高中数学必修4例题电子版

合集下载

高中数学必修4试题含答案

高中数学必修4试题含答案

11.设α角属于第二象限,且2cos 2cosαα-=,则2α角属于()A .第一象限B .第二象限C .第三象限D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有()A .①B .②C .③D .④3.02120sin 等于()A .23±B .23C .23-D .214.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于()A 43-B 34-C 43D .345.若α是第四象限的角,则πα-是()A .第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值()A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<;③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。

3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。

4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。

5.与02002-终边相同的最小正角是_______________。

三、解答题1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos+的值.2.已知2tan =x ,求xx x x sin cos sin cos -+的值。

3.化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4.已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值。

高中数学人教A版_必修4_各章节同步练习+章节测试汇编300页含答案

高中数学人教A版_必修4_各章节同步练习+章节测试汇编300页含答案
3.下列角终边位于第二象限的是( )
A. 420o B. 860o
【答案】B
C. 1060o
D. 1260o
【解析】 4200 3600 600 终边位于第一象限, 8600 23600 1400 终边位于第二象限,选 B.
4 .已知圆的半径为 ,则 600 圆心角所对的弧长为( )
A. 3 B. 2 C. 2 2 D. 2 3
【答案】B
【解析】由扇形面积公式 S 1 lr ,则 l 4 ,又 l 4 2 .故本题答案选 B .
2
r2
8.已知 A={第一象限角},B={锐角},C={小于 90°的角},那么 A、B、C 关系是( )
A.
B.
C.
D. A=B=C
【答案】B
【解析】 锐角必小于
,故选 B.
9.已知 是锐角,则 2 是( )
A. 第一象限角 B. 第二象限角
C. 小于180o的正角 D. 第一或第二象限角
【答案】C
【解析】 是锐角,∴ 2 0, ,∴ 2 是小于180o的正角.
A. 3
B. 2 3
【答案】C
C. 2 3
D. 2 2 3
【解析】 60o 化为弧度制为 ,由弧长公式有 l r 2 ,选 C.
3
3
3
5.终边在第二象限的角的集合可以表示为( )
A. { | 900 1800}
B. { | 2700 k 3600 1800 k 3600, k Z}
第 1 页 共 314 页
专题一任意 角和弧度制
测试卷(A 卷)
(测试时间:120 分钟 满分:150 分)

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、33AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD同向的共有3对,与AD 反向的也有6对;模的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km; (3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即∥.因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =(2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=- 2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.cos ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-+=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==又由33cos ,(,2)42πββπ=∈,得sin β==所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3(4)2 2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-= 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1); (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=.于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4)提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。

高中数学习题必修4及答案.docx

高中数学习题必修4及答案.docx

目录:数学4 (必修)第一章:解三角形 [基础训练A 组]一、选择题1. 在AABC 中,若C=90°,a = 6,B = 30°,则c-b 等于( )A. 1B. -1C. 2羽D. -2A /32. 若4为AABC 的内角,则下列函数中一定取正值的是( )A. sin A B ・ cos A4 1C ・ tan AD ・ -------tan A 3. 在2XABC 中,角均为锐角,且cos4〉sin则Z\ABC 的形状是( ) A. 直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形4. 等腰三角形一腰上的高是舲,这条高与底边的夹角为60°,则底边长为()数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第三章: 数学4 (必修)第三章: 数学4 (必修)第三章: 解三角形[基础训练A组]解三角形 [综合训练B 组]解三角形 [提高训练C 组]数列[基础训练A 组]数列[综合训练B 组]数列[提高训练C 组]不等式 [基础训练A 组]不等式 [综合训练B 组]不等式 [提高训练C组]A. 2B. —C. 3D. 2A/325.在△ABC 中,若b = 2asinB,则4 等于()A. 30°或60°B. 45°或60°C. 120°或60°D. 30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A. 90°B. 120°C. 135°D. 150°二、填空题1.在Rt AABC 中,C = 90°,贝Osin A sin 5的最大值是 _____________ 。

