七年级数学上册 2.2数轴教案 人教新课标版
人教版七年级上册数学数轴教案 七年级上册数学数轴教学设计(四篇)
人教版七年级上册数学数轴教案七年级上册数学数轴教学设计(四篇)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇一【学习目标】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.【基础知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是…()图2—5 a.m>0,n<0 b.m>0,n>0 c.m<0,n<0 d.m <0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n 即n<0.解答:m>0,n<0.选a.[例3]数轴上距离原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点a和b,它们两点间的距离是5,则这两个数分别是_____和_____.点拨:画出数轴,表示出a和b.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.图2—6 解答:+2.5和-2.5.[例6]比较大小(1)0_____-(2)-1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求下列各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇二人教版七年级数学上册数轴说课稿一:教材分析:本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
1.2.2数轴(教案,新教材)-七年级数学上册(人教版2024)
1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
七年级数学上2.2数轴教案(1)
2.2 数轴(1)一、教学目标,教学重难点分析(一)教学目标(1)能根据构成数轴的三个要素正确画出数轴;(2)学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来(二)、重难点重点:由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来难点:能根据构成数轴的三个要素正确画出数轴;二、教学过程(一)课题准备我们在小学学习数学时,就能用直线上依次排列的点来表示自然数,它帮助我们认识了自然数的大小关系.和学生一起讨论:(1).能不能用直线上的点表示正数,零和负数?从温度计上能否得到一点启发呢?让学生尝试用直线上的点来表示下列各数:2,3,-1,0.(2).用直线上点能不能表示有理数?为什么?(二)探究活动让学生观察温度计.温度计上有刻度,我们可以方便地读出温度的度数,并且可以区分出是零上还是零下.与温度计相仿,我们可以在一条直线上规定一个正方向,用这条直线上的点表示正数、零和负数.具体做法如下:画一条直线(通常画成水平位置),在这条直线上任取一点作为原点,用这点表示0.规定直线上从原点向右为正方向,画上箭头,而相反方向为负方向.再选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次标上1、2、3…;从原点向左,每隔一个单位长度取一点,依次标上-1、-2、-3…(如下图).像这样规定了原点、正方向和单位长度的直线叫做数轴.在数轴上画出表示有理数的点,可以先由这个数的符号确定它在数轴上原点的哪一边(正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上点.例如,表示-4.5的点,应在原点的左边4.5个单位处.而数轴上的原点就表示数零.口答:下列图形是数轴的是().通过上述提问,引导学生得出:构成数轴的三个要素——原点、正方向和单位长度,缺一不可例画出数轴,并在数轴上画出表示下列各数的点:解:如图所示.2 指出数轴上A、B、C、D、E各点分别表示什么数.引导学生总结:要正确地画出数轴,那么数轴的三个要素——原点、正方向和单位长度,缺一不可;画出了数轴,那么任何有理数都可用数轴上的点表示.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系.它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.(三)、归纳小结(1)数轴的三个要素并画出数轴:原点、正方向、单位长度(2)由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来三.自我检测课本P17的练一练课本P19 T1-2。
七年级数学上2.2数轴教案(2)
