34初中数学九年级全册 垂径定理—知识讲解(提高)

合集下载

九年级数学垂径定理知识点

九年级数学垂径定理知识点

九年级数学垂径定理知识点数学是一门令我们既爱又恨的学科,而九年级的数学则是更加具有挑战性和深度的一门课程。

在九年级数学中,垂径定理是一个重要的知识点,它不仅在几何学中有广泛的应用,而且在实际生活中也有着许多有趣的应用。

在本文中,我们将一起来探索九年级数学中的垂径定理。

首先,我们来了解一下垂径定理的定义和概念。

垂径定理是几何学中的一个基本定理,它指出:“如果两条直线相交于一个点,并且其中一条直线垂直于另一条直线的过程中所产生的垂直线段与交点的距离相等,那么这两条直线是垂线。

”简单来说,垂径定理就是通过一个垂直线段来判断两条直线是否垂直的方法。

举个例子来说明垂径定理的应用。

假设有一个四边形的对角线相交于一个点,我们需要判断对角线是否垂直。

按照垂径定理,我们可以通过在交点处作一条垂直于对角线的线段,并将它延长至相邻的边上。

如果延长后的线段与相邻边的距离相等,那么我们可以断定对角线是垂直的;反之,如果距离不相等,则对角线不是垂直的。

通过这个简单的方法,我们可以快速判断一个四边形的对角线是否垂直。

垂径定理不仅在几何学中有重要的应用,而且在实际生活中也有许多有趣的应用。

例如,我们在修建房屋时需要确保墙体垂直,这就需要使用垂径定理来检验墙体是否垂直。

另一个应用是在导航系统中,也需要使用垂径定理来计算地球上两点之间的最短距离。

除了应用方面,垂径定理还有着一些有趣的数学性质。

一个有趣的性质是,如果两条直线是垂线,那么它们的斜率乘积为-1。

这个性质是垂径定理的一个重要推论,通过它我们可以更直观地理解垂线的概念。

此外,垂径定理还与其他几何定理有着密切的关系。

例如,垂径定理与直角三角形定理、等腰直角三角形定理以及勾股定理之间有着紧密的联系。

通过运用这些定理,我们可以更好地理解垂径定理的应用,并解决一些复杂的几何问题。

在学习垂径定理时,我们还需要注意一些容易出错的地方。

例如,我们在判断两条直线是否垂直时,不能只通过一个垂直线段的长度是否相等来判断,还需要考虑这个线段是否垂直于另一条直线。

3,3垂径定理-九年级数学下册课件(北师大版)

3,3垂径定理-九年级数学下册课件(北师大版)
答:修理人员应准备内径为100 cm的管道.
总结
本题运用转化思想将实际问题转化为数学问题,先正确画 出图形,找出图中的已知量,然后构造直角三角形,最后利用 勾股定理求解.
1 1400年前,我国隋朝建造的赵州石拱桥(如图)是圆弧形,它的 跨度(即弧所 对的弦长)为37.4 m,拱高(即弧的中点到弦的距 离)为7.2 m,求桥拱所在圆的半径(结果精确到0.1).
弦所对的弧,即:如图,在⊙O 中,
CD是直径 CD AB
CD平分AB
AD
BD
AB不是直径
AC
BC
即:如图,在⊙O 中,
CD是直径
CD AB
CD平分AB
AD
BD
AC BC
(3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分弦所对的另
一条弧,即:如图,在⊙O 中,
CD是直径
1 如图,⊙O 的直径CD=10 cm,AB 是⊙O 的弦,AM=BM, OM∶OC=3∶5,则AB 的长为( A )
A.8 cm B. 91 cm C.6 cm D.2 cm
2 如图,△ABC 的三个顶点都在⊙O上,∠AOB=60°,AB=AC =2,则弦BC 的长为( C )
A. 3 B.3 C.2 3 D.4
CD AE
AB BE
AD BD
AC
BC
例3 下列说法正确的是( C ) A.经过弦的中点的直线平分弦所对的弧 B.过弦的中点的直线一定经过圆心 C.弦所对的两条弧的中点的连线垂直平分弦且经过圆心 D.弦的垂线平分弦所对的弧
例4 如图, —条公路的转弯处是一段圆弧(即图中 CD ,点O 是 CD 所在圆的圆心),其中CD= 600m, E 为CD 上一点,且OE 丄CD,垂足为F,EF =90m.求这段弯路的半径.

