高三数学第二轮复习教学案(一)
高考数学第二轮专题复习直线与圆的方程教案
高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
三角函数专题复习-三角恒等变换导学案-2023届高三数学二轮专题复习
三角函数第1课时 任意角和弧度制、三角函数的概念【学习目标】1.了解任意角的概念会用公式求扇形弧长、面积;2.会用三角函数定义求值,能判断三角函数在各象限的符号. 【教学过程】 一、基础自测1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )2.一扇形的圆心角α=︒60,半径R =10 cm ,该扇形的面积为 .3.若角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则sin α-cos α+tan α=________.4.已知点P (tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限[必备知识] 1.角的概念(1)定义: .(2)分类: (3)终边相同的角: . 2.弧度制的定义和公式(1)定义: .(2)公式: . 3.设角α终边上异于原点的任意一点P (x ,y ),r =x 2+y 2.三角函数 定义 定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号sin αcos αtan α角度 ︒0 ︒30 ︒45 ︒60 ︒90 ︒120 ︒135 ︒150 ︒180弧度 sin αcos α tan α二、典例精讲例1(1)已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,则cos α=________,tan α=________. (2)若α为第二象限角,则cos 2α,cos α2,1sin 2α中,其值必为正的有( )A.0个B.1个C.2个D.3个归纳:巩固练习1:(1)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A.-12B.-32C.12D.32(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角例2.扇形周长为20 cm ,这个扇形的面积最大时,扇形的圆心角α为 弧度归纳:巩固练习2(多选)已知扇形的周长是6 cm ,面积是2 cm 2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2三、达标检测1.若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π162.已知角α的终边经过点(3,-4),则sin α+1cos α等于( )A.-15B.3715C.3720D.13153.(多选)角α的终边在第一象限,则sinα2⎪⎪⎪⎪sin α2+cos α2⎪⎪⎪⎪cos α2+tan α2⎪⎪⎪⎪tan α2的值为( )A.-1B.1C.-3D.34.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.5.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限; (2)若角α的终边上一点M ),53(m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.思维导图 三角 函数任意角与弧度制任意角的三角函数角定义弧度制符号角度与弧度互化 特殊角弧度数 扇形弧长、面积三角函数第2课时同角三角函数基本关系与诱导公式【学习目标】1.会用同角基本关系式解决给值求值问题;2.熟记诱导公式并会用诱导公式化简求值. 【教学过程】 二、基础自测1.若sin α=55,π2<α<π,则αcos = tan α=2.若sin(π+α)=12,α∈02π⎛⎫- ⎪⎝⎭,,则tan(π-α)等于( ) A .-12B 3C 3D 33.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则()tan α-=( )A .–2B .2C .13- D .134.sin 1 050°等于( ) A.12 B .-12 C.32 D .-32 [必备知识]1.同角三角函数的基本关系平方关系: 商数关系: 2.公式 角 正弦 余弦 正切 口诀① 2k π+α(k ∈Z )奇变偶不变,符号看象限② -α ③ π-α ④ π+α⑤ π2-α⑥ π2+α⑦ 32π+α⑧ 32π-α三、典例精讲例1(1)已知tan α=2,则3sin α-cos αsin α+2cos α等于( )A.54 B .-54 C.53 D .-53(2)已知sin θ+cos θ=43,θ∈)4,0(π,则sin θ-cos θ的值为 .归纳:巩固练习1:(1)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .(2)已知sin θ+cos θ=713,θ∈(0,π),则sin θ-cos θ= ,tan θ= . 例2.(1)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin )22021(πα-等于( ) A .-45 B .-35 C.35 D.45(2)已知sin )3(απ+=1213,则cos )6(απ-等于( )A.513B.1213 C .-513 D .-1213 归纳:巩固练习2:(1)已知α∈(0,π),且cos α=-1517,则sin )2(απ+·tan(π+α)等于( )A .-1517 B.1517 C .-817 D.817(2)sin )12(πα-=13,则cos )1271(πα+= .四、达标检测1.已知α是第四象限角,tan α=-815,则sin α等于( )A.1517 B .-1517 C.817 D .-8172.已知(0,)απ∈,若2cos 6πα⎛⎫-= ⎪⎝⎭5sin 6πα⎛⎫+ ⎪⎝⎭的值为( )A .14B 2C .2D 143.(多选)在△ABC 中,下列结论正确的是( )A .sin(A +B )=sinC B .sin B +C 2=cos A2 C .tan(A +B )=-tan C )2(π≠C D .cos(A +B )=cos C4.sin 4π3·cos 5π6·tan )34(π-的值是 .5.已知-π2<α<0,且函数f (α)=cos )23(απ+-sin α·1+cos α1-cos α-1.(1)化简f (α); (2)若f (α)=15,求sin αcos α和sin α-cos α的值.思维导图三角函数第3课时 两角和与差的正弦、余弦、正切公式【学习目标】1.会用两角和与差的正弦、余弦、正切公式化简求值;2.会用辅助角公式化简求值. 【教学过程】 三、基础自测1.(多选)下面各式中,正确的是( )A.cos π12=cos π3-cos π4B.cos 5π12=22sin π3-cos π4cos π3C.cos )12(π-=cos π4cos π3+64 D.3sin α+cos α=2sin )3(πα+2.已知tan θ=2,则tan )4(πθ-= .3.cos 17°cos 77°+cos 73°cos 13°=4.tan 10°+tan 50°+3tan 10°tan 50°= . [必备知识]两角和与差的余弦、正弦、正切公式(1)公式C α-β:cos(α-β)= ;(2)公式C α+β:cos(α+β)= ; (3)公式S α+β:sin(α+β)= ;(4)公式S α-β:sin(α-β)= ; (5)公式T α+β:tan(α+β)= ;(6)公式T α-β:tan(α-β)= . (7)(辅助角公式)a sin α+b cos α= .五、典例精讲例1(1)若cos α=-45,α是第三象限角,则sin )4(πα+等于( )A.