2.在AABC 中,^a2 =b~ +bc + c~,贝= _____________ 。

【人教A版】2020学年高中数学必修四全册习题(17份,含答案)

【人教A版】2020学年高中数学必修四全册习题(17份,含答案)

分层训练·进阶冲关A组基础练(建议用时20分钟)1.射线OA绕端点O逆时针旋转120°到达OB位置,由OB位置顺时针旋转270°到达OC位置,则∠AOC= ( B )A.150°B.-150°C.390°D.-390°2.经过一小时,时针转过了 ( B )A. radB.- radC. radD.- rad3.下列说法正确的个数是( A )①小于90°的角是锐角②钝角一定大于第一象限的角③第二象限的角一定大于第一象限的角④始边与终边重合的角为0°A.0B.1C.2D.34.下列各角中,与60°角终边相同的角是( A )A.-300°B.-60°C.600°D.1 380°5.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( C )A.1B.4C.1或4D.2或46.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( C )A.2B.sin 2C.D.2sin 17.已知两角的和是1弧度,两角的差是1°,则这两个角为8.把-π表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是9.已知α是第二象限角,且|α+2|≤4,则α的集合是(-1.5π,-π)∪(0.5π,2].10.已知集合A={x|2kπ≤x≤2kπ+π,k∈Z},集合B={x|-4≤x≤4},则A∩B=[-4,-π]∪[0,π].11.已知α=1,β=60°,γ=,δ=-,试比较这四个角的大小.【解析】因为β=60°=>1>-,所以β=γ>α>δ.12.在坐标系中画出下列各角:(1)-180°.(2)1070°.【解析】在坐标系中画出各角如图所示.B组提升练(建议用时20分钟)13.若角α和角β的终边关于x轴对称,则角α可以用角β表示为( B )A.k·360°+β(k∈Z)B.k·360°-β(k∈Z)C.k·180°+β(k∈Z)D.k·180°-β(k∈Z)14.如果角α与x+45°具有同一条终边,角β与x-45°具有同一条终边,则α与β的关系是( D )A.α+β=0B.α-β=0C.α+β=k·360°(k∈Z)D.α-β=k·360°+90°(k∈Z)15.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的.16.若α,β两角的终边互为反向延长线,且α=-120°,则β= k·360°+60°,k∈Z.17.在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角.(2)最小的正角.(3)在360°~720°中的角.【解析】(1)与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z),由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.18.在角的集合{α|α=k·90°+45°,k∈Z}中.(1)有几种终边不相同的角?(2)有几个落在-360°~360°之间的角?(3)写出其中是第二象限角的一般表示方法.【解析】(1)当k=4n(n∈Z)时,α=n·360°+45°与45°角终边相同.当k=4n+1(n∈Z)时,α=n·360°+135°与135°的终边相同.当k=4n+2(n∈Z)时,α=n·360°+225°与225°的终边相同.当k=4n+3(n∈Z)时,α=n·360°+315°与315°的终边相同.所以,在给定的角的集合中共有4种终边不相同的角.(2)由-360°≤k·90°+45°<360°,得-≤k<.又k∈Z.故k=-4,-3,-2,-1,0,1,2,3.所以,在给定的角的集合中落在-360°~360°之间的角共有8个. (3)其中,第二象限的角可表示为α=k·360°+135°,k∈Z.C组培优练(建议用时15分钟)19.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于( C )A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}20.