浙教版数学九年级上册3.3垂径定理(共13张PPT)

浙教版数学九年级上册3.3垂径定理(共13张PPT)
3.3 垂径定理
复习
M

A
1、圆弧:圆上任意两点之间的部分
2、等弧:能够完全重合的圆弧
3、弦:连结圆上任意两点的线段
4、圆具有轴对称性
O
B
实验操作
1、取出课前准备的圆,折出这个圆的一条对称轴
2、请用折叠的方法在圆上找到两个对称点
你能发现图中有那些相等的线段和弧?为什么?
C
O
·
E
A
B
D
几何演绎
如图,理由是:
梳理
A
C
M


B
O
D
条件
由①CD是直径
②CD⊥AB
可推得
结论
③AM=BM
⌒ ⌒
④AC=BC
⌒ ⌒
⑤AD=BD
归纳小结
定理:垂直于弦的直径平分弦, 并且平分弦所对的弧.
如图∵ CD是直径,
CD⊥AB,
B
∴AM = BM,
C
A
M└
O



AC =BC,


AD=BD.
D
分一条弧成相等的两条弧的点,叫做这条弧的中点.
问题一:

例1、已知AB如图,用直尺和圆规求作这条弧的中点.
E

分析:要平分AB,只要画垂
直于弦AB的直径.而这条直径应在弦A源自的垂直平分线上.A
作法:
1. 连结AB;

2. 作AB的垂直平分线CD,交AB与点E;

∴点E就是所求AB的中点.
B
问题二:
例2:如图已知在⊙ O 中 弦AB=16,半径0B=10,
连接OA,OB, 则OA=OB.

九年级数学下册 3.3 垂径定理“垂径定理”与解题思路分析素材 (新版)北师大版

九年级数学下册 3.3 垂径定理“垂径定理”与解题思路分析素材 (新版)北师大版

“垂径定理”与解题思路分析垂径定理及其推论是“圆”一章最先出现的重要定理,它是证明圆内线段、弧、角相等关系及直线垂直关系的重要依据,也是学好本章的基础,在学习中要注意以下几点:一.圆的辆对称是垂径定理的理论基础同学们在小学就已经知道了把圆沿着它的任意一条直径对折,直径两边的两个半圆就会重合在一起。

因此,课本首先通过一张圆形纸片沿着一条直径对折,直径两侧的两个半圆能重合这一事实,指出圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,然后利用这一性质给出了垂径定理,并利用圆的对称性证明。

所以,圆的轴对称性是垂径定理的理论基础。

二.垂径定理及其推论的题设与结论之间的内在联系在垂径定理(推论)中,一是隐含着一条直线;二是该直线具有以下性质:(1)经过圆心,(2)垂直于弦,(3)平分这条弦,(4)平分这条弦所对的劣弧,(5)平分这条弦所对的优弧。

垂径定理可以简记为:由于垂径定理本身的结论有多个,因此在构造逆命题时也会有多个,这就需要掌握构造逆命题的技巧。

例如:以(1)、(3)为条件的逆命题为:如果过圆心的一条直线平分该圆内的一条弦(不是直径),那么这条直线垂直于弦,且平分弦所对的弧。

类似地,同学们一定会分别写出以(1)和(4)、(1)和(5)、(2)和(3)、(2)和(4)、(2)和(5)、(3)和(4)、(3)和(5)、(4)和(5)为条件的逆命题。

由于一条直线如果具备上述五条性质中的任何两条时,这条直线唯一确定,所以,上述九个逆命题都是真命题,它们都是垂径定理的推论。

垂径定理连同推论在内共十条定理。

对于这十条定理,同学们切不可死记硬背,关键要抓住它们的特点,即一条直线具有上面所说的五条性质中的任何两性质,就有其余三条性质(具有性质(1)、(3)时,所说的弦不是直径,这是因为如果这里的弦是直径的话,两条直径总是互相平分的,但它们未必垂直)。

三.灵活应用垂径定理及其推论解题垂径定理及其推论,主要应用于研究直径与同圆中的弦、弧之间的垂直平分关系,其内容虽然简单,但要能灵活应用却非易事。

九年级数学上册垂经定理课件人教新课标版

九年级数学上册垂经定理课件人教新课标版

活动二
(1)是轴对称图形.直径 CD所在的 直线是它的对称轴 (2) 相等的线段:
相等的弧:
A
C
·O
E B
D
C
垂径定理: 垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
·O
E
A
B
推判论断:对错:
D
平分弦(不是直径)的直径垂直于弦,并且平分弦
所对的两条弧.
解决求赵州桥拱半径的问题
如图:用 弧AB表示主桥拱,设弧AB 所在圆的圆心为O,半径为 R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与AB 相交 于点D,根据前面的结论,D 是AB 的中点,C是弧AB的中点, CD 就是拱高.
在图 AAD B? =13A7B.4?,1 C? 3D7 =. 4 7? .128 ,. 7 ,

2
2
OD=OC-CD=R-
在Rt△OAD7中.2,由勾股定理,得
C
OA2=AD2+OD2
A
D
B

R2=18.7 2+(R-7.2 )2
R
R≈27.9(m)
O
∴ 赵州桥的主桥拱半径约为 27.9m.
ቤተ መጻሕፍቲ ባይዱ
:你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形, 它的跨度( 弧所对的弦的长) 为37.4m, 拱高( 弧的中点到 弦的距离) 为7.2m,你能求出赵洲桥主桥拱的半径吗?
可以发现实:践探究
圆是轴对称图形,任何一条直径所在直线 都是它的对称轴.