-210B.210C.-7210D.7210(2)已知534cos 23sin 23=+αα,则4sin 3απ⎛⎫+ ⎪⎝⎭的值为( ) A .23B 23C .45-D .45归纳:巩固练习1:(1)已知sin α=35,α∈),2(ππ,tan(π-β)=12,则tan(α-β)的值为( )A.-211B.211C.112D.-112(2)若3sin s 2a a +=,则tan()πα+=( )A 3B 2C 2D 3例2.已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( )A.5π12B.π3C.π4D.π6归纳:巩固练习2:已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= ..六、达标检测1.-sin 133°cos 197°-cos 47°cos 73°等于( ) A.12 B.33 C.22 D.322.已知α,β∈⎝⎛⎭⎫-π2,π2,tan α,tan β是方程x 2+12x +10=0的两根,则tan(α+β)等于( ) A.43 B.-2或12 C.12D.-2 3.(多选)已知3cos α-3sin α=23cos(α+φ),则φ的值可能为( )A.π6 B.613π C. 6π- D.611π 4.已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 5.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.思维导图 辅助角公式 a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2三角函数第4课时 三角恒等变换【学习目标】1.熟记正弦、余弦、正切倍角公式;2.会用正弦、余弦、正切倍角公式、半角公式化简求值. 【教学过程】 四、基础自测1.sin 15°cos 15°等于( )A.-14B.14C.-12D.122.已知α,β为锐角,tan α=43,则cos 2α等于( )A.725B.-725C.2425D.-24253.计算:4tanπ123tan 2π12-3等于( )A.233B.-233C.239D.-239[必备知识]二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α= .(2)公式C 2α:cos 2α= = = . (3)公式T 2α:tan 2α= .(4)(降幂公式)sin 2α= ,cos 2α= . (5)(半角公式)=2sinα,=2cosα.七、典例精讲例1(1)(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( )A.53B.23C.13D.59正用、逆用公式变形正弦:正余余正符号同余弦:余余正正符号异(2)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4= .归纳:巩固练习1:(1)(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.255(2)已知()5sin 26cos 0απα+-=,0,2πα⎛⎫∈ ⎪⎝⎭,则2cos 24απ⎛⎫ +⎪⎝⎭=( )A .15-B .15C .35D .45例2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于 . 归纳:巩固练习2:若1010)6cos(=+πθ,则)322cos(πθ- 等于 . 八、达标检测1.已知sin α-cos α=43,则sin 2α等于( )A.-79B.-29C.29D.792.计算:1-cos 210°cos 80°1-cos 20°等于( )A.22B.12C.32D.-223.(多选)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14,则f (x )的值不可能是( ) A.-12 B.12C.-2D.24.若α∈⎝⎛⎭⎫π2,π,sin α=31010,则tan 2α= . 5.已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值思维导图。
高考数学二轮复习教案
高考数学二轮复习教案【篇一:高考数学二轮专题复习教案共23讲精品专题】专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点??2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合a、b,当a∩b=?时,你是否注意到“极端”情况:a=?或b=??求集合的子集时是否忘记??分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合m, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.5. ?是任何集合的子集,是任何非空集合的真子集.2. 已知命题p:n∈n,2n>1 000,则p为________.3. 条件p:a∈m={x|x2-x0},条件q:a∈n={x||x|2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“?x∈r,x2+(a-1)x+10”是假命题,则实数a的取值范围为________.【例1】已知集合a={x|x2-3x-10≤0},集合b={x|p+1≤x≤2p-1}.若b?a,求实数p的取值范围.【例2】设a={(x,y)|y2-x-1=0},b={(x,y)|4x2+2x-2y+5=0},c={(x,y)|y=kx+b},是否存在k、b∈n,使得(a∪b)∩c =??若存在,求出k,b的值;若不存在,请说明理由.则下列结论恒成立的是________.a. t,v中至少有一个关于乘法封闭b. t,v中至多有一个关于乘法封闭 c. t,v中有且只有一个关于乘法封闭 d. t,v中每一个关于乘法封闭【例4】已知a0,函数f(x)=ax-bx2.(1) 当b0时,若?x∈r,都有f(x)≤1,证明:0a≤b; (2) 当b1时,证明:?x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤b.①2 011∈[1];②-3∈[3];③z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.1解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x1=a12+a由此可知x10,x20,(3分)①当a0时,a={x|xx1}∪{x|xx2},(5分) 1a∩b≠?的充要条件是x2<3,即a②当a0时, a={x|x1xx2},(10分) 1a∩b≠?的充要条件是x21,即+a2+1,解得a-2,(13分) a62+3,解得a(9分) a712,x2=+aa6?.(14分) 综上,使a∩b≠?成立的实数a的取值范围为(-∞,-2)∪??7?一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语a. 57b. 56c. 49d. 8【答案】 b 解析:集合a的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合s共有56个.故选b.m2y≤2m+1,x,y∈r}, 若a∩b≠?,则实数m的取值范围是________.1m12+2? 解析:由a∩b≠?得,a≠?,所以m2≥,m≥m≤0.【答案】 ??2?22|2-2m||2-2m-1|2当m≤0=22m>-m,且=2m>-m,又2+0=2>2m222|2-2m|1+1,所以集合a表示的区域和集合b表示的区域无公共部分;当m≥时,只要≤m22|2-2m-1|22或m,解得22≤m≤2+2或1-m≤1,所以实数m的取值范围222122?. 