小学奥数之平面图形的计算(一)

合集下载

五年级奥数培优《平面图形面积》(含答案)

五年级奥数培优《平面图形面积》(含答案)

平面图形的面积一(例题精讲)例1. 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?例2. 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

例3.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

例4.如图所示,一大一小两个正方形中,已知阴影部分的面积是7平方厘米。

甲的面积是多少平方厘米?例5.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)例6. 图中ABCD 是长方形,S 1比S 2的面积大6平方厘米,求EC 的长。

平面图形的面积一(课堂小测)7.求四边形ABCD 的面积。

(单位:厘米)8. 如下图长方形ABCD 的面积是16平方厘米,E 、F 都是所在边的中点,求三角形AEF 的面积。

9.右图中,正方形的边长4厘米,求长方形的面积。

10.如图,平行四边形BCEF 中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比甲的面积小8平方厘米。

平行四边形的高是多少厘米?A BCD 345°CD F CB DS 1A 4 6 S 2EE11.一个正方形的对角线长5厘米,这个正方形的面积是多少平方厘米?12.已知大正方形的边长是12厘米,求中间最小正方形的面积。

13.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?14.如图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。

15.如图所示,长方形的长12厘米,宽8厘米,A 、B 两点是长方形长和宽的中点,那么阴影部分的面积是多少?AB94 3 84 6乙甲5平面图形的面积二(例题精讲)例1. 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?12×12=144(平方厘米) 144÷4=36(平方厘米)例2. 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

奥数——平面图形的面积一

奥数——平面图形的面积一

平面图形的面积(一)——图形的等分例1 有一个三角形花坛,要把它平均分成两个相等的三角形,可以怎样分?练习将任一三角形分成面积相等的六个三角形,应怎么分?例2 三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。

练习已知AE=3AB,BD=2BC,三角形ABC的面积是6,求三角形BDE的面积。

练习如图所示,找出梯形ABCD中有几组面积相等的三角形。

例3 已知三角形ABC的面积是12平方厘米,并且BE=2EC,F是CD的中点。

求阴影部分面积。

练习AC是CD的3倍,E是BC的中点,三角形CDE的面积为2平方厘米。

求三角形ABC的面积。

练习如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形EFGD的长是5厘米,DE长几厘米?例4 在一块长方形的地里有一口长方形的水井,试画一条线把除井处的这块地平分成两块。

练习下图为5个面积为1的正方形拼成的。

试用一直线将此图形划分为面积相等的两块。

例5 将下图分成4个形状、大小完全相同的图形,且每个部分中都有一个小黑圈。

练习将下图分成4个形状相同、面积相等的小块。

作业1、三角形的面积公式:________________。

同底等高的三角形面积___________。

平行线间的距离处处___________。

2、甲、乙两个三角形的高相等,若甲的底是乙的底的5倍,则甲的面积就是乙面积的_____倍。

3、甲、乙两个三角形的底相等,若甲的高是乙的高的4倍,则甲的面积就是乙面积的______倍。

4、把一个等边三角形分成面积相等的三个三角形,有________种不同的方法。

5、如图1,该图是一个直角梯形,面积相等的三角形有_________组,请分别写出________________ __________________________________。

6、如图2,AD与BC平行,AD=5,BC=10,三角形ADC面积为10,则三角形ABC的面积是_______________。

2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)

2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)

《数学思维训练教程》教案第一课时复备内容及讨论记教学过程录一、导入〔课件播放导入,教师讲解〕师:图形大家庭里这些图形的周长,面积计算公式,我们一起回忆一下吧。

〔课件出示,一起回忆〕师:看来有关周长和面积的计算公式,大家已经掌握得非常扎实了。

但是从周长和面积的关系来看,它们之间还隐藏着许多秘密。

今天就让我们一起深入的学习一下平面图形的周长和面积。

二、教学新授〔一〕自主探究1例1:平行四边形的面积是48平方米,高为6米,求阴影局部的面积。

1.学生读题,观察图形。

2.师生互动,教师引导。

师:通过读题和观察图形,大家获取到了哪些信息?生1:平行四边形的面积是48平方米,高为6米;生2:阴影局部三角形的底等于平行四边形的底-6米。

师:看来大家已经很好的理解题意,下面请同学们自己思考,试着做一下。

3.学生独立解答。

4.全班集体汇报。

5.教师小结。

此题阴影局部是三角形,其中三角形的高是的,关键是求出三角形的底边长度,通过观察,我们可以看出,三角形的底边长度比平行四边形少6,通过先求平行四边形的底再减6得到三角形的底。