九年级数学垂径定理

九年级数学垂径定理
AEB
o
设圆的半径是r,圆心到弦的
距离d,弦长a
三者关系
如何?
a 2
r2
=d2+(a2)2
a 2
rd a
在半径为50mm的⊙O中,
有长50 mm的弦。计算 1点O与AB的距离 2AOB的度数。
O
A EB
例2已知:在以O为圆心的两 个同心圆中,大圆的弦AB交 小圆于C,D两点。求证AB=CD
O
AB是弦,垂足为E.
求证:AE=BE
C
AC=BC,AD=BD
AE B D
C O
A
BA E B
D
连结OA,OB, OA=OB
C和D⊙所O在的直对线称是轴等腰三角形C
1 两个半圆重合
2 A,B两点重合
O
3 AE,BE重合 4 AC,BC重合
A
E
B
5 AD,BD重合
D
例1 已知在⊙O 中,弦AB 长为8cm, 圆心O到AB的 距离为3cm,AC,AB为
互相垂直的两条相等的弦,
O求D证A:BA,ODEOEACC
为正方形
EO
A DB

我们学过的轴对称 图形
等 腰 三 角 形
等 边 三 角 形
等腰梯形
矩形
正 方 形
菱形
圆是 轴对称 图形,
它的对称轴是 经过圆心的每一条直线
C 思考
1直径对弦
有何影响?
A
B 2直径对弦
D
所对弧有何
影响?
垂径定理
垂直于弦的直径平分 这条弦,并且平分弦 所对的两条弧。
已知:在⊙O中,CD是 直径,

垂径定理九年级知识点

垂径定理九年级知识点

垂径定理九年级知识点垂径定理,也称为垂径长定理,是几何中一个重要的定理,用来描述圆内任意两条互相垂直的直径和其所对应的弦的关系。

下面将详细介绍有关垂径定理的九年级知识点。

1. 垂径定理的表述垂径定理指出,一个圆的直径与其所对应的弦垂直相交,具体表述为:"在一个圆内,如果一条弦垂直于直径,那么这条弦将被切成两段,而且这两段的乘积等于每个一段的长度与直径的乘积,即 d1×d2=2×r×a"。

其中,d1和d2分别代表切割弦的两段,r代表圆的半径,a代表这两段与直径的距离。

2. 垂径定理的证明垂径定理的证明可以通过数学推理和几何推导来完成。

首先,假设圆的直径AB与弦CD互相垂直相交于点O,以及切割弦CD的两段为CE和ED。

根据垂径定理的表述,我们可以得出以下几个等式:AE×EB = CE×ED (1)AO×OB = CO×OD (2)由于AO = CO, OB = OD,将式(2)代入式(1),我们可以得到:AE×EB = AO×OB = r×r = r²因此,垂径定理得证。

3. 垂径定理的应用垂径定理在几何证明和问题求解中经常被应用。

下面介绍几个常见的应用场景:a. 证明两条直线垂直相交当需要证明两条直线垂直相交时,可以利用垂径定理。

首先,通过画圆和连接弦的方式将直线和圆相交,然后利用垂径定理得出圆内两条互相垂直的直径和它们对应的弦的关系,进而推断出直线的垂直关系。

b. 求解弦长已知圆的半径和一个垂直切线与弦的交点坐标,可以利用垂径定理求解弦的长度。

根据垂径定理的表述,我们可以通过已知的半径和切线坐标计算出弦的长度,从而得到所需的结果。

c. 求解直径长已知圆的半径和两条互相垂直的弦的长度,可以利用垂径定理求解直径的长度。

根据垂径定理的表述,我们可以通过已知的弦长和半径计算出直径的长度,进而得到所需的结果。

人教版九年级上册数学垂径垂径定理PPT精品课件

人教版九年级上册数学垂径垂径定理PPT精品课件

A
AE
BE
1 2
AB
4,
OE
3
连结OA,在RtAOE中,根据勾股定理:
E
B
.O
OA AE 2 OE 2
32 42 5
人教版九年级上册数学课件:24.1.2 垂径垂径定理
∴⊙O的半径为5厘米。
人教版九年级上册数学课件:24.1.2 垂径垂径定理
2.在半径为30㎜的⊙O中,弦AB=36㎜,求O 到AB的距离。
温固而知新
一、圆的定义:
平面上到定点的距离等于定 长的所有点组成的图形叫做圆.
二、圆的相关概念
B
1、连接圆上任意两点间 直径
的线段叫做弦(如弦AB).
O.
经过圆心的弦叫做直径
C
(如直径AC).
A