是??2?点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m的取值范围的相关条件.基础训练1. (-∞,3) 解析:a=(-∞,0]∪[3,+∞),b=(0,+∞),a∪b=(-∞,+∞),a∩b=[3,+∞).2. ?n∈n,2n≤1 0003. 充分不必要解析:m=(0,1)?n=(-2,2).例1 解:由x2-3x-10≤0得-2≤x≤5. ∴ a=[-2,5].①当b≠?时,即p+1≤2p-1?p≥2.由b?a得-2≤p+1且2p-1≤5.得-3≤p≤3.∴ 2≤p≤3.②当b=?时,即p+12p-1?p<2.b?a成立.综上得p≤3.点评:从以上解答应看到:解决有关a∩b=?,a∪b=a,a∪b=b 或a?b等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练设不等式x2-2ax+a+2≤0的解集为m,如果m?[1,4],求实数a的取值范围.??f?1?≥0且f?4?≥0,[x1,x2],m?[1,4]?1≤x1<x2≤4??-a+3≥0,??18-7a≥0,即?1≤a≤4,??a<-1或a>2,1818-1. 解得:2<a≤,综上实数a的取值范围是?7?7例2 解:∵ (a∪b)∩c=?,∵a∩c=?且b∩c=?,2??y=x+1,由 ? 得k2x2+(2bk-1)x+b2-1=0, ?y=kx+b?∴ 4k2-4bk+10,此不等式有解,其充要条件是16b2-160,即b21,①2??4x+2x-2y+5=0,∵ ? ?y=kx+b,?∴ 4x2+(2-2k)x+(5-2b)=0,∴ k2-2k+8b-190, 从而8b20,即b2.5,②?4k2-8k+1<0,??2 ?k-2k-3<0,?∴ k=1,故存在自然数k=1,b=2,使得(a∪b)∩c=?.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.???1-y=3变式训练已知集合a=??x,y???x+1?????,b={(x,y)|y=kx+3},若a∩b=?,??求实数k的取值范围.解:集合a表示直线y=-3x-2上除去点(-1,1)外所有点的集合,集合b表示直线y=kx+3上所有点的集合,a∩b=?,所以两直线平行或直线y=kx+3过点(-1,1),所以k=2或k=-3.例3 【答案】 a 解析:由于t∪v=z,故整数1一定在t,v两个集合中的一个中,不妨设1∈t,则?a,b∈t,另一方面,当t={非负整数},v={负整数}时,t关于乘法封闭,v关于乘法不封闭,故d不对;当t={奇数},v={偶数}时,t,v显然关于乘法都是封闭的,故b,c不对.从而本题就选a.例4 证明:(1) ax-bx2≤1对x∈r恒成立,又b>0, ∴a2-4b≤0,∴ 0<a≤b. (2) 必要性,∵ ?x∈[0,1],|f(x)|≤1恒成立,∴ bx2-ax≤1且bx2-ax≥-1,显然x=0时成立,111对x∈(0,1]时a≥bx-且a≤bx+f(x)=bxx∈(0,1]上单调增,f(x)最大值xxxf(1)=b-1.1111函数g(x)=bx+在?0,?上单调减,在?1?上单调增,函数g(x)的最小值为g?x?b????b?=2,∴ b-1≤a≤2b,故必要性成立;a2a2aa1122b4b2b2a2f(x)max=1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a-b,4bf(x)的最小值从f(0)=0,f(1)=a-b中取最小的,又a-b≥-1,∴-1≤f(x)≤1,故充分性成立;综上命题得证.变式训练命题甲:方程x2+mx+1=0有两个相异负根;命题乙:方程4x2+4(m-2)x+1=0无实根,这两个命题有且只有一个成立,求实数m的取值范围.2解:使命题甲成立的条件是: ??m>2.?x1+x2=-m<0?∴集合a={m|m2}.【篇二:高三数学二轮复习教案】高三数学二轮复习教案学校:寿县迎河中学汇编:龙如山第一部分:三角问题的题型与方法一、考试内容1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
高三数学二轮复习教学案一体化:函数的性质及应用(1)
专题1 函数的性质及应用(1)高考趋势函数问题一直是高考中的重头戏,函数性质中的定义域、值域、奇偶性、单调性是常考的知识点,而其中函数的值域(包含最值与范围问题)与单调性的考查则是重点内容,而且还是高考中的难点。
考点展示1. 函数ax x x f 2)(2+=(a 为常数)的单调减区间是 ],(a --∞ 2. 若d cx bx ax x f +++=23)((a ,b ,c ,d 为常数)为奇函数,则ab+cd= 03. 设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, 2 4. 函数x x x f ln )(-=的增区间为 ),1(+∞5. 若一次函数)(x f 满足34))((+=x x f f ,则)(x f = 2x+1或-2x-36.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 ]310,2[样题剖析 例1.已知函数)1,0()(≠>+=-a a ma a x f xx是R上的奇函数,求函数ma ax mx x g ++=2)(的零点。
解:m=-1 ,a ax x x g -+-=2)(,0)(=x g 即02=+-a ax x 1. 当4110<<<<a a 或即0<∆,)(x g 无零点 2. 当4=a 时)(x g 只有一个零点23. 当4>a 即0>∆时)(x g 有两个零点242aa a -±变式:函数3(),f x x x x R =+∈,当20πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,求实数m 的取值范围(m<1)例2.已知函数||)(a x x f -=,a 为常数。
(1) 若对一切R x ∈,总有)()(0x f x f ≥,求实数0x 的值(a x =0)(2) 若对于任意),(,21c b x x ∈(b ,c 为常数),21x x <,总有)()(21x f x f >,判断实数a ,b ,c 的大小关系;a c b ≤<(3) 若)(m x f +为偶函数,求实数m 的值m=a(4) 若当321x x x <<时,有)()()(231x f x f x f >>,求证:a x x 231<+(a x <1,a x >3,)()(21x f x f >得a x x a ->-31)变式:09江西已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,求实数m 的取值范围m<4总结提炼对于基本函数(一次函数、二次函数、三次函数、指数函数、对数函数、幂函数)的图像和性质应熟练解决函数综合问题要注意:通过不同途径了解、洞察所涉及到的函数的性质。
数列求和——错位相减法 教学设计 2023届高三数学二轮复习
(1)求数列{an}的通项公式;
(2)若 , , 对任意的正整数 恒成立,求实数 的取值范围.
6.(2021·新高考І卷·16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 的长方形纸,对折1次共可以得到 , 两种规格的图形,它们的面积之和 ,对折2次共可以得到 , , 三种规格的图形,它们的面积之和 ,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折 次,那么 ______ .
设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.
(1)求{an}的公比;
(2)若a1=1,求数列{nan}的前n项和.