答案:平行四边形的底:48÷6=8〔米〕三角形底:8-6=2〔米〕阴影三角形面积:2×6÷2=6〔平方米〕答:阴影局部的面积是6平方米。

〔二〕自主探究2例2:如下列图,一个长方形被分成5个完全相同的小长方形,每个小长方形的长是7厘米,周长是18厘米,求这个大长方形的面积。

1.学生读题,明确题意。

2.师生互动,教师引导。

师:求这个大长方形的面积需要知道哪些条件?哪些条件是的,哪些条件是未知的?怎样求出来?生:要求大长方形的面积,需要知道大长方形的长和宽。

师:大长方形的长和宽和小长方形的长和宽之间,分别有什么关系呢?生:大长方形的宽是小长方形的长,是7厘米,大长方形的长是未知的,但大长方形的长=5个小长方形的宽。

师:那么你能求出小长方形的宽吗?大家尝试解答一下。

3.学生整理思路,尝试解答。

最新五年级奥数平面几何图形的面积计算

最新五年级奥数平面几何图形的面积计算
5、你认为一件DIY手工艺制品在什么价位可以接受?
3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?
加拿大beadworks公司就是根据年轻女性要充分展现自己个性的需求,将世界各地的珠类饰品汇集于“碧芝自制饰品店”内,由消费者自选、自组、自制,这样就能在每个消费者亲手制作、充分发挥她们的艺术想像力的基础上,创作出作品,达到展现个性的效果。
例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)
练习与思考
1.求图中阴影部分的面积。
2.求图中阴影部分的面积。
3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。
我们从小学、中学到大学,学的知识总是限制在一定范围内,缺乏在商业统计、会计,理财税收等方面的知识;也无法把自己的创意准确而清晰地表达出来,缺少个性化的信息传递。对目标市场和竞争对手情况缺乏了解,分析时采用的数据经不起推敲,没有说服力等。这些都反映出我们大学生创业知识的缺乏;
4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?
6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。
第17讲平面图形的计算(一)
例1.图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米)
例2.计算右图的面积。(单位:厘米)

小学奥数~平面图形计数-数长方形--不规则图形

小学奥数~平面图形计数-数长方形--不规则图形

下图中共有___1___个长方形.第1步中有长方形(4+3+2+1)×(3+2+1)=60(个),中有长方形(2+1)×(5+4+3+2+1)=45(个),重叠部分中有长方形(2+1)×(3+2+1)=18(个).所以共有长方形60+45-18=87(个).下图中共有___1___个长方形.中有长方形(3+2+1)×(4+3+2+1)=60(个),中有长方形(6+5+4+3+2+1)×(2+1)=6 3(个),重叠部分中有长方形(3+2+1)×(2+1)=18(个).所以共有长方形60+63-18=105(个).数一数,下面图形有___1___个长方形。

1、此长方形含有:6个长方形2、此长方形含有:3个长方形3、组合后增加:2个长方形长方形:6+3+2=11(个)故答案为:111、此长方形含有:10个长方2、此长方形含有:1个长方形3、组合后增加:1个长方形长方形:10+1+1=12(个)故答案为:12数一数,下面图形有___1___个长方形。

1、此长方形含有:10个长方形2、此长方形含有:1个长方形3、组合后增加:1个长方形长方形:10+1+1=12(个)故答案为:12数一数,下面图形有___1___个长方形。

1、中间长方形含有:9个长方形2、上下两个长方形含有:2个长方3、组合后没有增加长方形长方形:9+2=11(个)故答案为:11数一数,下面图形有___1___个长方形。

1、此长方形含有:15个长方形2、此长方形含有:6个长方形3、组合后增加:3个长方形长方形:15+6+3=24(个)故答案为:24数一数,下面图形有___1___个长方形。

