工程力学复习知识点

合集下载

工程力学知识点详细总结

工程力学知识点详细总结

工程力学知识点详细总结工程力学是研究物体受力和变形规律的学科,它是工程学的基础学科之一。

在工程实践中,我们经常需要对结构物体的力学特性进行分析和计算,以保证结构的安全可靠。

因此,工程力学的理论和方法在工程设计和施工中起着不可替代的作用。

本文以静力学、动力学和固体力学为主要内容,详细总结了工程力学的相关知识点。

一、静力学1.力的概念和分类力是引起物体产生加速度的原因,根据力的性质和来源可以将力分为接触力和场力。

接触力是通过物体的静止接触面传递的力,包括摩擦力、正压力和剪切力等;场力是由物体之间的相互作用所产生的力,包括重力、电磁力和引力等。

2.受力分析受力分析是研究物体受力情况的一种分析方法,通过分析物体受力的大小、方向和作用点,可以确定物体的平衡条件和受力状态。

在受力分析中,可以应用力矩平衡、受力图和自由体图等方法来分析物体的受力情况。

3.力的合成和分解力的合成和分解是将若干个力按照一定规律合成为一个合力,或者将一个力分解为若干个分力的方法。

通过力的合成和分解,可以简化受力分析的过程,求解物体的受力情况。

4.平衡条件平衡是指物体处于静止状态或匀速直线运动状态。

根据平衡的要求,可以得出物体的平衡条件,包括受力平衡和力矩平衡。

在分析物体的平衡条件时,可以应用力的合成和分解、力矩平衡等方法进行求解。

5.杆件受力分析杆件受力分析是研究杆件受力情况的一种分析方法,通过分析杆件受力的大小、方向和作用点,可以确定杆件的受力状态。

在杆件受力分析中,可以应用正压力、拉力和剪力等概念进行求解。

6.梁的受力分析梁是一种常见的结构构件,受到外部加载作用时会产生弯曲变形。

梁的受力分析是研究梁受力情况的一种分析方法,通过分析梁受到的弯矩和剪力的分布规律,可以确定梁的受力状态。

在梁的受力分析中,可以应用梁的静力平衡和弯矩方程等方法进行求解。

7.静力学原理静力学原理是研究物体力学特性的基本原理,包括牛顿定律、平衡条件和力的合成分解定理等。

工程力学知识点全集总结

工程力学知识点全集总结

工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。

力的大小用力的大小和方向来描述,通常用矢量表示。

2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。

根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。

3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。

而反之,一个力也可以根据其方向和大小,被分解为若干个分力。

4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。

5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。

物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。

6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。

二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。

刚体的转动可以分为平移和转动两种。

2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。

当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。

3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。

可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。

4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。

在不同受力条件下,梁的受力分析方法会有所不同。

通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。

5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。

摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。

6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。

工程力学知识点

工程力学知识点

工程力学知识点工程力学是一门研究物体机械运动和受力情况的学科,它在工程领域中具有极其重要的地位。

通过对工程力学的学习,我们能够更好地理解和设计各种结构和机械系统,确保其安全性、稳定性和可靠性。

接下来,让我们一起深入了解一些关键的工程力学知识点。

一、静力学静力学主要研究物体在静止状态下的受力情况。

首先是力的基本概念,力是物体之间的相互作用,具有大小、方向和作用点三个要素。

力的合成与分解遵循平行四边形法则,通过这个法则可以将多个力合成为一个合力,或者将一个力分解为多个分力。

平衡力系是静力学中的一个重要概念。

如果一个物体所受的力系能够使物体保持静止,那么这个力系就称为平衡力系。

在平衡力系中,所有力的矢量和为零。

此外,还有约束和约束力的知识。

约束是限制物体运动的条件,而约束力则是约束对物体的作用力。

常见的约束类型有光滑接触面约束、柔索约束、铰链约束等,每种约束产生的约束力都有其特定的规律。

二、材料力学材料力学关注的是材料在受力时的变形和破坏情况。

首先是拉伸与压缩,当杆件受到沿轴线方向的拉力或压力时,会发生伸长或缩短。

通过胡克定律可以计算出杆件的变形量,其应力与应变之间存在线性关系。

剪切与挤压也是常见的受力形式。

在连接件中,如铆钉、螺栓等,会受到剪切力和挤压力的作用。

我们需要计算这些力的大小,以确保连接件的强度足够。

扭转是指杆件受到绕轴线的外力偶作用时发生的变形。

对于圆轴扭转,其切应力分布规律和扭转角的计算是重要内容。

弯曲则是工程中常见的受力情况,梁在受到垂直于轴线的载荷时会发生弯曲变形。

我们需要掌握梁的内力(剪力和弯矩)的计算方法,以及正应力和切应力的分布规律,从而进行梁的强度和刚度设计。

三、运动学运动学研究物体的运动而不考虑其受力情况。

点的运动可以用直角坐标法、自然法等方法来描述。

例如,用直角坐标法可以表示点的位置、速度和加速度。

刚体的运动包括平移、定轴转动和平面运动。

平移时,刚体上各点的运动轨迹相同,速度和加速度也相同;定轴转动时,刚体上各点的角速度和角加速度相同;平面运动可以分解为随基点的平移和绕基点的转动。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是一门研究物体受力、变形以及力学性质的学科。