解:(1) ;
(2) ,
记{nan}的前n项和为Sn,则
重点讲解求和步骤中
“4.解出和Sn”的注意事项:
两式相减后,等式右边中间的n-1项求和转化成了等比数列求和,应先提公因数——等差数列的公差,再选择适当的求和公式计算;
2.通过课程的学习,学生能进一步发展数学学科核心素养的运算能力;通过运算促进数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神。
教学重点
错位相减法求数列的和
教学难点
错位相减后的项数、符号、化简等易错问题,以及对转化数学思想的理解。
教
教学过程设计
教学
步骤
数列求和——错位相减法 教学设计
教学课题
数列求和——错位相减法
课程类型
复习课
教学目标
知识与技能
熟练掌握错位相减法,能够准确、快速地用错位相减法求出“等差×等比”数列的和。
过程与方法
通过两等式的错位相减,将无法求和的问题转化成等比数列求和,在运算的过程中,体会转化与化归的数学思想。
空间角与空间距离
高三数学第二轮复习教学案第一课时 空间角与空间距离班级 学号 姓名【考纲解读】1.掌握两条直线所成的角、直线和平面所成的角及二面角的平面角的概念,并会求 这些角.2.掌握两条异面直线间的距离(只要求会计算已给出公垂线时的距离)直线和平面间的距离及两个平面间的距离的概念,并会求直线和平面间的距离,两个平面间的距离. 【教学目标】1.能够运用转化的思想化空间角为平面角;化线面间距离,面面间距离等为点到线或 线到面的距离.2.培养学生空间想象能力,并能把空间想象能力与运算能力,逻辑思维能力相结合. 【例题讲解】 例题1(1) 如图:⊥PA 平面ο90,=∠ACB ABC 且a BC AC PA ===, 则异面直线PB 与 AC 所成角的正切值等于________;(2) 下面是关于三棱锥的四个命题: ①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥; ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥; ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥,其中,真命题的编号是___________.(写出的所有真命题的编号). (3)四棱锥ABCD P -中,PD ⊥底面ABCD ABCD ,为正方形,且1==AB PD ,G 为ABC ∆的重心,则PG 与底面ABCD 所成的角为 ( )A43B 34172arccosC 232arctanD 33arcsin(4)已知球的表面积为20π,球面上有C B A ,,三点,如果32,2===BC AC AB ,则球心到平面ABC 的距离为 ( )A 1 B2C3D 2(5)DP 垂直于正六边形ABCDEF 所在平面,若正六边形边长为,a 且PD=,a 则点P 到BC 的距离为 ( ) Aa 3B a 2Ca 27D a 例2在棱长为a 的正方体1111D C B A ABCD -中,FE ,分别是BC ,11D A 的中点 (1)求证:四边形EDF B 1是菱形; (2)求直线C A 1与DE 所成的角; (3)求直线AD 与平面EDF B 1所成的角; (4)求面EDF B 1与面ABCD 所成的角.E C C 1A BD D 1A 1B 1F A BCP例3若斜三棱柱111C B A ABC -的侧面⊥11ACC A 底面,90,ο=∠ABC ABC32,2==AC BC ,且C A A A C A AA 1111,=⊥(1)求侧棱1BB 到侧面C C AA 11的距离; (2)求B A 1与平面ABC 所成的角; (3)求侧棱1CC 到侧面11ABB A 的距离;例4 在三棱锥ABC P -中,ABC ∆是正三角形,ο90=∠PCA ,D 为PA 的中点,二面角B AC P --为ο120,32,2==AB PC .(1)求证:;BD AC ⊥(2)求BD 与底面ABC 所成的角; (3)求三棱锥ABC P -的体积.A BC A 1B 1C 1ABCDP高三数学第二轮复习教学案第二课时 空间角与空间距离班级 学号 姓名【考纲解读】考查学生归纳、判断等各方面的能力,培养学生的创新意识. 【教学目标】1.能够运用归纳、猜想、分析、化归等方法探索出命题条件,然后给予证明;2.能够综合运用条件探索出要求的结论,或判断结论是否存在. 【例题讲解】 例题11.正方体1111D C B A ABCD -棱长为1,点M 在棱AB 上,且31=AM ,点P 是平面ABCD 上的动点,且点P 到直线11D A 的距离与点到点M 的距离的平方差为1,则点P 的轨迹是 ( )A 抛物线B 双曲线C 直线D 椭圆2.在侧棱长为a 的正四棱锥中,棱锥的体积最大时,底面边长为 ( )Aa 332Ba 3Ca 33Da3.在三棱柱111C B A ABC -中,P 为1AA 上一点,求c c BB p V 11-:111C B A ABC V -=( )A32B31 C 61 D 3 4.正四棱锥ABCD P -的底面ABCD 在球O 的大圆面上,顶点P 在球面上,已知球的体积为π332,则正四棱锥ABCD P -的体积的最大值为_______. 5.在直三棱柱111C B A ABC -中,点N M ,分别在11,BC AB 上,且λ==11BC BNAB AM ()10<<λ,那么以下四个结论中正确的有_________.(1)MN AA ⊥1 (2)MN AC // (3)//MN 平面ABC (4)MN 与AC 是异面直线6.在正三棱柱111C B A ABC -中,P 为B A 1上的点,当PBPA 1=______时,使得AB PC ⊥.例2正方形ABCD 的四边CB CD AD AB ,,,上分别取H G F E ,,,四点,便得2:1::::====HB CH GD CG FD AF EB AE ,把正方形沿对角线BD 折起,如图:(1)求证:EFGH 是矩形;(2)当二面角C BD A --为多大的,EFGH 为正方形.例3 在直三棱柱111C B A ABC -中,AC AB =,F 为棱BB 1上一点,1:2:1=FB BF ,a BC BF 2==,D 为BC 的中点.(1) 若E 为线段AD 上(不同于D A ,)的任意一点,求证:1FC EF ⊥.(2) 试问:若a AB 2=,在线段AD 上的点E 能否使EF 与平面1BB C C 1成ο60角?证明你的结论。
高三数学二轮复习教学案[1]
高三数学二轮复习教学案——数列综合一、【填空】1. 已知数列{}n a 对任意*,p q N ∈,有p q p q a a a ++=,若119a =,则36a = . 2.已知,,ab a b +成等差数列,,,a b ab 成等比数列,则通项为282n a an bn =+的数列{}n a 的数列{}n a 的前n 项和为 .3. 函数2(0)y x x =>的图象在点2(,)k ka a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是________.4.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项的和为n S ,则30S 为 . 5.设数列{}n a 为各项均为1的无穷数列.若在数列{}n a 的首项1a 后面插入1,隔2项,即3a 后面插入2,再隔2项,即6a 后面插入3,……,这样得到一个新数列{}n b ,则数列{}n b 前2010项的和为 .6.{},543212,a a a a a a n an a n n<<<<+=若满足的数列通项公式为 且1+>n n a a 对8≥n 恒成立,则实数a 的取值范围是 .二、【解答】7.在各项均为正数的等比数列{}n a 中,已知2123a a =+,且23a ,4a ,35a 成等差数列.(1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n S .8. 设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点()n n S a ,1+在直线022=-+y x 上. (1)求数列{}n a 的通项公式;(2)是否存在实数λ,使得数列⎭⎬⎫⎩⎨⎧+⋅+n n n S 2λλ为等差数列?若存在,求出λ的值;若不存在,则说明理由.(3)求证:21)1)(1(26111<++≤∑=+-n k k k k a a .9.已知函数()(0,1)x f x a b a a =+>≠的图像如图所示,数列{}n a 的前n 项的和1n n S a b +=+,n T 为数列{}n b 的前n 项的和,且22,11062,2n n T n n n =⎧=⎨--+≥⎩. (1)求数列{}n a 、{}n b 的通项公式;(2)找出所有满足:80n n a b ++=的自然数n 的值(不必证明);(3)若不等式0n n S b k ++≥对于任意的*n N ∈,2n ≥恒成立,求实数 k 的最小值,并求出此时相应的n 的值.10.在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x 。