1、此长方形含有:15个长方形2、此长方形含有:6个长方形3、组合后增加:6个长方形长方形:15+6+6=27(个)故答案为:27数一数,下面图形有___1___个长方形。

1、此长方形含有:6个长方形2、此长方形含有:1个长方形3、增加这条线:2个4、将小长方形加上去增加:2个6+1+2+2=11(个)故答案为:111、此长方形含有:9个长方形2、此长方形含有:1个长方形增加这个长方形:3个4、将小长方形加上去增加:2个9+1+3+2=15(个)故答案为:15数一数,下面图形有___1___个长方形。

六年级奥数培训 面积计算

六年级奥数培训 面积计算

六年级奥数面积专题 面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

二、精讲精练【例题1】已知如图,△ABC 的面积为8平方厘米,AE =ED ,BD=23BC ,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但△AEF 的面积无法直接计算。

由于AE=ED,连接DF ,可知AEF S ∆=EDF S ∆(等底等高),采用移补的方法,将所求阴影部分转化为求△BDF 的面积。

为AE =因为BD=23BC ,所以2BDF DCF S S ∆∆=。

又因ED ,所以ABF S ∆=BDF S ∆=2DCF S ∆。

因此,ABC S ∆=5DCF S ∆ 。

由于ABC S ∆=8平方厘米,所以DCF S ∆=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习1:1.如图,AE =ED ,BC=3BD ,ABC S ∆=30平方厘米。

求阴影部分的面积。

=21平方厘2.如图所示,AE=ED ,DC =13BD ,ABCS ∆米。

求阴影部分的面积。

【例题2】两条对角线把梯形ABCD 分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知BOC S ∆是DOC S ∆的2倍,且高相等,可知:BO =2DO ;从ABDS 与ACD S相等(等底等高)可知:6ABOS=,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。

小学五年奥数-平面图形的面积

小学五年奥数-平面图形的面积

平面图形的面积【试金石】例1如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。

(单位;厘米)【针对性训练】如右图,已知一个四边形ABCD的两条边的长度AD=14厘米,BC=6厘米,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。

【试金石】例2右图中长方形的长是20厘米,宽是12厘米,求它的内部阴影部分的面积。

答:阴影部分的面积是120平方厘米。

【针对性训练】图中长方形的长是8米,宽是6米,A和B是宽的中点,求长方形内部阴影部分的面积。

【试金石】例3右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:分米)【针对性训练】右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?【试金石】例4如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。

【针对性训练】如右图,甲、乙两图形都是正方形,它们的边长分别是6厘米和8厘米,求阴影部分的面积。

【试金石】例5【针对性训练】【试金石】【针对性训练】【智能提速训练营】1、如图,已知BD长是2厘米,DC长是3厘米,E是AD的中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC的面积是多少?2、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?3、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?4、如图,BD=6厘米,BC=15厘米,△ABD的面积是24平方厘米,△ADC 的面积是多少平方厘米?5、右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:厘米)6、如图,梯形的面积是70平方厘米,上底8厘米,下底12厘米,阴影部分的面积是多少平方厘米?7、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?8、如图,平行四边形的面积是60平方厘米,阴影三角形的面积是多少平方厘米?9、如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形DEFG的长DG=5厘米,那么它的宽DE是多少厘米?10、如图,四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形的周长是36厘米,四边形ABCD的面积是多少平方厘米?11、如图,已知ABFE是平行四边形,ABCD是长方形,且AD=6厘米,AB=3厘米,CO=2厘米,阴影部分的面积是多少平方厘米?12、一个长方形被两条直线分成四个长方形,其中三个的面积分别是20平方米、25平方米和30平方米,阴影部分的面积是多少平方米?13、如右图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,求图中阴影(三角形BFD)部分的面积。