2.圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧.
以A、B为端点的弧记作 AB ,
读作:“圆弧AB”或“弧AB”C
解:过O点作OP⊥AB,连OA.
AP
BP
1 AB 2
18,
A
在Rt⊿AOP中,根据勾股定理:
OP AO 2 AP 2
302 182 24
∴O到AB的距离为24mm。
PB
O
人教版九年级上册数学课件:24.1.2 垂径垂径定理
人教版九年级上册数学课件:24.1.2 垂径垂径定理
3.已知:如图,在以O为圆心的两个同心圆中,大 圆的弦AB交小圆于C,D两点。你认为AC和BD有 什么关系?为什么?
解: AC=BD,
理由是:
过O作OE⊥AB,垂足为E, 则AE=BE,CE=DE.
∴ AE-CE=BE-DE 即 AC=BD
O.

垂径定理课件(26张PPT)冀教版数学九年级上册

垂径定理课件(26张PPT)冀教版数学九年级上册

知识点 2 垂径定理的推论
如图所示,在☉O中,直径CD与弦AB(非直径)相交于点E. C
【思考】
(1)若AE=BE,能判断CD与AB垂直吗?
O
AD 与 BD (或 AC 与 BC )相等吗?说明你的理由. A
EB
D
(2)若 AD = BD (或 AC =BC ),能判断CD与AB垂直吗?
AE与BE相等吗?说明你的理由.
C
O EB D
结论 垂直于弦的直径平分这条弦,并且平 分这条弦所对的两条弧.
能不能用所学过的知识证明你的结论?
C
O
A
EB
D
已知:如图,在⊙O中,CD为直径,AB为弦,且
CD⊥AB,垂足为E.
求证:AE=BE,AD BD,AC BC.
证明:如图,连接OA,OB.
C
在△OAB中,∵OA=OB,OE⊥AB, ∴AE=BE,∠AOE=∠BOE. ∴ AD BD . ∵∠AOC=180°-∠AOE,∠BOC=180°-∠BOE,
解:(1)CD⊥AB,AD BD (或 AC BC ). C
理由:连接OA,OB,如图所示,则△OAB是等 腰三角形,
∵AE得 AD BD, AC BC .
A
EB
(2)CD⊥AB,AE=BE. 理由: ∵ AD BD,∴∠AOD=∠BOD, 又∵OA=OB,OE=OE, ∴△AEO≌△BEO,
A
E C
O
D
B
拓宽视野: 对于圆中的一条直线,如果具备下列五个条件中的任意两个, 那么一定具备其他三个: (1)过圆心;(2)垂直于弦;(3)平分弦(非直径);(4) 平分弦所对的劣弧;(5)平分弦所对的优弧. 简记为“知二推三”.