高三数学二轮复习讲义专题一函数性质与图象
专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。
解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。
令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。
故集合A 中的元素最多为6个。
(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。
高三数学二轮复习教学计划和目标(精选10篇)
高三数学二轮复习教学计划和目标(精选10篇)高三数学二轮复习教学方案和目标(精选10篇)相对高考其他学科,数学学科命题考查特别全面,所以大家在复习的时候要做好复习方案,下面是我整理的关于高三数学二轮复习教学方案的内容,欢迎阅读借鉴!高三数学二轮复习教学方案和目标精选篇1本学期我所任教的是高三2个班的数学课和高一2个班级的数学课,另外任数学教研组组长工作。
牢记我校总体思想:立足生存,办出特色,谋求进展。
兼顾“两条腿走路”原则。
连续加强学校的师德要求:爱岗敬业,为人师表,转变观念,树立服务意识,以面对职业教育和学校当前所面临的转型过渡时期。
进行自我提高,虚心学习,仔细总结阅历。
根据学校要求针对高三教学制定方案如下:本学期的对口升学工作的形势特别严峻,也会特别残酷。
通过张校长的分析,使得我更加清晰地熟悉到了这一点,同时教务处也做出了周密的支配,我们应紧紧围绕这个主题而努力。
通过侧面了解及半年来的了解,这些同学的成果参差不齐,而且缺少拔尖人才,同学学习习惯不好,上进心不是很强,基础较差。
面对这样的同学,如何提高他们的学习爱好和促使他们鉴定信念,是一件特别重要的工作。
为了提高效率,应当对他们实行强化手段,进行强化训练,压缩了第一轮复习时间,分阶段复习训练已经开头。
本学期将在完成分阶段复习之后,并进行备考冲刺训练,靠近高考提示并适当提高一点难度,进行查缺补漏,不断提高。
时间特别紧急,要面对现状,要客服一切困难,加大力度,提高效率,为今年的高考工作做好比较充分的预备。
分阶段强化训练主要是教材和高考复习资料中的重点题型,整理成试题篇的形式,共9套,课后由同学自行完成,课上精讲,强调高考中常见问题,加以分析,积累解题阅历,形成比较完整的学问力量体系。
全程大约需要20课时,依据同学详细接受状况适当调整,尽量压缩,以给后面复习让出时间。
模拟冲刺阶段主要借助于高考原题和积累整理的10套模拟题进行综合训练和模拟冲刺,同时观看同学存在的问题对同学进行必要的辅导,尽可能促进同学综合力量的提高。
2023高三二轮数学复习计划安排【6篇】
2023高三二轮数学复习计划安排【6篇】复习应结合自己的实际,通过复习,使学生对知识有一个明确的、系统的了解,复习必须要全面系统,要作出全面反馈。
下面是整理的关于高三二轮数学复习计划安排的内容,欢迎阅读借鉴!高三二轮数学复习计划安排精选篇1一、下学期计划通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。
在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。
这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。
二轮复习的目的和任务是:1、查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;2、知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的.目的;3、提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。
在第二轮复习第1页共20页中,重点在提高能力上下功夫,把目标瞄准中档题。
4、加强学法指导,提高复习备考工作的有效性。
教会学生自己制定化学学习的计划,科学安排,掌握方式方法;明确课堂学习任务和要求,坚持系统化复习;做好材料的积累;强化知识点,不放过知识点的细枝末节;及时跟踪督促,以提高复习的效率。
5、深入钻研,加强集体备课集体备课是当前高中教学中提高教师群体素质、提高课堂教学效率的主要途径。
集体备课既有个体的积极参与,又有群体的通力合作,这种做法既有利于教师的扬长避短,更有利于教师在高起点上发展。
所以积极参与集体备课,发挥教师团队合作精神,集思广益,取长补短,探索提高课堂效率。
二、措施1、进一步开展培优工作,并对目标生常落实。
根据每次段考,确定流动目标生。
江苏省徐州市王杰中学高三数学二轮复习导学案:集合
一、自学准备与知识导学1:用文字表述下列集合N Z Q R C___________________2.集合之间的关系与运算技巧A ∪B =A ⇔__________;A ∩B =A ⇔________A ∩∁U (B )=∅⇔___________________.3.含有n 个元素的集合A 的子集的个数为______个,真子集的个数为________个4:设集合{A =,{}B a =,若B A ⊆,则实数a 的值为 .(集合中元素的三种性质中互异性对解题的影响最大,特别是含字母参数的集合,要注意验证)5:集合A ={1,2,3},B ={2,4,6},则A B = A ∪B=________________6:已知集合{}2,1,0,1-=U , {}1,1-=A , 则U A ð= .7:已知全集},3,2,1,0{=U 集合},3,2,1{},1,0{==B A 则=B A C U )( .二、学习交流与问题探讨 1.已知集合121,A x -⎧⎫=⎨⎬⎩⎭,{}0,1,2B =,若A B ⊆,则x =2、已知全集U =R ,集合{}10A x x =+>,则U A =ð .3、设全集U=R ,集合A={}{}2|20,|1x x x B x x -<=>,则集U A B =ð4.若全集U {}23|||2,{|log (1)1}x x A x x =<=-<,则A =U ð .5.设集合},,12|),{(R y x y x y x A ∈=+=,},,2|),{(2R y x a y x a y x B ∈=+=,若φ=B A ,则a =三、练习检测与拓展延伸1:已知全集U={1,2,3.4}, M={1,2},U={2,3}则ðu (M ∪N)=_____2:已知集合M={x ︱y=lnx },集合N={x ︱y=x -1},则M ∩N=______3:满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3,}={a 1,a 2,}的集合M 的个数为_____4: 设集合U =N ,集合M ={x|x 2-3x ≥0},则∁U M = .5.设全集U ={x ∈Z|61x +≥1},M ∩N ={1,2},∁U (M ∪N )={0},(∁U M )∩N ={4,5},则M=____________四、课后反思(1)本节课我回顾了那些知识:(2)本节课我重新认识了哪些道理:(3)还有哪些问题需要继续探究:。
高考数学二轮复习第1讲三角函数的化简与求值课件
.