2.2 数轴(2)一、教学目标,教学重难点分析(一)教学目标(1).能进一步掌握数轴的三个要素,并正确画出数轴;(2).学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;(3).会利用数轴比较有理数的大小;(二)、重难点重难点:会利用数轴比较有理数的大小;二、教学过程(一)课题准备(1)指出数轴上的点A、B、C、D分别表示什么数.(2).画出数轴,并在数轴上画出表示下列各数的点:再按数轴上从左到右的顺序,将这些数重新排列成一行.(3)指出在数轴上表示下列各数的点分别位于原点的哪边,与原点距离多少个单位长度.(二)探究活动新知讲解:在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左边的大.由此容易得到以下的有理数大小的比较法则:正数都大于零,负数都小于零,正数大于负数在数轴上画出表示这些数的点,再比较大小,结果怎样?2比较下列各数的大小:解将这些数分别在数轴上表示出来(如图).可以看出例3观察数轴,能否找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.知识链接与拓展:液体温度计:主要部分是一根内径很细的玻璃管,其下端是一个玻璃泡,在玻璃管和玻璃泡里盛适量的液体,通过液体的热胀冷缩反映温度变化.(三)、归纳小结师生共同总结:1.在数轴上表示的两个数,右边的数总比左边的大;2.正数都大于零,负数都小于零,正数大于负数.三.自我检测1.课本P18的练一练;2.下列各式是否正确:3.用“<”或“>”填空4.下表是某年一月份我国几个城市的平均气温,请将各城市按平均气温从高到低的顺序排列.。
人教版初一数学上册数轴.2.2-数轴教案-
教学重点 教学难点
设置情境 引入课题
合作交流 探究新知
数轴的概念和用数轴上的点表示有理数
有理数和数轴上的点的对应关系
教学过程(师生活动)
设计理念
1.多媒体出示 3 幅三个温度计的图片.其中一个
温度计的液面在零上 5 个刻度,一个温度计的液 面在零下 1 个刻度,一个温度计的液面在零刻度 问题:请你读出图中三个温度计所表示的温度? 2.问题情境 在一条东西向的马路上,有一个汽车站,汽车站
1.2.2 数轴
知识与技能 教学目标 过程与方法
1.掌握数轴的三要素,能正确画出数轴 2.会用数轴上的点表示给定的有理数,会根据数轴上 的点读出所表示的有理数
使学生受到把实际问题抽象成数学问题的训练,逐 步形成应用数学的意识
情感、态度与价 通过画数轴,给学生以图形美的教育,同时由于数
值观
形的结合,学生会得到和谐美的享受
3.选取适当的长度作为单位长度,在直线上,
从原点向右,每隔一个长度单位取一点,依次表
示为 1,2,3,…从原点向左,每隔一个长度单
位取一点,依次表示为-1,-2,-3,… 思考:我们能不能用这条直线表示任何有理数?
数轴的三要素:原点、正方向、单位长度
从活动中 学数学
活动 2:
投影出示活动,让学生独立完成,教师 总结
判断下列图形是否是数轴,展示学生画 数轴中出现常见的问题
学生活动体验,对 数轴概念的理解
寻找规律 归纳结论
活动 3: 1.观察数轴上的点的特点 哪些数在原点的左边,哪些数在原点的右 边,由此你会发现什么规律?如果 a 为正数,那 么数轴上表示 a 的点在原点的哪边?每到原点的 距离是多少?-a 呢? (小组讨论,交流归纳) 归纳: 一般地,设 a 是一个正数,则数轴上表示 a 的点在原点的右边,到原点的距离是 a 个单位长 度;表示-a 的点在原点的左边,到原点的距离是 a 个单位长度 2.问题:在数轴上能否实际画出表示一千万 分之一的点?这个点存在吗? 活动 4
七年级数学上册数轴教案人教版
人教版七年级数学上册数轴教案一、教学目标:1. 让学生理解数轴的概念,掌握数轴的基本性质。
2. 培养学生借助数轴进行有理数的计算和解决问题能力。
3. 渗透数形结合的数学思想,提高学生的逻辑思维能力。
二、教学内容:1. 数轴的定义及表示方法。
2. 数轴上点的特点及坐标表示。
3. 数轴上的距离和方向。
4. 数轴在有理数计算中的应用。
三、教学重点与难点:1. 重点:数轴的概念、性质及应用。
2. 难点:数轴上点的坐标表示,数轴在有理数计算中的应用。
四、教学方法:1. 采用自主学习、合作探究的教学方法,让学生在实践中掌握数轴的知识。
2. 利用多媒体课件,直观展示数轴的特点和应用,提高学生的学习兴趣。
3. 通过例题和练习,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 引入:讲解数轴的定义及表示方法,让学生初步认识数轴。
2. 新课:讲解数轴上点的特点及坐标表示,引导学生掌握数轴的基本性质。
3. 应用:讲解数轴在有理数计算中的应用,让学生学会借助数轴解决问题。
4. 练习:布置练习题,让学生巩固所学知识。
5. 小结:总结本节课的主要内容,强调数轴的概念和应用。
6. 作业:布置课后作业,巩固所学知识。