垂径定理九年级数学知识点

垂径定理九年级数学知识点

垂径定理九年级数学知识点垂径定理是九年级数学中的一个重要知识点,它涉及到平面几何的基本概念和性质。

在学习垂径定理之前,我们先来了解一下什么是垂径。

一、垂径的定义和性质垂径是在平面上与一条直线垂直相交的线段。

根据垂径的定义,我们可以得到以下性质:1. 一个点到直线的垂径只有一个。

2. 直径的两个垂径互相垂直。

3. 如果两条直径互相垂直,那么它们一定相交于圆的圆心上。

了解了垂径的定义和性质,我们就可以进一步探讨垂径定理了。

二、垂径定理的表述垂径定理是指:如果一条直径和一条垂径相交于圆上的一个点,那么这条垂径所对的弧就是直径所对的弧的一半。

换句话说,直径和垂径所对的弧互为一半。

三、垂径定理的证明垂径定理的证明可以通过利用圆的基本性质和几何知识来完成。

下面我们通过具体的例子来进行证明。

假设在圆O中,AB是直径,CD是与AB垂直相交于点E的垂径。

我们要证明的是:弧CD是弧AB的一半。

首先,连接OA和OB。

根据垂径的性质,我们知道OA和CD互相垂直,所以OA和CD构成一对垂直线段。

同样地,OB和CD也构成一对垂直线段。

由于OA和OB是圆的直径,所以它们穿过圆心O,并且与圆相交于圆上的两个点A和B。

根据圆的性质,直径的两条垂径与圆相交的弧互为一半。

因此,我们可以得出结论:弧CA等于弧CB的一半。

根据弧度的性质,我们知道弧度等于圆心角的度数。

所以弧度CA等于角CBA的度数。

同理,弧度CB等于角CAB的度数。

既然我们已经知道角CBA和角CAB是互补角,而且它们的两条弧互为一半。

所以我们可以得出结论:弧CD等于弧AB的一半。

四、垂径定理的应用垂径定理的应用非常广泛,不仅在九年级的几何学中常常被使用,而且在实际生活中也可以见到它的应用。

例如,在建筑设计中,我们经常会使用垂径定理来确定建筑物的位置和相对位置。

通过利用垂径定理,我们可以确定建筑物的中心位置,从而达到平衡和美观的效果。

此外,在航空和导航领域,垂径定理也被广泛运用。

3.3垂径定理(教案)2018-2019学年九年级下学期数学教材解读(北师大版)

3.3垂径定理(教案)2018-2019学年九年级下学期数学教材解读(北师大版)
举例:给定圆的半径和弦长,求弦心距;或者给定弦心距和弦长,求半径。
(3)逻辑推理能力的培养:在教学过程中,强调证明过程的重要性,训练学生的逻辑推理能力。
举例:指导学生通过几何图形,利用已知条件和圆的性质进行推理证明。
2.教学难点
(1)定理的证明:对于部分学生来说,理解垂径定理的证明过程可能存在困难,特别是如何运用几何性质和定理进行推理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂径定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.学会运用垂径定理解决相关问题,如求弦长、确定圆上点的位置等。
3.通过垂径定理的学习,培养学生的逻辑推理能力和空间想象力。
4.了解垂径定理在生活中的实际应用,提高学生学以致用的意识。
二、核心素养目标
《3.3垂径定理》教学旨在提升学生的数学学科核心素养,具体目标如下:
1.理解与运用:通过探索垂径定理,使学生理解圆的基本性质,培养其运用定理解决问题的能力。
突破方法:采用直观的教具或动画,分步骤展示证明过程,引导学生逐步理解。
(2)空间观念的培养:学生在理解圆的直径、弦、弧等概念时,可能缺乏空间想象力,导致难以理解垂径定理的本质。
突破方法:通过实物模型、几何画板等工具,让学生观察和操作,提高空间想象力。
(3)实际问题的解决:学生在将垂径定理应用于解决实际问题时,可能不知道如何建立数学模型,找到解题的关键。
3.3垂径定理(教案)2018-2019学年九年级下学期数学教材解读(北师大版)