5
5
答案 2 4
25
解析 两式平方相加得13-12sin αcos β-12cos αsin β= 3 7 , 则12sin(α+β)=13-3 7
25
25
= 2 8 8 ,sin(α+β)= 2 4 .
25
25
12/11/2021
x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=
例1 (2018高考数学模拟)如图,在直角坐标系xOy中,角α的顶点是原点,始边
与x轴正半轴重合,终边交单位圆于点A,且α∈
6
,.将2 角α的终边按逆时针
方向旋转 ,交单位圆于点B,记A(x1,y1),B(x2,y2). 3
12/11/2021
(1)若x1=
1 3
,求x2;
(2)分别过A,B作x轴的垂线,垂足依次为C,D,记△AOC的面积为S1,△BOD的面
1tan2αtan(αβ) 1 1
12/11/2021
【方法归纳】 解决三角函数的给值求角问题的关键是角的变换和三角公 式的选择,对于角的变换,若已知角与所求角之间有2倍的关系,则利用二倍角 公式求解,在此过程中,要注意同角三角函数的基本关系式sin2α+cos2α=1与tan α= s i n 的α 应用;若已知角与所求角之间是和或差的形式,则先用已知角和特
3
5
(1)求cos 2α的值;
(2)求tan(α-β)的值.
12/11/2021
解析 (1)因为tan α= s i n =α 4 ,所以sin α= 4
cosα 3
3
因为sin2α+cos2α=1,所以cos2α= 9 ,
高三数学二轮复习计划及策略
清河中学2023届高三数学第二轮复习策略与计划(一)夯重基础,加深理解与应用基础永远是高考的重点。
对基础的复习,不是对课本内容的简单重复,而是对知识点的解析梳理,对概念、公式等的准确理解、牢固掌握,是学生理解能力的升华。
加强对常考知识点、重难点的融会、贯通,把握每个知识点背后的潜在的出题规律,要通过对基础题的系统训练和规范讲解,从不同的角度把握每一个知识点的内涵与外延以及与其它知识点的联系。
“一体四层四翼”是高考的评价体系,从国家层面设计上回答了“为什么考”“考什么”“怎么考”等关键性问题。
一体:高考评价体系,通过确立“立德树人,服务选拔,导向教学”这一核心立场,回答了“为什么考”的问题。
四层:通过明确“必考知识、关键能力、学科素养、核心价值”四层考查目标,回答了“考什么”的问题。
四翼:通过明确“基础性、综合性、应用性、创新性”四个考查要求,回答了“怎么考”的问题。
复习策略上以基础、中档题为主,抓住问题的本质,知识间的相互联系,总结出通性通法,注意最优(技巧性)解法的优越性。
(二)注重数学思想方法,培养数学核心素养高考数学试题十分重视对数学思想的考查,着重考查如下七种数学思想:函数与方程思想,数形结合思想,转化与化归思想,分类与整合思想,特殊与一般思想,有限与无限思想,或然与必然思想,数学思想蕴含在数学基础知识之中,是架设在数学知识与能力之间的一座桥梁。
数学的思想与方法,是宏观与微观的关系,在数学思想的指导下,灵活运用数学方法解决具体问题,没有思想的方法是肤浅的,没有方法的思想是空洞的,只有二者完美的结合才是数学教学的最高境界。
高中数学核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
对学生核心素养的培养,对于发展学生的理性思维、培养学生的学科能力,具有决定性的作用。
(三)重视数学文化传承,注重创新意识发展中科院院士、王梓坤教授曾指出:“数学文化具有比数学知识体系更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”,武汉大学齐民友教授站在影响人类文化的兴衰、民族生存发展的高度,在《数学与文化》一书中写到:“一种没有相当发达的数学文化是注定要衰落的,一个不掌握数学作为一种文化的民族也是注定要衰落的.” 阐明了数学文化的价值.由于数学文化是对数学知识、技能、能力和素质等概念的高度概括,其价值对于人类文明乃至民族的存亡有着重大的意义.近年来,每年都对中华优秀传统文化知识进行考查,对传统文化知识的考查是对高层次数学思维的考查;每年的数学试题中总有4~5道新颖题型,体现创新意识,以便选拔优秀的学生.每年创新题型肯定会出现,这样的题型包括新定义型、归纳猜想型、类比推理型、探索发现型、研究设计型、开放发散型问题等,但整体试卷难度不会大起大落,以平稳为主。
高考数学二轮复习 第二部分 专题一 选择、填空题常用的10种解法教案-人教版高三全册数学教案
专题一 选择、填空题常用的10种解法抓牢小题,保住基本分才能得高分________________________________________________________________________ 原那么与策略:1.基本原那么:小题不用大做.2.基本策略:充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排除后求解.解题时应仔细审题、深入分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的顺序排列.2.注重基本知识、基本技能与思想方法的考查.3.解题方法灵活多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法那么等,都是由定义和公理推演出来的.简单地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.假设|F 1A |=|F 1F 2|,那么C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,那么由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.应选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要注意动点或圆锥曲线上的点所满足的条件,灵活利用相关的定义求解.如[本例]中根据双曲线的定义和条件,分别把A 到两个焦点的距离求出来,然后根据椭圆定义求出其长轴长,最后就可根据离心率的定义求值.[技法体验]1.(2017·广州模拟)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,假设x 1+x 2+…+x n =10,那么|P 1F |+|P 2F |+…+|P n F |=( )A .n +10B .n +20C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2016·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.假设点P 在双曲线上,且△F 1PF 2为锐角三角形,那么|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.假设△F 1PF 2为锐角三角形,那么由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排除法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排除干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略. [例2] (2016·高考浙江卷)实数a ,b ,c ( )A .假设|a 2+b +c |+|a +b 2+c |≤1,那么a 2+b 2+c 2<100 B .假设|a 2+b +c |+|a 2+b -c |≤1,那么a 2+b 2+c 2<100 C .假设|a +b +c 2|+|a +b -c 2|≤1,那么a 2+b 2+c 2<100 D .假设|a 2+b +c |+|a +b 2-c |≤1,那么a 2+b 2+c 2<100 解析:结合特殊值,利用排除法选择答案. 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,显然|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排除法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排除干扰选项.[技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12| =-cos 12,所以f (-12)=f (12),排除A ,D ;又f (12)=-cos 12<0,故排除C.综上,选B. 答案:B2.E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,那么1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动〞直线,所以最后的结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,那么AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.应选A.法二:如图2,取直线BE 作为直线PQ ,显然,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.应选A. 答案:A方法三 数形结合法数形结合法,包含“以形助数〞和“以数辅形〞两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2017·安庆模拟)函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e,g (x )=x 2-2x ,设a 为实数,假设存在实数m ,使f (m )-2g (a )=0,那么实数a 的取值范围为( ) A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a2-4a ≤6,即-1≤a ≤3, 应选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解.[技法体验]1.(2017·珠海摸底)|a |=|b |,且|a +b |=3|a -b |,那么向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,因为|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,那么|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,因为点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,那么点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等.[例4] (2017·天津红桥区模拟)椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,那么椭圆C 的标准方程是( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,因为焦点在y 轴上,应选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中椭圆的焦点所在坐标轴,设出标准方程,根据列方程求解.[技法体验]1.假设等差数列{a n }的前20项的和为100,前45项的和为400,那么前65项的和为( ) A .640 B .650 C .660 D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,那么前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如下图,那么f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,应选D. 