重要的是看平均分; 要了解某班同学数学成绩是否“两极分化”则 需要考察这个班数学成绩的方差。
P
p1
p2
…
p20
Y
5x1
5x2
…
5x20
P
p1
p2
…
p20
解:设Y1表示甲所得分数、Y2表示乙所得分数 则Y1=5X1 Y2=5X2 所以:E(Y1)=E(5X1)=5E(X1)=90 E(Y2)=E(5X2)=5E(X2)=25
例3 根据气象预报,某地区近期有小洪水的概率
为0.25,有大洪水的概率为0.01.该地区某工地上 有一台大型设备,遇到大洪水时损失60000元,遇 到小洪水损失10000元.为保护设备,有以下3种 方案: 方案1:运走设备,搬运费为3800元; 方案2:建保护围墙,建设费为2000元,
3
E(X) 2.1
小结:
一般地,如果随机变量X服从二项分布,
即X~B(n,p),则 E(X) np
基础训练: 一个袋子里装有大小相同的3 个红球和
2个黄球,从中有放回地取5次,则取到红球
次数的数学期望是 3 .
例2 一次单元测验由20个选择题构成,每个选择
题有4个选项,其中仅有一个选项是正确的。每 题选对得5分,不选或选错不得分,满分100分。 学生甲选对任意一题的概率为0.9,学生乙则在 测验中对每题都从各选项中随机地选出一个,分 别求学生甲和学生乙在这次测验中的成绩的均值。
X x1
Y ax1 b P p1
x2
ax2 b
p2
··· xi ··· axi b
··· pi
··· xn ···axn b
··· pn
E(Y) (ax1 b) p1 (ax2 b) p2 (axn b) pn
a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
可以吗 18+24+36 26 3
假如从这种混合糖果中随机选取一颗,记X为这颗 糖果所属种类的单价(元 kg),你能写出X的分布列吗?
• 现在混合糖果中任取一个,它的实际 价格用X表示,X的分布列为:
X 18
1
P
2
24
1 3
36
1 6
合理价格 =18×1 +24× 1 +36× 1 =23
2
3
6
aE(X) b
一、离散型随机变量取值的平均值 数学期望
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn E(X) x1 p1 x2 p2 xi pi xn pn
二、数学期望的性质
E(aX b) aE(X ) b
三、基础训练
1、随机变量ξ的分布列是
• 我们还常常希望直接通过数字来反映随机变 量的某个方面的特征,最常用的有期望与方差.
问题:某人射击10次,所得环数分别是:1,1,1, 1,2,2,2,3,3,4;则所得的平均环数是多少?
X 1111222334 2 10
把环数看成随机变量的概率分布列:
X
1
2
3
4 权数
P
4 10
3 10
2 10
ξ
1
3
5
P
0.5
0.3
0.2
(1)则E(ξ)= 2.4
.
(2)若η=2ξ+1,则E(η)= 5.8
.
2、随机变量ξ的分布列是
ξ
4
7
P
0.3
a
E(ξ)=7.5,则a= 0.1
9
10
b
0.2
b= 0.4 .
例1 在篮球比赛中,如果某运动员罚球命中 的概率为0.7,那么他罚球一次得分设为X, X的均值是多少?
罚不中得0分.已知某运动员罚球命中的概率为 0.7,他连续罚球3次; (1)求他得到的分数X的分布列; (2)求X的期望。
解:(1) X~B(3,0.7)
X0
1
2
3
P
0.33
C
1 3
0.7
0.3
2
C
2 3
0.7
2
0.3
0.73
(2)
EX
0
0.33
1
C
1 30.7ຫໍສະໝຸດ 0.322C
2 3
0.7
2
0.3
3
0.7