六、教学策略与方法1. 采用问题驱动的教学方法,引导学生主动探究数轴的性质。
2. 通过小组讨论,培养学生合作学习的意识,提高学生的沟通能力。
3. 利用实物模型或电子课件,直观展示数轴的动态变化,增强学生的空间想象力。
4. 设计具有层次性的练习题,满足不同学生的学习需求,让每个学生都能在实践中提高自己的能力。
七、教学评价1. 课堂表现评价:关注学生在课堂上的参与程度、提问回答、合作交流等情况,了解学生的学习状态。
2. 练习题评价:通过学生完成的练习题,评估学生对数轴知识的掌握程度。
3. 课后作业评价:检查学生课后作业的完成情况,了解学生对数轴知识的巩固程度。
4. 学生自我评价:鼓励学生反思自己的学习过程,发现自身不足,提高自我学习能力。
七年级数学上册数轴教案人教版
人教版七年级数学上册数轴教案一、教学目标:1. 知识与技能:(1)理解数轴的概念,掌握数轴的三要素(原点、正方向、单位长度)。
(2)学会在数轴上表示整数、分数、正数和负数。
(3)掌握数轴上两点间的距离公式。
2. 过程与方法:(1)通过观察、实践、交流,培养学生的动手操作能力和语言表达能力。
(2)学会用数轴解决问题,提高学生的数学思维能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心。
(2)培养学生勇于探索、积极思考的精神。
二、教学重点与难点:1. 教学重点:(1)数轴的概念及三要素。
(2)在数轴上表示整数、分数、正数和负数。
(3)数轴上两点间的距离公式。
2. 教学难点:(1)数轴上两点间的距离公式的运用。
(2)解决实际问题时,正确运用数轴。
三、教学方法:1. 采用问题驱动法,引导学生主动探究数轴的性质。
2. 利用数轴模型,直观展示数轴的特点。
3. 运用实例讲解,让学生在实践中掌握数轴的应用。
4. 采用小组合作学习,培养学生的团队协作能力。
四、教学准备:1. 教师准备数轴模型、PPT课件。
2. 学生准备笔记本、尺子、圆规等学习用具。
五、教学过程:1. 导入新课:(1)复习相关知识:坐标系、直线。
(2)提问:什么是数轴?数轴有什么作用?2. 自主探究:(1)学生分组讨论,探究数轴的性质。
(2)每组派代表分享讨论成果。
3. 教师讲解:(1)讲解数轴的概念及三要素。
(2)演示如何在数轴上表示整数、分数、正数和负数。
(3)讲解数轴上两点间的距离公式及运用。
4. 实践操作:(1)学生分组进行数轴实践操作,如:在数轴上表示给定的整数、分数、正数和负数。
(2)运用数轴上两点间的距离公式,解决实际问题。
5. 巩固练习:(1)学生独立完成练习题。
(2)教师讲解答案,分析解题思路。
6. 课堂小结:7. 作业布置:(1)巩固数轴知识,绘制一个数轴,标出自己喜欢的整数、分数、正数和负数。
(2)运用数轴解决实际问题,如:计算两地之间的距离。
人教版七年级数学上册2.2 数轴教案2 精编
2.2 数轴教学目标:1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。
重点难点:1.正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。
2.有理数和数轴上的的点的对应关系。
教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。
(2) 我们能否用类似温度计的图形表示有理数呢?二、讲授新课:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点O (叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边41点表示41,在数轴上位于原点左边1.5的点表示5.1 , 任何有理数都可以用数轴上的一个点来表示。
三、例题讲解、巩固提高例1.如图,指出数轴上A 、B 、C 、D 各点表示什么数?A D CB –2 –1 0 1 2 3解:点A 表示-2;点B 表示2;点C 表示0;点D 表示-1练习:画出数轴并用数轴上的点表示下列个数:23 ,-5 ,0 ,5 ,-4 ,-23 . 四、继续探究2 与 -2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与 -5, 23 与 -23 呢?如果两个数只有符不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习: 1、5的相反数是▁▁;▁▁的相反数是-3.5。
议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
人教版七年级数学上册1.2.2《数轴》教学设计
人教版七年级数学上册1.2.2《数轴》教学设计一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、特点、表示方法以及数轴上的基本运算。