初三数学下垂径定理—知识讲解(提高)+巩固练习

初三数学下垂径定理—知识讲解(提高)+巩固练习

垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴OA=222+1=5.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,22552OB BM OM=+=.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】【变式2】(春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50.∵∠OCA=30°,∴=33,即=3,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.垂径定理—巩固练习(提高)【巩固练习】一、选择题1.如图所示,三角形ABC的各顶点都在⊙O上,AC=BC,CD平分∠ACB,交圆O于点D,下列结论:①CD是⊙O的直径;②CD平分弦AB;③AC BC=;④AD BD=;⑤CD⊥AB.其中正确的有()A.2个 B.3个 C.4个D.5个2.下面四个命题中正确的是( ).A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心COBDA3.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A.2 B.3 C.4 D.5第3题第5题第6题4.⊙O的半径OA=1,弦AB、AC的长分别是2、3,则∠BAC的度数为( ).A.15° B.45° C.75° D.15°或75°5.(•河东区一模)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为()A.25°B.30°C.50°D.65°6.如图,EF是⊙O的直径,AB是弦,EF=10cm,AB=8cm,则E、F两点到直线AB的距离之和为().A.3cm B.4cm C.8cm D.6cm二、填空题7.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,则圆心O到CD的距离是______.8.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.7题图8题图9题图9.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10.(•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.11.在图11中,半圆的直径AB=4cm,O为圆心,半径OE⊥AB,F为OE的中点,CD∥AB,则弦CD的长为.(第12题)12.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF= .三、解答题13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,CD=15,35OE OC∶∶,求弦AB和AC的长.14.如图所示,C为ACB的中点,CD为直径,弦AB交CD于P点,PE⊥BC于E,若BC=10cm,且CE:BE=3:2,求弦AB的长.15.如图所示,已知O是∠MPN的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.⑴求证:PB=PD.⑵若角的顶点P在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.(•杭州模拟)如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.AEOFBPEODCBA【答案与解析】 一、选择题 1.【答案】D .【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的. 2.【答案】D .【解析】根据垂径定理及其推论来判断. 3.【答案】B . 【解析】由垂径定理得HD=2,由勾股定理得HB=1,设圆O 的半径为R ,在Rt △ODH 中,则()()22221R R =+-,由此得R=32, 所以AB=3.故选 B. 4.【答案】D .【解析】分弦AB 、AC 在圆心的同侧和异侧讨论. 5.【答案】C ;【解析】连接CD ,∵在△ABC 中,∠C=90°,∠A=25°, ∴∠ABC=90°﹣25°=65°, ∵BC=CD ,∴∠CDB=∠ABC=65°,∴∠BCD=180°﹣∠CDB ﹣∠CBD=180°﹣65°﹣65°=50°,∴=50°.故选C .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】.13 9.【答案】.13 10.【答案】42 .【解析】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=DE=CD=4cm ,∵OA=OC ,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴OC=CE=4cm , 故答案为:411.【答案】23cm .【解析】连接OC,易求CF= 3. CD=23cm . 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=15.2AB =三、解答题13.【答案与解析】连结OA ,∵CD=15,35OE OC =∶∶, ∴OA=OC=7.5,OE=4.5,CE=3,∴222222227.5 4.562126335AE OA OE AB AE AC AE CE =-=-====+=+=,14.【答案与解析】因为C 为ACB 的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB. 由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设,,BP a CP b ==则22222221046a b a b ⎧+=⎪⎨-=-⎪⎩解得210a =,2410AB a cm ==. 15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F.∵ PO 平分∠MPN∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略.A A E EP O P O F FC C PA=PC PA=PC16.【答案与解析】 解:(1)过点O 作AB 、CD 的垂线,垂足为M 、N ,如图1,图1NMEODC BA∵OE 平分∠BED ,且OM ⊥AB ,ON ⊥CD , ∴OM=ON , ∴AB=CD ;(2)如图2所示,A BC DOEMN图2由(1)知,OM=ON ,AB=CD ,OM ⊥AB ,ON ⊥CD , ∴DN=CN=AM=BM ,在Rt △EON 与Rt △EOM 中, ∵,∴Rt △EON ≌Rt △EOM (HL ), ∴NE=ME ,∴CD ﹣DN ﹣NE=AB ﹣BM ﹣ME , 即AE=CE ,∴DE ﹣AE=DE ﹣CE=DN+NE ﹣CE=CN+NE ﹣CE=2NE ,∵∠BED=60°,OE平分∠BED,∴∠NEO=BED=30°,∴ON=OE=1,在Rt△EON中,由勾股定理得:NE==,∴DE﹣AE=2NE=2.11 / 11。

3.3垂径定理(课件)九年级数学下册(北师大版)

3.3垂径定理(课件)九年级数学下册(北师大版)
C
➢特别说明:圆的两条直径是互相平分的.
A
·O
B
D
二、自主合作,探究新知
典型例题
C
例2:如图,一条公路的转弯处是一段圆弧(即图中弧CD,
点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,
且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.
E

解:连接OC. 设这段弯路的半径为Rm,则OF=(R-90)m.
股定理计算或建立方程.
五、当堂达标检测
1.已知☉O的半径为13cm,弦AB的长为10cm,则圆心到
弦AB的距离为( D )
A.8cm
B.5cm
·O
C.9cm
D.12cm
2.坐标网格中一段圆弧经过点A,B,C,其中点B
的坐标为(4,3),点C坐标为(6,1),则该圆
弧所在圆的圆心坐标为( B )A.(0,0) B.

六、布置作业
教材习题3.3;
圆心的 直线 .对称中心为 圆心 。
2.在 同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦也相等.
3.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
等,那么它们所对应的其余各组量都分别
相等 .
一、创设情境,引入新知
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)
O
F
D
三、即学即练,应用知识
1.如图,CD是☉O的直径,弦AB⊥CD于点E,连接OA,
OB,下列结论中不一定正确的是( C )
⌒ ⌒
A.AE=BE
B.AD=BD
C.OE=DE
D.∠AOD=∠BOD
2.如图,在☉O中,弦AB的长为8cm,圆心O到AB

冀教版九年级上册数学《垂径定理》PPT教学课件

冀教版九年级上册数学《垂径定理》PPT教学课件

连接 OP,∵OC=OP,∴∠OCP=∠P,又∠DCP=∠OCP,∴∠DCP
︵ =BP

=∠P,∴CD∥OP,∵CD⊥AB,∴OP⊥AB,则AP
14.(9分)如图,两个圆都以点O为圆心,大圆的弦AB交小圆于点C,D,
求证:AC=BD.
过点O作OM⊥AB,垂足为M,由垂径定理可得MA=MB,MC=MD,



CD AB,
AD =BD


(或
AC =BC)
AE=BE.