它是工程学的基础学科之一,广泛应用于工程设计、结构分析和材料力学等领域。

在本文中,我将对工程力学的一些重要知识点进行总结,希望能够帮助读者更好地理解和应用工程力学的原理和方法。

第一部分:力的基本概念和平衡条件力是工程力学的核心概念之一,它可以引起物体的形状和运动发生变化。

在工程力学中,力的三要素是大小、方向和作用点。

力的大小可以用矢量表示,它的方向可以用箭头表示,作用点是力所作用的物体上的一点。

对于一个物体的平衡条件,有三种可能:静力平衡、动力平衡和稳定平衡。

静力平衡是指物体在受到多个力的作用下,力的合力为零,物体处于静止状态。

动力平衡是指物体在受到多个力的作用下,力的合力不为零,物体处于运动状态。

稳定平衡是指物体在受到微小扰动后能够自动恢复到原来的平衡状态。

第二部分:受力分析和结构受力受力分析是工程力学的基础,它通过分析物体所受到的外力和内力,来确定物体的运动状态和受力情况。

在受力分析中,我们常常使用自由体图和受力分解的方法来求解受力问题。

自由体图是指将物体从结构中分离出来,在图上标识出所受到的外力和内力,便于分析和计算。

结构受力是工程力学的重要内容之一,它研究物体在受到外力作用下的变形和应力情况。

常见的结构受力包括轴力、剪力、弯矩和应力等。

轴力是指物体沿着轴线方向受到的拉力或压力,剪力是指物体内部两个相邻截面之间的力,弯矩是指物体在受力作用下发生的弯曲时所产生的力矩,应力是指物体受到的单位面积上的力。

第三部分:材料力学和变形性能材料力学是工程力学中的重要分支,它研究物体的材料在受力作用下的变形和破坏情况。

常见的材料力学知识点包括杨氏模量、屈服强度、伸长率和断裂韧性等。

杨氏模量是描述材料刚度的指标,它反映了材料在受力作用下产生的弹性变形程度。

屈服强度是指材料在受到一定载荷后开始发生塑性变形的临界点。

伸长率是指材料在拉伸过程中的长度变化百分比,它可以反映材料的延展性能。

工程力学复习要点

工程力学复习要点

工程力学复习要点理论力学复习要点一、静力学基本概念:刚体、力及力的三个要素、力系、平面力系、空间力系、汇交力系、平行力系、力偶系、任意力系、二力构件、公理二、约束和约束力以及受力分析三、力系的合成与简化四、力系的平衡条件:空间力系的平衡条件、平面一般力系的平衡条件、平面汇交力系的平衡条件、平面力偶系的平衡条件五、刚体系的平衡静定与静不定的概念材料力学复习要点一、固体力学的基本概念、材料的力学性能、应力、应变关系(胡克定律)、强度理论、应力状态(主应力、主方向、主平面、最大剪应力)、剪应力互等定理等二、杆件分析1、杆件的内力轴力、扭矩、剪力、弯矩理论力学及材料力学的符号规定与区别用截面法求内力指定截面上的内力及内力方程利用荷载之间的微积分关系(()() dxx dMxQ=、()() dxx dQxq=)画出杆件结构的内力图杆件的危险截面的确定(第一个层次)2、 杆件的应力(强度)A P N=σ (拉压) ⎪⎪⎭⎫ ⎝⎛==P P W T I T max τρτ(上述公式的推导过程 )(扭转) zI My =σ(上述公式的推导过程 )(弯曲) z W M=max σ(中性轴是对称轴)z I y M max max =σ(中性轴是非对称轴)Z Z bI QS *=τ A Qk =m a x τ记住k 值,最大剪应力总是在中性轴上杆的危险点的确定(第二个层次)3、 杆件的变形(刚度)EANl l dx EA N l l x x =∆⇒=∆⎰0(等截面的二力杆) l l∆=εPl x P x GI Tl dx GI T =⇒=⎰ϕϕ0 l ϕθ= 梁的挠度v v v v v '''''''''',,,,,θ(四次微积分关系) 用积分法和叠加法求梁的挠度,积分法是基础,叠加法是重点4、超静定问题拉压、扭转、弯曲超静定问题,求解超静定问题的步骤及方法5、 组合变形:拉、弯;拉、弯、扭;弯扭;斜弯曲(圆轴不存在斜弯曲)各种组合变形下的应力问题及危险点的应力分析。

(完整版)工程力学复习知识点

(完整版)工程力学复习知识点
首先选取分离体;然后画分离体受力分析图,在分析约束力方向时,注意利
尽量选取与未知力垂直的坐标轴,使参与计算的未知量的个
尽量使一个方程求解一个未知量,而力偶系的平衡方程与矩心的选
注意区分力偶的矢量方向或是转向,确定好投影的正方向;最后求
一般力系的简化与平衡
( 1)力线平移定理
作用在刚体上的力,若其向刚体上某点平移时,不改变原力对刚体的外效应,
空间任意方向都不允许移动,用方位相互垂直,方向任意的三个分力来代替这个约束力
三个轴向都不允许移动和转动,用三个方位相互垂直的分力来代替限制空间移动的约束力,并用三个矢量方位相互垂直,转向任意的力偶代替限制转动的约束力偶
(6)受力分析图
受力分析图是分析研究对象全部受力情况的简图。其步骤是:
束类约束简图 约束力矢量图 约束力描述
作用点:物体接触点 方位:沿柔索 方向:背离被约束物体 大小:待求
单面约束: 作用点:物体接触点 方位:垂直支撑公切面 方向:指向被约束物体 大小:待求 这类约束为物体提供压力。
双面约束:假设其中一个约束面与物体接触,绘制约束力,不能同时假设两个约束面与物体同时接触。 作用点:物体接触点 方位:垂直共切面
Fuuv等于零,即0RiFFuuv,这是汇交力系平衡的充要条件。
3)汇交力系的求解
所示。对于空间汇交力系,由于作图不方便一般采用解析法。
4.1-2 求解汇交力系的两种方法
Fuuv 平衡条件0RFuuv
按力的多边形法则,得汇交力系的力的多边形示意
其开口边决定了合力的大小和方位及指向,指向
在空间问题中,力对点之矩是个定位矢量,如图4.1-2,其表达式为
4.1-2
OzyxzyxMFMrFyFzFizFxFjxFyFkuvvuvvvv