这部分内容是学生学习数学的基础,对于培养学生的数学思维和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于数轴这一概念可能较为抽象,需要通过具体实例和操作来理解和掌握。
同时,学生对于坐标系和图形的认识有所欠缺,需要在教学过程中进行引导和培养。
三. 教学目标1.了解数轴的定义和特点,掌握数轴上的表示方法。
2.能够运用数轴解决实际问题,提高解决问题的能力。
3.培养学生的数学思维和坐标系观念,提高学生的数学素养。
四. 教学重难点1.数轴的定义和特点2.数轴上的表示方法3.运用数轴解决实际问题五. 教学方法1.实例教学:通过具体实例引入数轴的概念,使学生更容易理解和接受。
2.操作教学:通过实际操作,让学生体验数轴的特点和运用方法。
3.问题解决:设计实际问题,引导学生运用数轴进行解决,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括数轴的定义、特点、表示方法以及实际问题的解决。
2.教学实例:准备一些实际问题,用于引导学生运用数轴进行解决。
3.教学工具:准备数轴的模型或者图片,方便学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念,例如:“小明从家出发,向正北方向走了5公里,然后向正西方向走了3公里,请问小明现在在哪里?”让学生思考并尝试解答,引发学生对数轴的兴趣。
2.呈现(10分钟)通过PPT展示数轴的定义和特点,以及数轴上的表示方法。
同时,结合实例进行解释,让学生理解和掌握数轴的基本概念。
3.操练(10分钟)让学生进行实际操作,例如在数轴上表示不同的数,或者根据数轴上的点来确定物体的位置等。
通过操作,让学生更加熟悉数轴的特点和运用方法。
人教版七年级数学上册1.2.2《数轴》教学设计
人教版义务教育课程标准教科书七年级上册1.2.2 数轴一、教材分析1、地位作用:这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。
从现在开始,在教学与学习中注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。
数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础。
本节是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数, 并会比较有理数的大小, 借助数轴理解互为相反数两数的几何意义。
正确理解有理数与数轴上点的对应关系。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.2. 学情分析学生小学里已经学习过在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的认识和理解,上一节又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法。
3、教学目标:①通过与温度计的类比认识数轴, 会用数轴上的点表示有理数。
②了解数轴上的点与有理数的关系;会利用数轴比较有理数的大小。
4、教学重、难点教学重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数, 并会比较有理数的大小.教学难点:理解有理数与数轴上点的对应关系二、教学准备:多媒体课件、导学案。
三、教学过程。
人教版七年级数学上册《.2数轴》教学设计
《1.2.2数轴》教学设计设计思想:从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
一、教法分析:针对初一学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。
二、学法指点这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。
在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解视察、类比、分析数形结合等数学思想。
三、教学程序(一)从数学与生活的关系入手、引入新课数学起源于生活,也服务于我们的生活,从远古时代的结绳记事开始,数便产生了,并且一直忠心耿耿,兢兢业业的记录着也刻画着我们的生活,可以说我们的生活离不开数。
比如:一只小小的温度计,就是用数字刻画温度的……50-10℃℃℃问题:1 刻度是否均匀?2 数字排列有什么规律?3 要具体标注一些什么样的数?当温度计横过来时,三个问题会产生什么变化?问题:1 刻度是否依然均匀?2 数字排列规律有何变化 ?(从左到右,由小变大)3 要具体标注的数是否有变化 ?(没有,依然是正数,负数,还有0)想一想:1)0不是正数吗?是负数吗?2)比0大的数是_____,比0小的数是_____,有最大的正数吗?有最小的负数吗?3)有理数的数量是_______。