思考:
“不是直径”这个条件能去掉吗?如果不能,请举出反例.
M
A
提示:
C
D
O
圆的两条直径是互相平分
B
的,但是不一定相互垂直.
N
一条直线满足五个条件:
①过圆心(非直径)
④平分弦所对优弧 ①
⌒ ⌒ ⌒ ⌒
求证:AE=BE,AC =BC, AD =BD.
证明:如图,连接OA,OB.
∵ OA=OB,CD⊥AB,
∴ AE=BE.
又∵ ⊙O关于直径CD对称,
∴ A点和B点关于直径CD对称,
෽ 重合,

∴当圆沿着直径CD对折时,点A与点B重合,与
෽ = .

因此
෽ = .

同理得到
=OC=5,则OD=OC-CD=5-
1=4.∵ OC⊥AB,∴ ∠ODA=
90°,∴ AD==3.又∵ AB为⊙O
的弦,∴AB=2AD=6.
课堂小结
定 理




推论
辅助线
垂直于弦的直径平分弦,

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。

这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。

2、掌握垂径定理在圆的有关计算和证明中的广泛应用。

精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。

分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。

解:(1)过点O 作OF ⊥CD 于F ,连结DO ∵AE =2cm ,BE =6cm ,∴AB =8cm∴⊙O 的半径为4 cm ∵∠CEA =300,∴OF =1 cm∴1522=-=OF OD DF cm 由垂径定理得:CD =2DF =152cm(2)过C 作CG ⊥AB 于G ,过D 作DH ⊥AB 于H ,易求EF =3cm ∴DE =)315(+cm ,CE =)315(-cm∴253315315-=+-==DE CE DH CG 【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35分析:如图,连结OA 、OC ,过O 分别作AB 、CD 的垂线,垂足分别为M 、N ,则AM =MB ,CN =ND 。

∵OM ⊥MN ,ME ⊥EN ,CN =ND∴222OE ON OM =+从而22222OE CN OC AM OA =-+-即222221)2(2)2(2=-+-CD AB ∴2822=+CD AB 故选A 。

∙例1图H E F G O DCBA ∙例2图MN E O DCBA∙例2图MN E O DCBA【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。

人教版九年级上册垂径定理教学课件

人教版九年级上册垂径定理教学课件

由 ① CD是直径 ③ AM=BM
可推得
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
人教版九年级上册垂径定理教学课件
人教版九年级上册垂径定理教学课件
垂直于弦的直径的几个 基本作图:
人教版九年级上册垂径定理教学课件
人教版九年级上册垂径定理教学课件
定理及推论,总结:
一条直线只需满足: (1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧

例1 如图,OE⊥AB于E,若⊙O的半径为10cm,
OE=6cm,则AB= 16 cm.
AEB
解析:连接OA,∵ OE⊥AB,
∴ AE OA2 OE2

102 62 8 cm. ∴ AB=2AE=16cm.
共21张
12
例2.如图,在⊙O中,弦AB的长为8cm,圆
心O
到A解B的:距离OE为3AcmB ,求⊙O的半径.
AE-CE=BE-DE。
所以,AC=BD
O.
E AC
DB
课堂小结
垂径定理
内容 推论 辅助线
垂直于弦的直径平分弦, 并且平分弦所对的两条弧
一条直线满足:①过圆心;②垂直于弦; ③平 分弦(不是直径); ④平分弦所对的优弧; ⑤平分弦所对的劣弧.满足其中两个条件就 可以推出其它三个结论(“知二推三”)
解:∵CD=CE+DE=12cm ∴OC=6cm,OE=4cm
又∵∠OEF ∠CEB=30
D
∴OF= 1 OE=2cm 2
由勾股定理
A
F
E C
O B
AF 2 AO2 OE 2
∴AF =4 2cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答:人工湖的半径为( 25 6 25 2 )米.
【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4/5
4. 不过圆心的直线 l 交⊙O 于 C、D 两点,AB 是⊙O 的直径,AE⊥l 于 E,BF⊥l 于 F. (1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形; (2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB 除外)(不再标注 其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.
举一反三:
【变式】在⊙O 中,直径 MN⊥AB,垂足为 C,MN=10,AB=8,则 MC=_________. 【答案】2 或 8.
类型二、垂径定理的综合应用
3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心 O 处有一座喷泉,小明为测 量湖的半径,在湖边选择 A、B 两个点,在 A 处测得∠OAB=45°,在 AB 延长线上的 C 处测得∠OCA=30°, 已知 BC=50 米,求人工湖的半径.(结果保留根号)
要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.
知识点二、垂径定理的拓展 根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等. 要点诠释:
初中数学九年级全册
垂径定理—知识讲解(提高)
【学习目标】 1. 理解圆的对称性; 2. 掌握垂径定理及其推论; 3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】 知识点一、垂径定理 1.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
【答案与解析】 解:过点 O 作 OD⊥AC 于点 D,则 AD=BD, ∵∠OAB=45°, ∴AD=OD, ∴设 AD=x,则 OD=x,OA= x,CD=x+BC=x+50. ∵∠OCA=30°,
∴ = 3 ,即 3
= 3, 3
解得 x= 25 3 25 ,
∴OA= x= ×( 25 3 25 )=( 25 6 25 2 )(米).
2. 已知:⊙O 的半径为 10cm,弦 AB∥CD,AB=12cm,CD=16cm,求 AB、CD 间的距离. 【思路点拨】
在⊙O 中,两平行弦 AB、CD 间的距离就是它们的公垂线段的长度,若分别作弦 AB、CD 的弦心距,
则可用弦心距的长表示这两条平行弦 AB、CD 间的距离.
【答案与解析】 (1)如图 1,当⊙O 的圆心 O 位于 AB、CD 之间时,作 OM⊥AB 于点 M, 并延长 MO,交 CD 于 N 点.分别连结 AO、CO. ∵AB∥CD ∴ON⊥CD,即 ON 为弦 CD 的弦心距. ∵AB=12cm,CD=16cm,AO=OC=10cm,
5/5
22
2
∴ 在 Rt△BOM 中, OB BM 2 OM 2 5 5 . 2
2/5
【变式 2】(2015 春•安岳县月考)如图,⊙O 直径 AB 和弦 CD 相交于点 E,AE=2,EB=6,∠DEB=30°, 求弦 CD 长.
【答案与解析】解:过 O 作 OF⊥CD,交 CD 于点 F,连接 OD,
∴F 为 CD 的中点,即 CF=DF, ∵AE=2,EB=6, ∴AB=AE+EB=2+6=8, ∴OA=4, ∴OE=OA﹣AE=4﹣2=2, 在 Rt△ OEF 中,∠DEB=30°,
∴OF= OE=1,
在 Rt△ ODF 中,OF=1,OD=4,
根据勾股定理得:DF=
=,
则 CD=2DF=2 .
【答案与解析】 (1)如图所示, 在图①中 AB、CD 延长线交于⊙O 外一点; 在图②中 AB、CD 交于⊙O 内一点; 在图③中 AB∥CD.
(2)在三个图形中均有结论:线段 EC=DF. (3)证明:过 O 作 OG⊥l 于 G.由垂径定理知 CG=GD.
∵ AE⊥l 于 E,BF⊥l 于 F, ∴ AE∥OG∥BF. ∵ AB 为直径, ∴ AO=OB, ∴ EG=GF, ∴ EC=EG-CG=GF-GD=DF. 【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.
在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在 这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分 的弦不能是直径)
1/5
【典型例题】 类型一、应用垂径定理进行计算与证明
1. 如图,⊙O 的两条弦 AB、CD 互相垂直,垂足为 E,且 AB=CD,已知 CE=1,ED=3,则⊙O
【答案】如图所示,过点 O 分别作 OM⊥AB 于 M,ON⊥CD 于 N,则四边形 MONH 为矩形,连结 OB,
∴ MO HN CN CH 1 CD CH 2
1 (CH DH ) CH 1 (3 8) 3 2.5 ,
2
2
BM 1 AB 1 (BH AH ) 1 (4 6) 5 ,的半径是 Nhomakorabea.
【答案】 5. 【解析】作 OM⊥AB 于 M、ON⊥CD 于 N,连结 OA,
∵AB=CD,CE=1,ED=3, ∴OM=EN=1,AM=2,
∴OA= 22 +12 = 5 .
【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问 题.
举一反三: 【变式 1】如图所示,⊙O 两弦 AB、CD 垂直相交于 H,AH=4,BH=6,CH=3,DH=8,求⊙O 半径.
=8+6 =14(cm)
3/5
图1
图2
(2)如图 2 所示,当⊙O 的圆心 O 不在两平行弦 AB、CD 之间(即弦 AB、CD 在圆心 O 的同侧)时,
同理可得:MN=OM-ON=8-6=2(cm)
∴⊙O 中,平行弦 AB、CD 间的距离是 14cm 或 2cm.
【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.
相关文档
最新文档