工程力学重点总结

工程力学重点总结

工程力学重点总结第一章静力学基本概念和公理受力图一、刚体刚体是指在力的作用下不会发生形变的物体。

力的三要素包括大小、方向和作用点。

平衡指物体相对于惯性参考系处于静止或作匀速直线运动。

二、静力学公理1.力的平行四边形法则:作用在物体上同一点的两个力可以合成为仍作用于该点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。

2.二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是这两个力的大小相等、方向相反,并且作用在同一直线上。

3.加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。

1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。

2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

4.作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等、方向相反、作用线重合,并分别作用在两个物体上。

5.刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。

三、约束和约束反力约束分为柔索约束、光滑面约束、光滑圆柱铰链约束和链杆约束。

约束反力通过不同的连接点和接触面,方向和指向也有所不同。

四、受力分析和受力图选取研究对象,画出研究对象所受的全部主动力和约束反力,表示研究对象受力的简明图形称为受力图。

第二章平面汇交力系一、平面汇交力系合成和平衡的几何法平面汇交力系是指所有力的作用平面相交于一点的力系。

对于平面汇交力系,可以用几何法进行合成和平衡分析。

本文介绍了力学中的几个重要概念和方法。

首先,力多边形法则是一种通过折线和矢量的几何作图法,用于求解平面汇交力系的合力。

其必要充分条件是力多边形自行封闭。

其次,力的分解与投影是力学中常用的方法之一。

大一工程力学的知识点总结

大一工程力学的知识点总结

大一工程力学的知识点总结一、向量力学1.向量的基本概念和运算:向量的表示法、向量加法和乘法运算、向量分解2.向量的合成与分解:平面向量的合成与分解、三维向量的合成与分解3.单位矢量:基本矢量、单位向量的概念与运算4.物体的运动:位矢、位移与平均速度、瞬时速度与瞬时加速度二、力和力的平衡1.力的基本概念:力的定义、力的分类、力的单位2.力的合成与分解:力的合成、力的分解、平面力系的合成3.力的平衡:力的平衡条件、平面力系的平衡条件、力的图示法三、刚体的平衡1.刚体的基本概念:刚体的定义、质点与刚体的区别2.刚体平衡的条件:转动力矩的概念、矢量叉积、平面力系的力矩平衡条件3.刚体的静力学分析:平面问题的解法、近似计算方法四、摩擦力与支持反力1.摩擦力的基本概念:静摩擦力与滑动摩擦力2.静摩擦力的分析:静摩擦力的大小与方向、静摩擦力的极限值3.支持反力的分析:平衡问题的解法、不同支持条件下的反力分析五、动力学1.牛顿第二定律:牛顿第二定律的表述、质点的加速度与作用力关系2.动力学分析:质点的自由体图、质点的运动学分析和力学分析3.牛顿第三定律:牛顿第三定律的表述和应用六、重力1.重力的基本概念:重力的定义、重力的计算公式2.重力的分析:自由落体运动、竖直上抛运动、重力加速度的测定七、力的作用点运动1.力的作用点运动:力矩的概念、力矩与转动动力学的关系2.刚体的旋转:转动惯量的概念、刚体的动力学分析八、弹性力学1.弹性力学的基本概念:应力与变形的关系、弹性力学的前提假设2.线性弹性力学:胡克定律、杨氏模量、梁的弯曲以上是大一工程力学的主要知识点总结,希望能够对你的学习有所帮助。

当然,工程力学是一门基础性课程,还有很多细节和衍生的内容需要进一步学习和探索。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是一门研究物体机械运动和受力情况的学科,它对于解决工程实际问题具有重要的意义。