能否发明一种工具像温度计一样,把我们学过的数有序的呈现出来?设计思想:通过生活实例,和一系列的问题引导,水到渠成的过渡到数轴这一中心课题。
人教版数学七年级上册《数轴》教学设计
-20-1001020304050课时课题:第二章 第二节 数轴课型:新授课一、教学目标1、通过与温度计的类比认识数轴,理解数轴的三要素并会画数轴.2、能说出数轴上的已知点所表示的数,能将已知数在数轴上表示出来.3、能利用数轴比较有理数的大小.二、教法及学法指导1、教法:采用“回顾旧知—情景导入—新知探索—课堂小结—过关检测”的方式组织教学。
在授课过程中采用启发式教学和探究式教学引导学生学习过程。
2、学法:在课堂上,学生合作交流、引导释疑、反馈应用、总结归纳。
学生采用自主探究、合作交流与小组讨论相结合的方式进行学习。
三、课前准备:课件制作、教案学案、温度计、三角板四、教学过程1、板书课题:§2.2数轴2、回顾旧知师:同学们,在上节课,我们学习了有理数的相关知识,那么请同学们回顾一下这三个基本概念。
(正数、负数、有理数)生:(1)正数:比0大的数叫正数。
(正数大于0)(2)负数:比0小的数叫负数。
(负数小于0)(3)有理数:整数与分数统称为有理数。
3、情景导入师:(课件呈现温度计)同学们,这个东西的你们知道吗? 生:知道,是温度计。
师:我们知道,温度计可以测定一定范围里的温度, 请同学们观察如图所示温度计,回答课件上展现的问题。
(1)点A 表示多少摄氏度?点B 呢?点C 呢? (2)温度计刻度的正负是怎样规定的?以什么为基准? (3)每摄氏度两条刻度线之间的距离有什么特点? 生:(1)点A 表示0℃,点B 表示零上20℃,点C 表示零下5℃。
(2)以0刻度线为准,0以上为正,以下为负。
(3)每摄氏度两条刻度线之间的距离相等。
师:同学们已经完美的解决了以上问题,那么同学们可以观察到温度计上有刻度,有数字,如果我们把温度计平放,同学们发现了什么? -20-10010********C生:在0℃左边的温度记作零下几度,用负数表示,在0℃右边的温度记作零上几度,用正数表示。
师:如果我们把平放的温度计抽象成一条直线,那么这一条直线具有怎样的特征?生:直线上应该有刻度,刻度对应的有数字,在数字0左边的数是负数,在0右边的数是正数。
七年级数学上册(人教版)配套教学教案122数轴.doc
全新修订版(教案)七年级数学上册老师的必备资料家长的帮教助手学生的课堂再现人教版(RJ)1.2.2数轴【教学目标】知识技能1. 通过与温度计的类比,了解数轴的概念,会画数轴。
2. 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法1. 从直观认识到理性认识,从而建立数轴概念。
2. 通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3. 会利用数轴解决有关问题。
情感态度通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】1. 数轴的概念。
2. 能将已知数在•数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】从直观认识到理性认识,从而建立数轴的概念。
【情景引入】1. 小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”提疑:医生为什么通过体温计就可以读出任意一个人的体温?(体温计上的刻度)2. 我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作.、海南三个城市美丽的自然风光,温度分别为-1.0° c, 0° c, 20’ c)提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?(正数、零、负数)3. 请尝试画出你想像屮的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽彖得出数轴图形表示有理数-10, 0, 20的过程)从而引出课题------------------ 数轴。
【教学过程】一•数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:1. 画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0°C ) ;0 2. 规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或 下)为负方向(相当于温度计上o°c 以上为正,o°c 以下为负); 03…选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点, 依次表示为1, 2, 3,…从原点向左,每隔一个长度单位収一点,依次表示为T, -2, -3,…丄 1 1 1112 ■-3-2-1 0123根据画图的步骤,学生思考在一条水平的直线上都画11!什么?然后归纳出数轴的定义.二.数轴的相关概念1. 数轴的定义:规定了原点、正方向和单位长度的直线叫做数细.(说明:数轴像一支平放的温度计。