如图所示,半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,按逆时针方向等速沿单位圆周旋转,已知P点在1 s内转过的角度为θ(0<θ<π),经过2 s达到第三象限,经过14 s后又回到了出发点A处,求θ.【解析】因为0<θ<π,且2kπ+π<2θ<2kπ+(k∈Z),则必有k=0,于是<θ<.又14θ=2nπ(n∈Z),所以θ=.从而<<,即<n<.所以n=4或5,故θ=或.分层训练·进阶冲关A组基础练(建议用时20分钟)1.如果α的终边过点P(2sin 30°,-2cos 30°),则sin α的值等于( C )A. B.- C.- D.-2.已知角α的正弦线是单位长度的有向线段,那么角α的终边( B )A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=x或y=-x上3.若sin θ<cos θ,且sin θ·cos θ<0,则θ在( D )A.第一象限B.第二象限C.第三象限D.第四象限4.化简的结果是( C )A.sin 4+cos 4B.sin 4-cos 4C.cos 4-sin 4D.-sin 4-cos 45.已知cos θ=,且<θ<2π,则的值为 ( D )A. B.- C. D.-6.已知θ∈,在单位圆中角θ的正弦线、余弦线、正切线分别是a,b,c,则它们的大小关系是( B )A.a>b>cB.c>a>bC.c>b>aD.b>c>a7.已知α是第二象限角,P(x,)为其终边上一点,且cos α=x,则sin α的值为( A )A. B. C. D.-8.sin 1,cos 1,tan 1的大小关系为( C )A.sin 1>cos 1>tan 1B.sin 1>tan 1>cos 1C.tan 1>sin 1>cos 1D.tan 1>cos 1>sin 19.已知α终边经过点(3a-9,a+2),且sin α>0,cos α≤0,则a的取值范围为-2<a≤3.10.已知=2,则tan α= 1.11.求函数y=+的定义域.【解析】要使函数有意义,则需即所以2kπ+≤x≤2kπ+π(k∈Z),所以函数的定义域为.12.求下列各式的值.(1)cos+tanπ .(2)sin 630° +tan 1 125° +tan 765° +cos 540° .【解析】(1)原式=cos+tan=cos+tan=+1=.(2)原式=sin (360°+270°)+tan(3×360°+45°)+tan (2×360°+45°)+cos(360°+180°)=sin 270°+tan 45°+tan 45°+cos 180°=-1+1+1-1=0.B组提升练(建议用时20分钟)13.函数y=++的值域是( C )A.{-1,1,3}B.{1,3}C.{-1,3}D.R14.已知sin α,cos α是方程3x2-2x+a=0的两根,则实数a的值为( B )A. B.- C. D.15.已知sin θ-cos θ=,则sin 3θ-cos 3θ=.16.若α∈[0,2π),且cos α≥,则α的取值范围是17.求证:2(1-sin α)(1+cos α)=(1-sin α+cos α)2.【证明】右边=[(1-sin α)+cos α]2=(1-sin α)2+cos 2α+2cos α(1-sin α)=1-2sin α+sin 2α+cos 2α+2cos α(1-sin α)=2-2sin α+2cos α(1-sin α)=2(1-sin α)(1+cos α)=左边,所以原式成立.18.利用单位圆解不等式(组):(1)3tan α+>0. (2)【解析】(1)3tan α+>0,即tan α>-,如图(1),由正切线知kπ-<α<kπ+,k∈Z.故不等式的解集为.(2)不等式组即为如图(2),区域(横线)为sin α>,区域(斜线)为cos α≤.两区域的公共部分为不等式组的解,即不等式组的解集为.C组培优练(建议用时15分钟)19.已知sin α>sin β,那么下列命题成立的是( D )A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α,β是第三象限角,则cos α>cos βD.若α,β是第四象限角,则tan α>tan β20.已知关于x的方程4x2-2(m+1)x+m=0的两个根恰好是一个直角三角形的一个锐角的正、余弦,求实数m的值.【解析】设直角三角形的一个锐角为β,因为方程4x2-2(m+1)x+m=0中,Δ=4(m+1)2-4×4m=4(m-1)2≥0,所以当m∈R时,方程恒有两实根.又因为sin β+cos β=,sin βcos β=,所以由以上两式及sin 2β+cos 2β=1,得1+2×=,解得m=±.