答案:D方法五 估值法估值法就是不需要计算出代数式的准确数值,通过估计其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要详细的过程,因此可以猜测、合情推理、估算而获得,从而减少运算量. [例5] 假设a =20.5,b =log π3,c =log 2sin 2π5,那么( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);因为sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .应选A. 答案:A[增分有招] 估算,省去很多推导过程和比较复杂的计算,节省时间,是发现问题、研究问题、解决问题的一种重要的运算方法.但要注意估算也要有依据,如[本例]是根据指数函数与对数函数的单调性估计每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较.[技法体验]函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.假设f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,那么φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π12,π2C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:因为函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,假设取φ=π2,那么2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,假设取φ=π12,那么2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A. 答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导矛盾;(3)得结论,即说明命题成立. [例6] x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,那么以下说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,那么有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.显然两者矛盾,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少〞“至多〞类型的问题比较方便.其关键是根据假设导出矛盾——与条件、定义、公理、定理及明显的事实矛盾或自相矛盾.如[本例]中导出等式的矛盾,从而说明假设错误,原命题正确.[技法体验]如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,那么( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,那么△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,那么由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,显然该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.应选D. 答案:D方法七 换元法换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为熟悉的形式,把复杂的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 正数x ,y 满足4y -2yx=1,那么x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×y x =2⎝ ⎛⎭⎪⎫当且仅当x 4y =y x ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要根据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其展开,通过构造基本不等式的形式求解最值.[技法体验]1.(2016·成都模拟)假设函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],那么a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,那么t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1.令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22. ∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减, ∴t =0时,y max =1. 答案:1方法八 补集法补集法就是问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立事件,求出问题的结果,那么所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多.[例8]某学校为了研究高中三个年级的数学学习情况,从三个年级中分别抽取了1,2,3个班级进行问卷调查,假设再从中任意抽取两个班级进行测试,那么两个班级不来自同一年级的概率为________.解析:记高一年级中抽取的班级为a 1,高二年级中抽取的班级为b 1,b 2, 高三年级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的所有可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一年级〞为事件A ,那么事件A 为抽取的两个班级来自同一年级. 由题意,两个班级来自同一年级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115.所以两个班级不来自同一年级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,一定要准确把握所求问题的对立事件.如[本例]中,“两个班级不来自同一年级〞的对立事件是“两个班级来自同一年级〞,而高一年级只有一个班级,所以两个班级来自同一年级的可能性仅限于来自于高二年级,或来自于高三年级,显然所包含基本事件的个数较少.[技法体验]1.(2016·四川雅安中学月考)命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,那么实数a的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.应选B. 答案:B2.函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,那么实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)假设函数f (x )在区间(1,2)上单调递增,那么f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,因为x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,显然函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)假设函数f (x )在区间(1,2)上单调递减,那么f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,假设函数f (x )在区间(1,2)上单调,那么实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以假设函数f (x )在区间(1,2)上不单调,那么实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分离参数法分离参数法是求解不等式有解、恒成立问题常用的方法,通过分离参数将问题转化为相应函数的最值或范围问题求解,从而避免对参数进行分类讨论的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要注意该种方法仅适用于分离参数后能够求解相应函数的最值或值域的情况.[例9] 假设不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,那么a 的最小值是________.解析:由于x >0,那么由可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分离参数法解决不等式恒成立问题或有解问题,关键在于准确分离参数,然后将问题转化为参数与函数最值之间的大小关系.分离参数时要注意参数系数的符号是否会发生变化,如果参数的系数符号为负号,那么分离参数时应注意不等号的变化,否那么就会导致错解.[技法体验]1.(2016·长沙调研)假设函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,那么实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,那么有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,那么t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,应选C.答案:C2.(2016·湖南五校调研)方程log 12(a -2x)=2+x 有解,那么a 的最小值为________.解析:假设方程log 12(a -2x )=2+x 有解,那么⎝ ⎛⎭⎪⎫122+x =a -2x 有解,即14⎝ ⎛⎭⎪⎫12x +2x=a 有解,∵14⎝ ⎛⎭⎪⎫12x+2x≥1,故a 的最小值为1.答案:1方法十 构造法构造法是指利用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点采取相应的解决办法,其基本的方法是借用一类问题的性质,来研究另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等.[例10] m ,n ∈(2,e),且1n 2-1m 2<ln mn,那么( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),那么f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 因为f (n )<f (m ),所以n <m .应选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,根据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,那么a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >b >aD .c >a >b解析:令f (x )=ln x -x ,那么f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,那么球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,那么正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
2019届高考数学二轮复习 第一篇 专题四 数列 第2讲 数列求和及简单应用教案 文
裂项的基本思想是 an=f(n)-f(n+1),
=-
等.