七年级数学上册数轴教案人教版
人教版七年级数学上册数轴教案教学目标:1. 理解数轴的概念,掌握数轴的表示方法。
2. 学会在数轴上表示正数和负数,以及它们的相对位置。
3. 掌握数轴上的基本运算,如加法、减法、乘法和除法。
4. 能够解决实际问题,运用数轴进行解答。
教学内容:第一章:数轴的定义与表示1.1 数轴的定义1.2 数轴的表示方法第二章:数轴上的正负数2.1 正数的表示2.2 负数的表示2.3 正负数的相对位置第三章:数轴上的加法3.1 同号两数相加3.2 异号两数相加第四章:数轴上的减法4.1 同号两数相减4.2 异号两数相减第五章:数轴上的乘法与除法5.1 同号两数相乘5.2 异号两数相乘5.3 同号两数相除5.4 异号两数相除教学步骤:第一章:数轴的定义与表示1.1 数轴的定义教师通过实物或图片展示数轴的模型,引导学生直观地理解数轴的概念。
1. 数轴是什么?2. 数轴上的点与数有什么关系?1.2 数轴的表示方法教师通过示例,讲解数轴的表示方法。
学生跟随教师一起练习,掌握数轴的表示方法。
第二章:数轴上的正负数2.1 正数的表示教师引导学生认识正数,并讲解正数在数轴上的表示方法。
学生跟随教师一起练习,学会正数的表示。
2.2 负数的表示教师引导学生认识负数,并讲解负数在数轴上的表示方法。
学生跟随教师一起练习,学会负数的表示。
2.3 正负数的相对位置教师通过示例,讲解正负数在数轴上的相对位置。
学生跟随教师一起练习,掌握正负数的相对位置。
第三章:数轴上的加法3.1 同号两数相加教师通过示例,讲解同号两数相加的法则。
学生跟随教师一起练习,学会同号两数相加。
3.2 异号两数相加教师通过示例,讲解异号两数相加的法则。
学生跟随教师一起练习,学会异号两数相加。
第四章:数轴上的减法4.1 同号两数相减教师通过示例,讲解同号两数相减的法则。
学生跟随教师一起练习,学会同号两数相减。
4.2 异号两数相减教师通过示例,讲解异号两数相减的法则。
学生跟随教师一起练习,学会异号两数相减。
七年级数学上册数轴教案人教版
人教版七年级数学上册数轴教案一、教学目标1. 让学生理解数轴的概念,掌握数轴的表示方法。
2. 培养学生利用数轴解决实际问题的能力。
3. 培养学生数形结合的数学思想。
二、教学重点1. 数轴的概念及表示方法。
2. 数轴上点的坐标表示。
3. 数轴的应用。
三、教学难点1. 数轴上点的坐标表示。
2. 数轴解决实际问题。
四、教学准备1. 数轴教具。
2. 练习题。
五、教学过程1. 引入:讲解数轴的定义及表示方法。
2. 讲解数轴上点的坐标表示,如正数、负数和零在数轴上的位置。
3. 讲解数轴的应用,如解决实际问题。
4. 进行课堂练习,让学生巩固所学知识。
教案示例:教学目标:1. 了解数轴的概念,能够画出数轴。
2. 掌握数轴上点的坐标表示方法。
3. 能够利用数轴解决实际问题。
教学重点:1. 数轴的概念及表示方法。
2. 数轴上点的坐标表示。
教学难点:1. 数轴上点的坐标表示。
教学准备:1. 数轴教具。
2. 练习题。
教学过程:一、引入(5分钟)1. 讲解数轴的定义:数轴是一条直线,它有一个原点、一个正方向和一个单位长度。
2. 讲解数轴的表示方法:数轴上的点表示实数,原点表示0,正方向表示正数,负方向表示负数。
二、讲解(15分钟)1. 讲解数轴上点的坐标表示方法:(1)点的坐标表示:一个点在数轴上的位置可以用一个实数表示,这个实数就是该点的坐标。
(2)正数、负数和零在数轴上的位置:正数在原点的右侧,负数在原点的左侧,零在原点上。
2. 讲解数轴的应用:(1)解决实际问题:例如,小明从家出发,向正北方向走了5公里,向正西方向走了3公里,最终停在了哪个位置?(2)比较大小:例如,比较-2和1的大小。
三、课堂练习(10分钟)五、课后作业(课后自主完成)2. 小明从家出发,向正北方向走了8公里,向正东方向走了6公里,最终停在了哪个位置?请用数轴表示。
六、教学拓展1. 讲解与数轴相关的拓展知识,如绝对值、相反数等。
2. 通过实例让学生加深对数轴应用的理解。
数学人教版七年级上册1.2.2数轴教学设计.2.2数轴(1)教学设计
(2)―5,0,+5,15,20;
(3)―1500,―500,0,500,
出示例2,让学生抢答。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。
师:将有理数分类时有理数在数轴上表示出来。
《数轴》教学设计
年级:七年级
科目:数学(七年级上册)
课题:数轴
课时:1
教
学
目
标
知识与能力
