七年级数学下册立方根知识点整理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册《立方根》知识点整理

七年级数学下册《立方根》知识点整理

知识要领:如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根。

立方根读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。求一个数a的立方根的运算叫做开立方。立方根的性质:⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。立方和开立方运算,互为逆运算。互为相反数的两个数的立方根也是互为相反数。负数不能开平方,但能开立方。立方根如何与其他数作比较? ⑴做这两个数的立方⑵作差⑶比较被开方数(如三

次根号3大于三次根号2) 任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.

平方根与立方根的区别与联系一、区别⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。

⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。

二、连系二者都是与乘方运算互为逆运算

知识点一:平方根的概念:若x2=a(a≥0),则x叫做a的平方根,记作x=±\,求一个非负数的平方根的运算叫做开平方.开平方与平方互为逆运算. 例1 \的平方根是( ). A.±9 B. ±3 C.9 D.3 解:因为\=9,所以\的平方根就是9的平方根,即±\=±3,故选择B. 注:应现将\化简后再求值.

知识点二: 算术平方根的概念:正数a的正的平方根叫做a的算术平方根,记作\,0的算术平方根是0. 例2若a<0,则a2的算术平方根是( ). A.-a B.a C.±a D. ±\ 解:当a<0时,\=|a|=-a,故选择A. 例3一个数的算术平方根是a,则比这个数大5的数是( ). A.a+5

B.a-5

C. a2+5

D. a2-5 解:一个数的算术平方根是a,则这个数是a2,故比这个数大5的数是a2+5,从而选择C.

知识点三: 平方根及算术平方根的性质:1.正数有两个平方根,它们互为相反数;2. 0的平方根是0;3.负数没有平方根;4.一个非负数的算术平方根是非负数,即a≥0. 例4若m的平方根是2a-3和a-12,求m的值. 解:由正数有两个平方根,它们互为相反数知,

(2a-3)+(a-12)=0,解得a=5,所以m=(2a-3)2=72=49.

相关文档
最新文档