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。

面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。

面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。

面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。

面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。

面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。

典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。

例2】求图中阴影部分的面积。

例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。

例4】两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。

2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。

3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。

4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。

5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。

1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。

六年级图形问题综合(奥数)含答案解析-精选.pdf

六年级图形问题综合(奥数)含答案解析-精选.pdf

3. 任意梯形,连接对角线,构成四个三角形。 (1)腰上的两个三角形面积相等; ( 2)上下两个三角形 面积之积等于左右两个三角形面积之积。 (为什么?)
4. 正方形的面积等于边长的平方,或者等于对角线的平方 2,或者等于斜边的平方 4.(为什么?)
2.等腰直角三角形面积等于直角边的平方
例题: 例 1. 如 右图,三角形 ABC 的面积是 10,BE=2AB , CD=3BC ,求三角形 BDE 的面积。
6. 下图正方形 ABCD 边长是 10 厘米 , 长方形 EFGH 的长为 8 厘米 , 宽为 5 厘米 . 阴影部分甲与阴影部分乙
的面积差是 ______平方厘米 .
7. 如图所示 , 一个矩形被分成 A 、 B 、C 、 D 四个矩形 . 现知 A 的面积是 2cm2, B 的面积是 4cm2, C 的面积
H
F
D
B
ACE
G
例 8. 如 图,在平行四边形 ABCD中,AC为对角线, EF平行于 AC,如果三角形 AED的面积为 12 平方厘米,,
求三角形 DCF的面积。
专业 知识分享
D
C
完美 WORD 格式
F
A
E
B
练习:
1. 已知正方形 ABCD 的边长是 5cm,又 EF=FG , FD=DG ,求三角形 ECG 的面积。
B
A
8 平方厘米,三角形 COD
O
C
D
专业 知识分享
完美 WORD 格式
图形与面积 ( 一 ) 一、填空题
1. 如下图 , 把三角形 ABC 的一条边 AB 延长 1 倍到 D , 把它的另一边 AC 延长 2 倍到 E , 得到一个较大 的三角形 ADE , 三角形 ADE 的面积是三角形 ABC 面积的 ______倍 .

六年级奥数-面积计算

六年级奥数-面积计算

面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

例题1。

已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。

由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。

因为BD=23 BC ,所以S △BDF =2S △DCF 。

又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。

因此,S △ABC =5 S △DCF 。

由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。

求阴影部分的面积。

3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。

求三角形ABC 的面积。

AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。

两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。

最新六年级图形问题综合(奥数)含答案

最新六年级图形问题综合(奥数)含答案

最新六年级图形问题综合(奥数)含答案平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31?43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。

(为什么?)3. 任意梯形,连接对角线,构成四个三角形。

(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。

(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题:例1.如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。

例2.如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。

例3.如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。

例4.如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。

求三角形BEK 的面积。

D例5.如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。

三角形ABC 面积是500,求图中阴影部分的面积?例6.如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?A B C DF EG例7.在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?A BC DE F G H例8.如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。

小学六年级奥数知识:几何初步认识(平面图形)

小学六年级奥数知识:几何初步认识(平面图形)

小学六年级奥数知识:几何初步认识(平面图形)这篇关于小学六年级奥数知识:几何初步认识(平面图形),是特地为大家整理的,希望对大家有所帮助!二、平面图形1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4、平行四边形(1)特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

平行四边形容易变形。

(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o 表示。

半径:连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3)圆的周长围成圆的曲线的长叫做圆的周长。

第十讲 三年级奥数平面图形计数(一)

第十讲 三年级奥数平面图形计数(一)

平面图形计数一.知识总结平面图形计数分类举方法总结1.数线段:分类枚举法,一般按所含基本线段数的多少分类。

一条线段上如果有n条基本线段,那么线段总数为n+(n-1)+(n-2)+….+1 条。

2.数正方形分类枚举法,一般按正方形的边长分类。

m×n型(m>n),正方形个数是:n x m+(n-1)x(m-1)+(n-2)x(m-2)+…+1×(m-n+1)个;n×n方阵型,正方形个数是n×n+(n-1)×(n-1)+(n-2)x(n-2)+…+2x2+1x1个。