以下是对工程力学一些关键知识点的总结。

一、静力学静力学主要研究物体在静止状态下的受力平衡问题。

1、力的基本概念力是物体间的相互作用,具有大小、方向和作用点三个要素。

力的单位是牛顿(N)。

2、力的合成与分解遵循平行四边形法则,可以将一个力分解为多个分力,也可以将多个力合成为一个合力。

3、约束与约束力约束是限制物体运动的条件,约束力是约束对物体的反作用力。

常见的约束有柔索约束、光滑接触面约束、铰链约束等。

4、受力分析对物体进行受力分析是解决静力学问题的关键步骤。

要明确研究对象,画出其受力图,包括主动力和约束力。

5、平衡方程对于平面力系,有∑Fx = 0、∑Fy = 0、∑Mo(F) = 0 三个平衡方程;对于空间力系,则有六个平衡方程。

二、材料力学材料力学主要研究杆件在受力作用下的变形和破坏规律。

1、内力与应力内力是杆件内部由于外力作用而产生的相互作用力。

应力是单位面积上的内力,分为正应力和切应力。

2、应变应变是杆件变形量与原始尺寸的比值,分为线应变和切应变。

3、拉伸与压缩杆件在受到轴向拉伸或压缩时,会产生轴向变形和横截面上的应力分布。

4、剪切与挤压在剪切面上会产生切应力,在挤压面上会产生挤压应力。

5、扭转圆轴扭转时,横截面上会产生切应力,其分布规律与扭矩有关。

6、弯曲梁在弯曲时,会产生弯矩和剪力,横截面上会有正应力和切应力分布。

7、强度理论用于判断材料在复杂应力状态下是否发生破坏,常见的有第一、第二、第三和第四强度理论。

三、运动学运动学研究物体的运动规律,而不考虑引起运动的力。

1、点的运动描述点的运动可以用直角坐标法、自然法和极坐标法。

2、刚体的平动和转动平动时刚体上各点的运动轨迹相同,速度和加速度也相同;转动时刚体绕某一固定轴旋转。

3、角速度和角加速度用于描述刚体转动的快慢和变化率。

4、点的合成运动包括牵连运动、相对运动和绝对运动,通过速度合成定理和加速度合成定理来分析。

工程力学复习要点.doc

工程力学复习要点.doc

工程力学复习要点第1章1、力的平行四边形法则;二力的合成与分解;三力平衡汇交定理。

2、约束和约束反力:各种约束(包括后面提到的固定端约束)的约束反力的画法,还要注意规范地写出各力符号。

3、画受力图(重点)。

注意:要除去约束,取出分离体;正确判断出二力杆;不漏外力,不画内力;规范地标注力的符号。

(典型题:例1・1、1-2、1-3)第2章1、力在轴及平面上的投影。

注意力的正负。

2、力对点之矩,合力矩定理。

特别注意力矩的正负;注意正确求力臂;在力臂不易直接求时能灵活运用合力矩定理。

(典型题:例2.3、习题2.5、2-6)第3章1、汇交力系的受力分析、建立平衡方程与熟练求解。

2、灵活运用三力平衡汇交定理。

(典型题:例3-2、习题3-7、3-8)第4章1、力的平移定理及其逆运用。

注意力偶的方向。

2、平面一般力系(重点)。

平面一般力系的受力分析、建立平衡方程与熟练求解。

(典型题:例4-4、4-5)3、平面平行力系。

平面平行力系的受力分析、建立平衡方程与熟练求解。

注意分析临界情况。

(典型题:例4-6)4、物体系统的平衡(重点)。

多构件物体系统的受力分析、建立平衡方程与熟练求解。

(典型题:例4.8、4-9)第5章在考虑滑动摩擦时,物体系统的受力分析、建立平衡方程与熟练求解。

注意摩擦力的作用点、方向。

(典型题:例5-1 > 5-4)第6章1、简单空间力系的受力分析、建立平衡方程与熟练求解。

(典型题:例6.1、6-2)2、能计算简单组合图形的重心坐标。

(典型题:例6-4、6-5)1、用截面法求轴力。

注意不要死记公式(7-1),而要先画出截面受力图,列出平衡方程再求轴力;注意轴力要按正方向假设。

(典型题:例7.1)2、画轴力图。

特别注意:轴力图要对齐原结构图。

(典型题:例7.2)3、拉压正应力的计算。

注意确定危险截面;注意单位转换。

(典型题:例7-3、7-4)4、轴向拉压强度计算。

注意解题时要首先写出强度条件式(7-14),然后根据问题的类型(三种)写出具体公式,再代入数值求解。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结
静力学:静力学部分主要研究受力物体平衡时作用力所应满足的条件,同时也研究物体受力的分析方法以及力系的简化的方法等。

例如,二力平衡公理指出,作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

加减平衡力系公理表明,在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

此外,还有平行四边形法则等。

材料力学:材料力学部分研究构件在外力作用下的变形与破坏(或失效)的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。

例如,构件应具备足够的强度、刚度和稳定性,以保证在规定的使用条件下不发生意外断裂、显著塑性变形、过大变形或失稳。

工程力学的研究方法主要包括理论方法和试验方法。

在对事物观察和实验的基础上,经过抽象化建立力学模型,形成概念。

例如,在研究物体受外力作用而平衡时,可以采用刚体模型;但要分析物体内部的受力状态,必须考虑到物体的变形,建立弹性体的模型。

总的来说,工程力学涵盖了原有理论力学(静力学部分)和材料力学两门课程的主要经典内容,不仅与力学密切相关,而且紧密联系于广泛的工程实际。

如需更详细的知识点总结,建议查阅力学相关书籍或咨询力学专业人士。

工程力学复习要点

工程力学复习要点

《工程力学(静力学与材料力学)》复习要点第0章绪论1、什么叫强度?什么叫刚度?2、工程力学的两种分析模型分别是什么,分别具有怎样的特征;3、刚体静力学的那些原理和方法不适合变形体?第1章静力学基础1、作用在刚体上的力的会产生哪两种效应?2、掌握力的可传性原理以及其适用范围;3、掌握合力矩定理及其应用;4、什么叫力偶,力偶矩怎样计算?力偶具有怎样的性质?5、掌握柔性绳索约束、光滑面约束和光滑铰链约束的约束力的画法;6、掌握二力平衡原理及二力构件的特征和判定方法;7、掌握三力平衡原理和加减平衡力系原理;8、掌握对刚体进行受力分析的方法和过程。