考向 3 错位相减法求和
【例 4】 (2018·吉林百校联盟九月联考)已知等差数列{an}的前 n 项和为 Sn,若 Sm—1=— 4,Sm=0,Sm+2=14(m≥2,且 m∈N*)。 (1)求数列{an}的通项; (2)求数列{m(an+6)×2n—3}的前 n 项和. 解:(1)由已知得 am=Sm—Sm—1=4,
②解:由①,得 cn=
=
—
,
所以 Sn= 1- + - +…+ —
= 1—
=
.
③解:因为 dn=(3n+1)Sn=(3n+1)·
=n,
则问题转化为对任意正整数 n 使不等式 + +…+ > 恒成立.
设 f(n)= + + +…+ ,
则 f(n+1)—f(n)=
+
+…+
- + +…+
=
+
—
=
—
〉0.
据此可得数列{an}是首项为 2,公比为 2 的等比数列,
其前 8 项和为 S8=
=29—2=512—2=510。
故选 C.
(3)令 bn=nan,则 2bn=bn—1+bn+1,所以{bn}为等差数列, 因为 b1=1,b2=4, 所以公差 d=3,则 bn=3n-2,
所以 b18=52,即 18a18=52,
数列的通项公式 【例 1】 (1)(2018·安徽黄山一模)数列{an}中,已知对任意正整数 n,有 a1+a2+…+an=2n— 1,则 + +…+ 等于( )
高三数学二轮复习教学案——基本不等式(1)(2)
高三数学二轮复习教学案——基本不等式(1)班级 学号 姓名【基础训练】1.设R y x ∈,,且0≠xy ,则⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+2222411y x y x 的最小值为_____________。
2.若实数y x ,满足122=++xy y x ,则y x +的最大值是_____________。
3.己知0>b ,直线012=++y x b 与02)4(2=++-y b ax 互相垂直,则ab 的最小值为______________。
4.若实数b a ,满足)1(014>=+--a b a ab ,则)2)(1(++b a 的最小值为_____________。
5.若不等式ax x x x ≥-++2222对)4,0(∈x 恒成立,则实数a 的取值范围是_________。
6.不等式011≥-+-+-ac c b b a λ,对满足c b a >>恒成立,则λ的取值范围是________。
7.己知0,,>c b a 且94222=+++bc ac ab a ,则c b a ++的最小值为______________。
【典型例题】8.某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元)0(≥m 满足13+-=m k x (k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。
己知2007年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。
(1)将2012年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2012年的促销费用投入多少万元时,厂家的利润最大?9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热屋建造成本为6万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮复习教学案
第七课时:求等差数列、等比数列的通项公式(或可转化为等差、等比型的)
班级 学号 姓名
【考纲解读】
1.理解数列的概念,能用函数的观点认识数列;
2.理解等差、等比数列的概念,掌握两种数列的通项公式和前n 项和公式,并能运用公式解决一些问题.
【教学目标】
1.能够直接利用公式求等差和等比数列的通项;
2.能够将数列转化为等差数列和等比数列再求其通项. 【例题讲解】 例题1
(1) 在等差数列{a n }中a 199,123,953218===n a a 则n 等于 ( ) A 78
B 74
C 70
D 66
(2) 已知方程2
2
11()()08
8x mx x nx -+-+=的四个根组成一个首项为
1
8
的等比数列,则 ||m n -= ( )
A
9
8
B 1 C
3
4
D
38 (3) 已知f(x)=1
2+x x
,满足x n =f(x n -1), (n>1, n ∈N*)且x 1=f(2),则x 10的值为( ) A
412
B
5
92
C
2
41
D
92
5 (4)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . (5) 设函
数()1)f x x =
≥的反函数为1
()f x -,数列}{n a 满足
1111,()n n a a f a --==*(,2)n N n ∈≥则数列}{n a 的通项为 .
(6) 给定))(2(log *
)1(N n n a n n ∈+=+,若乘积*)(321N k a a a a k ∈⋅⋅⋅⋅⋅为整数m ,则称
k 为“希望数”,则区间[1,]内所有希望数之和为 .
例题2
在等差数列}{n a 中,公差412,0a a a d 与是≠的等比中项.已知数列
,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k
例题3
已知数列}{n a 中, 12413,39a a ==且当3n ≥时,1121
()3
n n n n a a a a ----=-求数列}{n a 通项公式.
例题4
数列}{n a 中, n S 是它的前n 项的和,并且11a =,142n n S a +=+ (1,2,3...n = ) (1) 设 12,1,2,3...n n n b a a n +=-= 则数列{}n b 为等比数列; (2) 设2
n
n n a c =
(1,2,3...)n =,则数列{}n c 为等差数列; (3)求数列}{n a 的通项公式以及前n 项的和.
例题5
数列}{n a 中, 12a =,前n 项和为S n ,在平面直角坐标系xOy 中,点1(,)n n n P S S +总在曲线
4(38)8tx t y t -+=上,其中*0,t n N >∈.问:
(1) }{n a 是否为等比数列?证明你的结论;
(2) 若
1()n n a f t a +=,数列{}n b 中,*12
()()n n
b f n N b +=∈,11b =,求n b ; (3) 求21
*11
(1)
()n
i i i i b b n N ++=-∈∑.。