3.数三角形:分类枚举法,一般按照构成基本图形的多少分类二.经典例题及练习例题1以A,B,C,D,E,F,G这些点为端点,请数一数这里一共有多少条线段。

A B C D E F G例题2图中有多少个三角形?练习1在一条直线上有一些被标记的点,请你数一数,看看能找出几条线段。

A B C D E F G H练习2 图中有多少个三角形?例题3数一数,下面图中共有多少个正方形。

练习3数一数,下面图中共有多少个正方形。

例题4图中有多少个正方形?练习4图中有多少个正方形?例题5图中有多少个长方形?(正方形是特殊的长方形)练习5 图中有多少个长方形?(正方形是特殊的长方形)例题6 图中有多少长方形包含*?(正方形是特殊的长方形)练习6 图中有多少长方形包含两个*?(正方形是特殊的长方形)三课后练习1.图中有多少个三角形?2.图中有多少个正方形?3.图中有多少个正方形?4.图中有多少个长方形?(正方形是特殊的长方形)5.含有两个*的长方形有多少个?(正方形是特殊的长方形)。

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)经典小学奥数题型(几何图形)在小学奥数竞赛中,几何图形是一个常见的考点。

通过熟悉和掌握一些经典的几何题型,学生能够提高解题能力,增强空间想象力,并且培养逻辑思维。

一、平面图形的边、角和面积计算1. 边和角计算设某个多边形的边数为 n,则它的内角和为 (n-2) × 180 度。

如果该多边形是正多边形,则每个内角都相等,即每个内角为 [(n-2) ×180]/n 度。

2. 正多边形的面积计算设正多边形的边长为 a,边数为 n,则正多边形的面积 S = (n ×a^2)/(4 × tan(π/n)) 平方单位。

3. 三角形的面积计算设三角形的底边长为 a,高为 h,则三角形的面积 S = (a × h) /2 平方单位。

二、相似三角形的性质当两个三角形的相应角相等时,我们可以推论他们是相似三角形。

相似三角形之间存在以下几个性质:1. 边长的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例应该相等: AB/XY = BC/YZ = AC/XZ。

2. 面积的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例的平方等于对应面积之间的比例:(AB/XY)^2 = (BC/YZ)^2 =(AC/XZ)^2 = S(ABC)/S(XYZ)。

三、三角形的周长和面积计算1. 三角形的周长计算将三角形的三条边长相加,即可得到三角形的周长。

2. 海伦公式设三角形的三条边长为 a、b、c,令 p = (a+b+c)/2 为半周长,则三角形的面积S = √( p × (p-a) × (p-b) × (p-c) ) 平方单位。

四、平行四边形和矩形的性质1. 平行四边形的性质平行四边形的对边互相平行且相等,对角线互相等分,并且对角线相交的点将对角线份平分。

2. 矩形的性质矩形是一种特殊的平行四边形,它的对边相等且互相平行,且所有角都是直角。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

五年级奥数平面图形的面积计算

五年级奥数平面图形的面积计算

7.如下图,梯形ABCD的面积等于72平 方厘米,AB=4厘米,DC=8厘米。求三 角形ABD的面积。
五年级奥数平面图形的面积计算
8.在下图中,阴影部分的面积是 21平方厘米,直角梯形的面积是 多少平方厘米?
五年级奥数平面图形的面积计算
ห้องสมุดไป่ตู้
单位:厘米
谢谢观赏
五年级奥数平面图形的面积计算
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
谢谢
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
求下面组合图形的面积:
单位:厘米
五年级奥数平面图形的面积计算
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
应用题:
1. 一块梯形木板面 积为9.2平方米,中 位线长2.3米,求梯 形木板的高是多少?
五年级奥数平面图形的面积计算
应用题:
2. 一个梯形的上底为6 厘米,下底为9厘米,面 积为45平方厘米,它的 高是多少厘米?
五年级奥数平面图形的面积计算
应用题:
3. 已知梯形的面积是 21平方米,高6米,下底 长4米,求上底长多少?
五年级奥数平面图形的面积计算
应用题:
4. 某梯形上底与下 底的和为100米,面积 为1500平方米,它的 高是多少米?
五年级第学1期
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
△ADE 五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
5.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍, 求:(1)三角形的DEF的面积.(2)CF的长.