第2章力系的简化1、理解力向一点平移定理及其在力系简化过程中的应用;2、理解主矢、主矩的含义;3、理解并掌握平面力系的简化结果;4、掌握固定端约束的约束力的画法。

第3章静力学的平衡问题1、平面力系的平衡条件是什么?2、掌握平面力系的平衡方程的三种基本形式(一矩式、二矩式、三矩式)的应用;3、理解什么叫自锁以及自锁的条件。

第4章材料力学的基本概念1、什么是材料力学的三大基本假定;2、掌握截面法的基本步骤;3、理解应力、应变的概念;4、掌握四大基本变形的受力和变形特征。

第5章轴向拉伸与压缩1、掌握用截面法求轴力,并能绘制轴力图;2、掌握拉压杆的应力和变形的计算方法;3、会利用拉压杆的强度条件解决三类强度问题;4、熟练掌握材料在拉伸时的力学性能(包括韧性材料在拉伸过程中的四个阶段对应的实验现象及各阶段所对应的强度指标、韧性指标;韧性材料和脆性材料的区分指标;韧性材料和脆性材料的极限应力等);5、什么叫应力集中?特征是什么?第6章圆轴扭转1、掌握用截面法求扭矩,并能绘制扭矩图;2、理解切应力互等定理;3、掌握圆轴扭转时扭转切应力的计算公式并能根据公式分析切应力在横截面上的分布规律;4、掌握圆形截面的抗扭截面系数的计算公式;5、掌握扭转强度计算过程;6、理解单位长度上的相对扭转角的含义,并能计算;7、掌握刚度条件并能进行刚度计算。