了解数轴的概念,如何画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴都有唯一的点与之对应。
过程与方法
通过现实生活中的例子,从直观认识到理性认识,从而建立数概念;通过学习,初步体会对应的思想、数形结合的思想。
4、对利用数轴将几个有理数排序练习不够。
手把手传授画法,没有将作图步骤中的直线与三要素并列,便于突出三要素,但也要注意“直线”也是学生作图时容易出错之处(按线段对待,平均分成若干份)。
教学时先原点,再单位长度(本节每个单位长度表示1,暂不写,因为还没有正方向),指出正方向,最后根据单位长度及正方向标注有关点。
所涉及的数据难度不大,学生兴致高涨。
考虑到了学生的回答及后续教学有关内容的处理,即怎样帮助学生更好地理解“任何一个有理数都可以用数轴上的一个点来表示”,根据的是有理数的分类
抛出“数轴”,给出悬念,随之用小学六年级学过的“用直线上的点表示数”释疑,一紧一松,即吸引了学生的注意力,也激起了学生学习兴趣,建立数轴的初步印象。
由温度计的温度值引入,而不是直接问“负数在数轴上怎么表示”,是便于后面教学在数轴上表示负数和有理数的大小比较时,更便于学生理解(温度计平放即可判定相应的点是否画正确。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、课题§2.2数轴(1)
二、教学目标
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
三、教学重点和难点
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
(二)、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例变式练习
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上A,B,C,D,E各点分别表示什么数.
课堂练习
说出下面数轴上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
(四)、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
七、练习设计
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2.在下面数轴上,A,B,C,D各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
八、板书设计
九、教学后记
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.
一、课题§2.2数轴(2)
二、教学目标
1.使学生进一步掌握数轴概念;
2.使学生会利用数轴比较有理数的大小;
3.使学生进一步理解数形结合的思想方法.
三、教学重点和难点
重点:会比较有理数的大小.
难点:如何比较两个负数(尤其是两个负分数)的大小.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认识结构提出问题
1.数轴怎么画?它包括哪几个要素?
2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?
(二)、师生共同探索利用数轴比较有理数大小的法则
在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边, 5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.
下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大.
(三)、运用举例变式练习
通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.
例2观察数轴,找出符合下列要求的数:
(1)最大的正整数和最小的正整数;
(2)最大的负整数和最小的负整数;
(3)最大的整数和最小的整数;
(4)最小的正分数和最大的负分数.
在解本题时应适时提醒学生,直线是向两边无限延伸的.
课堂练习
2.在数轴上画出表示下列各数的点,并用“<”把它们连接起来:
(四)、小结
教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则.
七、练习设计
1.比较下列每对数的大小:
2.把下列各组数从小到大用“<”号连接起来:
(1)3,-5,-4; (2)-9,16,-11;
3.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.八、板书设计
九、教学后记
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。