五年级奥数平面图形面积的计算

五年级奥数平面图形面积的计算

1、知识要点 1. 2. 五年级奥数第六讲平面图形面积的计算特征 面积公式正方形① 四条边都相等。

② 四个角都是直角。

③ 有四条对称轴。

S=aa长方形① 对边相等。

② 四个角都是直角。

③ 有二条对称轴。

S=ab平行四边形① 两组对边平行且相等。

② 对角相等,相邻的两个角之和为 180° ③ 平行四边形容易变形。

S=ah三角形① 两边之和大于第三条边。

② 两边之差小于第三条边。

③ 三个角的内角和是 180°。

④ 有三条边和三个角,具有稳定性。

S=ah * 2梯形① 只有一组对边平行。

② 中位线等于上下底和的一半。

S=(a+b)h - 2基本平面图形特征及面积公式 基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根 据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图 形分别计算。

【典型例题】28平方厘米,----- 5 IP ---------/ [ / *f【例1】已知平行四边表的面积是求阴影部分的面积。

【练一练】如果用铁丝围成如下图一样的 平行四边形,需要用多少厘米铁丝? (单位:厘米)2【练一练】下图中甲和乙都是正方形,求阴影部分 的面积。

(单位:厘米)【例3】如图所示,甲三角形的面积比【练一练】平行四边形 ABCD 的边长BC=10厘米,直角三角形 BCE 的直角 边EC 长8厘米,已知阴影部分的面积比 三角形EFG 的面积大10平方厘米。

求CF 的长。

【例4】两条对角线把梯形 ABCD 分割成四个三角形。

已知两个三角形的面积(如图所示) ,求另两个三角形 的面积各是多少?(单位:厘米)【练一练】下面的梯形 ABCD 中,下底是 上底的2倍,E 是AB 的中点,求梯形 ABCD 的面积是三角形EDB 面积的多少倍?【练一练】一个长方形的草 坪,中间有两个人 行道。

高是14 求草坪的面积。

六年级奥数-15图形面积(一)

六年级奥数-15图形面积(一)

面积计算(一)1.学会用割补、拼接、等面积变换等基本技巧计算平面图形面积2.了解平面几何六大模型3.熟悉圆与扇形的面积求法1.计算平面图形面积的技巧:割补拼接、等面积变换、和差法、转化法2.几何六大模型:等积变换、鸟头模型、蝴蝶模型、相似模型、燕尾模型、一半模型3.圆形与扇形的面积公式。

☞考点说明:研究的是怎样把一个三角形内部两个成燕子尾巴关系的三角形(其实两个三角形的关系是共边)面积的比转化成线段长度之间的比1.燕尾模型:一个三角形内部,内部某个点与三个顶点分别相连后,会形成左、右、下三个燕尾三角形,并会形成(左、右)(左、下)(右、下)三组燕尾。

2.燕尾定理(1)S△ABG:S△ACG=S△BGE:S△CGE=BE:CE(2)S△BGA:S△BGC=S△GAF:S△GCF=AF:CF(3)S△AGC:S△BGC=S△AGD:S△BGD=AD:BD3.证明燕尾定理例:如右图,D是BC上任意一点,请你说明:1423:::S S S S BD DC==类型一、几何六大模型——燕尾模型S 3S 1S 4S 2E D C B A【解析】三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得,1423:::S S S S BD DC ==.例1.已知在下面两幅图中,三角形ABD 的面积都是15,三角形ACD 的面积都是20,三角形CDE 的面积都是8,求三角形BDE 的面积.练习1.如图,已知三角形ABD 的面积是35平方厘米,三角形ACD 的面积是25平方厘米,三角形BCD 的面积是24平方厘米.求三角形CDE 的面积是多少?燕尾定理结合分比定理、风筝模型等解题例2.如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于.练习2.如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.题目条件比较少,那么创造条件——做辅助线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数之平面图形的计算(一)1.图中的甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)
2.计算右图的面积。

(单位:厘米)
3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。

求四边形
ABCD的面积。

4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。

(单位:分米)
5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?
(单位:米)
6.求图中阴影部分的面积。

7.求图中阴影部分的面积。

8.下左图的长方形中,三角形ADE与四边形DEBF和三角
形CDF的面积分别相等,求三角形DEF的面积。

9.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。

10.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?
11.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。

12.如图,BC长为5,求画斜线的两个三角形的面积之和。

13.上右图是两个一样的直角三角形重叠在一起,按照图上
标出的数,计算阴影部分的面积。

14.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。

相关文档
最新文档