工程力学复习知识点

工程力学复习知识点

一、静力学1.静力学基本概念(1)刚体刚体:形状大小都要考虑的,在任何受力情况下体内任意两点之间的距离始终保持不变的物体。

在静力学中,所研究的物体都是指刚体。

所以,静力学也叫刚体静力学。

(2)力力是物体之间的相互机械作用,这种作用使物体的运动状态改变(外效应)和形状发生改变(内效应)。

在理论力学中仅讨论力的外效应,不讨论力的内效应。

力对物体的作用效果取决于力的大小、方向和作用点,因此力是定位矢量,它符合矢量运算法则。

力系:作用在研究对象上的一群力。

等效力系:两个力系作用于同一物体,若作用效应相同,则此两个力系互为等效力系。

(3)平衡物体相对于惯性参考系保持静止或作匀速直线运动。

(4)静力学公理公理1(二力平衡公理)作用在同一刚体上的两个力成平衡的必要与充分条件为等大、反向、共线。

公理2(加减平衡力系公理)在任一力系中加上或减去一个或多个平衡力系,不改变原力系对刚体的外效应。

推论(力的可传性原理)作用于刚体的力可沿其作用线移至杆体内任意点,而不改变它对刚体的效应。

在理论力学中的力是滑移矢量,仍符合矢量运算法则。

因此,力对刚体的作用效应取决于力的作用线、方向和大小。

公理3(力的平行四边形法则)作用于同一作用点的两个力,可以按平行四边形法则合成。

推论(三力平衡汇交定理)当刚体受三个力作用而平衡时,若其中任何两个力的作用线相交于一点,则其余一个力的作用线必交于同一点,且三个力的作用线在同一个平面内。

公理4(作用与反作用定律)两个物体间相互作用力同时存在,且等大、反向、共线,分别作用在这两个物体上。

公理5(刚化原理)如变形物体在已知力系作用下处于平衡状态,则将此物体转换成刚体,其平衡状态不变。

可见,刚体静力学的平衡条件对变形体成平衡是必要的,但不一定是充分的。

(5)约束和约束力1)约束:阻碍物体自由运动的限制条件。

约束是以物体相互接触的方式构成的。

2)约束力:约束对物体的作用。

约束力的方向总与约束限制物体的运动方向相反。

(完整版)工程力学知识点

(完整版)工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。

(适用于任何物体)d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。

(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。

2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系。

b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。

c,空间汇交力系:力的作用线汇交于一点的空间力系。

d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。

3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶。

但绝不可能是一个力偶。

b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。

4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。

b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是研究物体在受力作用下的运动和静力平衡的一门学科。

它是工程学的基础课,通过研究物体的平衡状态、受力分析和运动规律,为设计和建造工程结构提供理论依据。

在工程力学中,有许多重要的知识点,下面将对其进行总结。

1. 基本力学概念在工程力学中,有几个基本的力学概念需要掌握。

首先是质点的概念,质点是指具有质量但没有尺寸的物体。

其次是力的概念,力是改变物体状态的推动或阻碍物体运动的作用。

另外,还有向量的概念,向量是具有大小和方向的量。

2. 受力分析受力分析是工程力学的重要内容,它主要研究物体所受到的各个力的大小、方向和作用点等。

受力分析的基本原理是牛顿第二定律,即物体所受合力等于物体的质量乘以加速度。

通过受力分析,可以确定物体的平衡状态和运动规律。

3. 平衡条件在工程力学中,平衡是一个重要的概念。

平衡可以分为静力平衡和动力平衡。

静力平衡要求物体所受合力和合力矩都为零,而动力平衡要求物体所受合力和合力矩的矢量和等于零。

根据平衡条件,可以确定工程结构的稳定性和安全性。

4. 静力学静力学是研究物体在力的作用下的静力平衡问题的学科。

它包括受力分析、力的合成与分解、力的平衡条件等内容。

静力学是工程力学的重要基础,对于工程设计和分析具有重要的意义。

5. 动力学动力学是研究物体在力的作用下的运动规律的学科。

它包括质点的运动学和动力学、牛顿第二定律、力学能等内容。

通过动力学的研究,可以确定物体的运动规律以及所受的力和加速度之间的关系。

6. 弹簧力学弹簧力学是研究弹性物体受力和变形规律的学科。

弹簧力学主要涉及胡克定律、弹性势能、弹性系数等内容。

在工程力学中,弹簧力学是研究结构变形和力学性能的重要工具。

7. 梁的受力分析梁的受力分析是工程力学的重要内容,它研究物体所受的内力、外力和弯矩等。

梁的受力分析可以通过挠曲方程和受力平衡方程来进行。

根据梁的受力分析,可以确定梁的强度和刚度,为工程设计提供理论依据。

工程力学复习要点

工程力学复习要点

工程力学复习要点1、依据材料的应力--应变曲线判断材料的刚度、强度和塑性性能。

2、能准确计算轴向拉压时横截面上的轴力,熟练地绘制轴力图,根据外力的分布求任一截面上的轴力。

3、理解低碳钢和铸铁两种典型材料的力学性能及应用。

4、理解ζ-ε曲线的意义,依据曲线会判断材料的强度、刚度、塑性;理解反映材料性能的物理量如:E、G、δ、Ψ;理解EA、GIP、EIZ等量的物理意义和内涵。

5、塑性材料和脆性材料的极限应力各是什么?δ≥5%是什么材料?6、能准确理解杆件横截面上的轴力、应力、强度和变形及相关的计算公式(同一种材料和不同材料)。

7、胡克定律的适用条件。

8、熟记计算外力偶矩的公式并运用该公式去解释一些现象,如:当传递功率一定时,高速轴与低速轴谁应该粗一些?9、掌握扭矩的符号规定并熟练地绘制扭矩图。

10、圆截面的IP、WP、矩形截面的IZ和WZ各等于什么?11、圆轴扭转时横截面上任一点的剪应力如何计算,最大剪应力发生在什么地方?如何计算?12、什么是中性层?中性轴是那条线,弯曲时横截面绕那一条线旋转?13、悬臂梁最大弯矩发生在何处?14、会判断纯弯曲、剪切弯曲。

15、矩形梁上某段若为正值弯矩,其上下边缘处分别是什么应力,在截面上如何分布?若为负值弯矩又如何分布?16、熟记画剪力图和弯矩图的五条规律,能够运用这五条规律画图或判断剪力图和弯矩图的正确与否。

17、正确计算任意截面上的剪力和弯矩。

18、加减平衡力系公理、力的可传性原理、作用反作用公理、三力汇交定理的适用范围。

19、键连接中发生哪几种变形?20、依据比值WZ/A正确衡量截面的经济程度(常见的截面:如矩形、正方形、圆形和工字钢等)。

21、通常情况下强度条件可以解决哪些计算?22、正确绘制轴力图并确定危险截面的位置。

23、正确绘制扭矩图并确定危险截面的位置。

24、正确绘制剪力图和弯矩图,并确定危险截面的位置。

25、圆轴扭转时的强度强度计算(解题步骤和计算方法)。

工程力学知识点总结

工程力学知识点总结
牛顿第三定律
作用力和反作用力大小相等、方向相反、作 用在同一直线上。
牛顿第二定律
物体加速度与作用力成正比,与质量成反比。
应用
分析物体的运动状态、求解作用力的大小和 方向。
动量矩定理和动能定理
动量矩定理
刚体转动动量矩的变化 等于作用力矩与时间的 乘积。
动能定理
物体动能的变化等于合 外力所做的功。
应用
摩擦力与摩擦定律
详细描述:摩擦力是阻碍物体相对运动的力, 其方向与物体相对运动方向相反。
详细描述:摩擦定律指出滑动摩擦力的大小与接触面 的粗糙程度和正压力有关,而与接触面的面积无关。
总结词:摩擦力 总结词:摩擦定律
03 材料力学
材料的基本性质
弹性与塑性
材料在外力作用下发生形变,外力消失后恢复原状的性质 称为弹性;而外力作用后材料发生不可逆的形变,即塑性。
通过优化设计方法,寻求最优的结构 设计方案,以满足性能要求和降低成 本。
弹性力学基础
弹性力学基本方程
包括平衡方程、几何方程和物理方程,用于 描述弹性体的位移、应变和应力等。
弹性力学问题分类
根据问题的边界条件和载荷类型,将弹性力 学问题分为静力学问题和动力学问题。
弹性力学问题的求解方法
包括解析法和数值法,如有限元法、有限差 分法和边界元法等。
总结词
力的作用线
详细描述
力的作用线是连接力作用点与受力点的假想直线, 它决定了力的方向和大小。
总结词
力的平行四边形法则
详细描述
两个力合成时,以这两个力为邻边构成01
总结词:力的合成
02
详细描述:力的合成是通过求两个或多个力的合力来简化问题的方法。
3
加速度描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、静力学1.静力学基本概念(1)刚体刚体:形状大小都要考虑的,在任何受力情况下体内任意两点之间的距离始终保持不变的物体。

在静力学中,所研究的物体都是指刚体。

所以,静力学也叫刚体静力学。

(2)力力是物体之间的相互机械作用,这种作用使物体的运动状态改变(外效应)和形状发生改变(内效应)。

在理论力学中仅讨论力的外效应,不讨论力的内效应。

力对物体的作用效果取决于力的大小、方向和作用点,因此力是定位矢量,它符合矢量运算法则。

力系:作用在研究对象上的一群力。

等效力系:两个力系作用于同一物体,若作用效应相同,则此两个力系互为等效力系。

(3)平衡物体相对于惯性参考系保持静止或作匀速直线运动。

(4)静力学公理公理1(二力平衡公理)作用在同一刚体上的两个力成平衡的必要及充分条件为等大、反向、共线。

公理2(加减平衡力系公理)在任一力系中加上或减去一个或多个平衡力系,不改变原力系对刚体的外效应。

推论(力的可传性原理)作用于刚体的力可沿其作用线移至杆体内任意点,而不改变它对刚体的效应。

在理论力学中的力是滑移矢量,仍符合矢量运算法则。

因此,力对刚体的作用效应取决于力的作用线、方向和大小。

公理3(力的平行四边形法则)作用于同一作用点的两个力,可以按平行四边形法则合成。

推论(三力平衡汇交定理)当刚体受三个力作用而平衡时,若其中任何两个力的作用线相交于一点,则其余一个力的作用线必交于同一点,且三个力的作用线在同一个平面内。

公理4(作用及反作用定律)两个物体间相互作用力同时存在,且等大、反向、共线,分别作用在这两个物体上。

公理5(刚化原理)如变形物体在已知力系作用下处于平衡状态,则将此物体转换成刚体,其平衡状态不变。

可见,刚体静力学的平衡条件对变形体成平衡是必要的,但不一定是充分的。

(5)约束和约束力1)约束:阻碍物体自由运动的限制条件。

约束是以物体相互接触的方式构成的。

2)约束力:约束对物体的作用。

约束力的方向总及约束限制物体的运动方向相反。

表4.1-1列出了工程中常见的几种约束类型、简图及其对应的约束力的表示法。

其中前7种多见于平面问题中,后4种则多见于空间问题中。

表4.1-1 工程中常见约束类型、简图及其对应约束力的表示型柔索类作用点:物体接触点方位:沿柔索方向:背离被约束物体大小:待求这类约束为被约束物体提供拉力。

光滑面接触单面约束:作用点:物体接触点方位:垂直支撑公切面方向:指向被约束物体大小:待求这类约束为物体提供压力。

双面约束:假设其中一个约束面及物体接触,绘制约束力,不能同时假设两个约束面及物体同时接触。

作用点:物体接触点方位:垂直共切面方向:指向被约束物体大小:待求这类约束为物体提供压力。

短链杆(链作用点:物体接触点方位:沿链杆两铰点的连线NNANAT BT AAA杆)方向:不定大小:待求中间铰(连接铰)作用点:物体接触点,过铰中心方位:不定方向:不定大小:待求用两个方位互相垂直,方向任意假设的分力,表示该约束处的约束力固定铰作用点:物体接触点,过铰中心方位:不定方向:不定大小:待求用两个方位互相垂直,方向任意假设的分力,表示该约束处的约束力辊轴支座(活动铰)作用点:物体接触点,过铰中心方位:垂直支撑面方向:不定大小:待求固定端在约束面内既不能移动也不能转动,用两个方位互相垂直、方向任意假设的两个分力表示限制移动的力,用作用面及物体在同一平面内的、转向任意假设的集中力偶表示限制转动的力偶。

向心轴承Y向可微小移动,用方位互相垂直、方向任意假设的两个分力,表示限制径向的移动止推轴承三个方向都不允许移动,用三个互相垂直的力表示限制的移动。

球形铰空间任意方向都不允许移动,用方位相互垂直,方向任意的三个分力来代替这个约束力空间固定端三个轴向都不允许移动和转动,用三个方位相互垂直的分力来代替限制空间移动的约束力,并用三个矢量方位相互垂直,转向任意的力偶代替限制转动的约束力偶(6)受力分析图受力分析图是分析研究对象全部受力情况的简图。

其步骤是:1)明确研究对象,解除约束,取分离体;2)把作用在分离体上所有的主动力和约束力全部画在分离体上。

(7)注意事项画约束力时,一定按约束性质和它们所提供的约束力的特点画,并在研究对象及施力物体的接触处画出约束力;会判断二力构件和三力构件,并根据二力平衡条件和三力汇交定理确定约束力的方位;对于方向不能确定的约束力,有时可利用平衡条件来判定;若取整体为分离体时,只画外力,不画内力,当需拆开取分离体时,内力则成为外力,必须画上;一定注意作用力及反作用力的画法,这些力的箭头要符合作用及反作用定律;在画受力分析图时,不要多画或漏画力,要如实反映物体受力情况;画受力分析图时,应注意复铰(链接两个或两个以上物体的铰)、作用于铰处的集中力和作用于相邻刚体上的线分布力等情况的处理方法。

2. 力的分解、力的投影、力对点之矩及力对轴之矩 (1)力沿直角坐标轴的分解和力在轴上的投影X Y Z x y z F F F F F i F j F k =++=++式中:i 、j 、k 分别是沿直角坐标轴x 、y 、z 轴的基矢量;X F 、Y F 、Z F 分别为F 沿直角坐标轴的分力;x F 、y F 、z F 分别为F 在直角坐标轴x 、y 、z 轴上的投影,且分别为(如图4.1-1) cos cos sin cos x xy F F F F αφγφ=== cos sin sin sin y xy F F F F βφγφ===cos z F F γ=图4.1-1式中:α、β、γ分别为F 及各轴正向间的夹角;xy F 则为F 在Oxy 平面上的投影,如图4.1-1所示。

(2)力对点之矩(简称力矩)在平面问题中,力F 对矩心O 的矩是个代数量,即()O M F Fa =±式中a 为矩心点至力F 作用线的距离,称为力臂。

通常规定力使物体绕矩心转动为逆时针方向时,上式取正号,反之则取负号。

在空间问题中,力对点之矩是个定位矢量,如图4.1-2,其表达式为图4.1-2()()()()O O z y x z y x M F M r F yF zF i zF xF j xF yF k ==⨯=-+-+-力矩的单位为N m ⋅或kN m ⋅。

(3)力对轴之矩图4.1-3力F 对任一z 轴之矩为力F 在垂直z 轴的平面上的投影对该平面及z 轴交点O 之矩,即()()2''z O xy xy M F M F F a OA B ==±=±∆其大小等于二倍三角形''OA B 的面积,正负号依右手螺旋法则确定,即四指及力F 的方向一致,掌心面向轴,拇指指向及z 轴的指向一致,上式取正号,反之取负号。

显然,当力F 及矩轴共面(即平行或相交)时,力对轴之矩等于零。

其单位及力矩的单位相同。

从图4.1-3中可见,''OA B ∆的面积等于OAB ∆面积在''OA B 平面(即Oxy 面)上的投影。

由此可见,力F 对z 轴之矩()z M F 等于力F 对z 轴上任一点O 的矩()O M F 在z 轴上的投影,或力F 对点O 的矩()O M F 在经过O 点的任一轴上的投影等于力F 对该轴之矩。

这就是力对点之矩及对通过该点的轴之矩之间的关系。

即()()x O z y xM F M F yF zF ⎡⎤==-⎣⎦()()y O x z y M F M F zF xF ⎡⎤==-⎣⎦ ()()z O y x zM F M F xF yF ⎡⎤==-⎣⎦ (4)合力矩定理当任意力系合成为一个合力R F 时,则其合力对于任一点之矩(或矩矢)或任一轴之矩等于原力系中各力对同点之矩(或矩矢)或同轴之矩的代数和(或矢量和)。

()()O R O i m F m F =∑ 力对点之矩矢 ()()O R O i m F m F =∑ 力对点之矩 ()()x R x i m F m F =∑ 力对轴之矩3.汇交力系的合成及平衡(1)汇交力系:诸力作用线交于一点的力系。

(2)汇交力系合成结果根据力的平行四边形法则,可知汇交力系合成结果有两种可能:其一,作用线通过汇交点的一个合力R F ,为R i F F =∑;其二,作用线通过汇交点的一个合力R F 等于零,即0R i F F ==∑,这是汇交力系平衡的充要条件。

(3)汇交力系的求解求解汇交力系的合成及平衡问题各有两种方法,即几何法及解析法,如表4.1-2所示。

对于空间汇交力系,由于作图不方便一般采用解析法。

表4.1-2 求解汇交力系的两种方法形示意图,其开口边决定了合力的大小和方(xi F∑()yi F∑),R F k=F4.力偶理论(1)力偶及力偶矩1)力偶()F F:等量、反向、不共线的两平行力组成的力系。

,'2)力偶的性质:力偶没有合力,即不能用一个力等效,也不能及一个力平衡。

力偶对物体只有旋转效应,没有移动效应。

力偶在任一轴上的投影为零。

力偶只能及力偶等效或平衡。

3)力偶矩:力偶的旋转效应决定于力偶矩,其计算如表4.1-3所述。

表4.1-3 力偶矩的计算表中,F 为组成力偶的力的大小,d 为力偶中两个力作用线间的垂直距离,称为力偶臂。

(2)力偶系的合成及平衡力偶系合成结果有两种可能,即一个合力偶或平衡。

具体计算时,通常采用解析法,如表4.1-4所述。

表4.1-4 力偶的合成及平衡的解析法0M m m i m j m k ==++=∑∑∑∑x 、y 、z 轴不共面;可求解三个未知量表中,ix m 、iy m 、iz m 分别为力偶矩矢i m 在相应坐标轴上的投影。

注意,力偶中两个力F 和'F ,对任一x 轴之矩的和等于该力偶矩矢m 在同一轴上的投影,即()()'cos x x x m F m F m m α+==式中,α为m 矢量及x 轴的夹角。

(3)汇交力系和力偶系的平衡问题首先选取分离体;然后画分离体受力分析图,在分析约束力方向时,注意利用力偶只能及力偶相平衡的概念来确定约束力的方向;接下来,列写平衡方程,对于力的投影方程,尽量选取及未知力垂直的坐标轴,使参及计算的未知量的个数越少越好,尽量使一个方程求解一个未知量,而力偶系的平衡方程及矩心的选取没有关系,注意区分力偶的矢量方向或是转向,确定好投影的正方向;最后求出结果,结果的绝对值表示大小,正负号表示假设方向是否及实际的指向一致,正号代表一致,负号则表示相反。

5.一般力系的简化及平衡 ( 1)力线平移定理作用在刚体上的力,若其向刚体上某点平移时,不改变原力对刚体的外效应,必须对平移点附加一个力偶,该附加力偶矩等于原力对平移点之矩。

同理,根据力的平移定理可得:共面的一个力'F 和一个力偶m 可合成为一个合力F ,合力F 的大小、方向及原力相等,其作用线离原力作用线的距离为m d F =。

相关文档
最新文档