当m=时,sin β+cos β=>0,sin β·cos β=>0,满足题意,当m=-时,sin β+cos β=<0,这与β是锐角矛盾,舍去.综上,m=.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.若cos(π+α)=-,π<α<2π,则sin(2π+α)等于( D )A. B.± C. D.-2.已知f(sin x)=cos 3x,则f(cos 10°)的值为( A )A.-B.C.-D.3.若sin(3π+α)=-,则cos等于( A )A.-B.C.D.-4.已知sin=,则cos的值等于( A )A.-B.C.-D.5.已知tan 5° =t,则tan (-365° )= ( C )A.tB.360° +tC.-tD.与t无关6.若tan(5π+α)=m,则的值为( A )A. B. C.-1 D.17.记cos(-80°)=k,那么tan 100°等于 ( B )A. B.-C. D.-8.已知cos=,则cos= -.9.若cos α=,且α是第四象限角,则cos= .10.计算sin21°+sin22°+…+sin288°+sin289°=.11.已知sin(π+α)=-.计算:(1)cos.(2)sin.(3)tan(5π-α).【解析】(1)因为sin(π+α)=-sin α=-,所以sin α=.cos=cos=-sin α=-.(2)sin=cos α,cos2α=1-sin2α=1-=.因为sin α=,所以α为第一或第二象限角.①当α为第一象限角时,sin=cos α=.②当α为第二象限角时,sin=cos α=-.(3)tan(5π-α)=tan(π-α)=-tan α,因为sin α=,所以α为第一或第二象限角.①当α为第一象限角时,cos α=,所以tan α=,所以tan(5π-α)=-tan α=-.②当α为第二象限角时,cos α=-,tan α=-,所以tan(5π-α)=-tan α=.12.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.【证明】因为sin(α+β)=1,所以α+β=2kπ+(k∈Z),所以α=2kπ+-β(k∈Z).故tan(2α+β)+tan β=tan+tan β=tan(4kπ+π-2β+β)+tan β=tan(4kπ+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,所以原式成立.B组提升练(建议用时20分钟)13.若sin(π-α)=log8,且α∈,则cos(π+α)的值为( B )A. B.- C.± D.以上都不对14.已知cos(75°+α)=,则sin(α-15°)+cos(105°-α)的值是( D )A. B. C.- D.-15.已知tan(3π+α)=2,则= 2.16.设f(x)=asin(πx+α)+bcos(πx+β)+2,其中a,b,α,β为非零常数.若f(2 013)=1,则f(2 014)= 3.17.若cos(α-π)=-,求的值.【解析】原式====-tan α.因为cos(α-π)=cos(π-α)=-cos α=-,所以cos α=.所以α为第一象限角或第四象限角.当α为第一象限角时,cos α=,sin α==,所以tan α==,所以原式=-.当α为第四象限角时,cos α=,sin α=-=-,所以tan α==-,所以原式=.综上,原式=±.18.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2对应三个内角的正弦值,那么(1)试判断△A1B1C1是锐角三角形吗?(2)试借助诱导公式证明△A2B2C2中必有一个角为钝角.【解析】(1)由已知条件△A1B1C1的三个内角的余弦值均大于0,即cos A1>0,cos B1>0,cos C1>0,从而△A1B1C1一定是锐角三角形.(2)由题意可知若A2,B2,C2全为锐角,则A2+B2+C2=++=-(A1+B1+C1)=,不合题意.又A2,B2,C2不可能为直角,且满足A2+B2+C2=π,故必有一个角为钝角.C组培优练(建议用时15分钟)19.在△ABC中,若sin(2π-A)=-sin(π-B),cosA=-cos(π-B),求△ABC的三个内角.【解析】由条件得sin A=sin B,cos A=cos B,平方相加得2cos2A=1,cos A=±,又因为A∈(0,π),所以A=或π.当A=π时,cos B=-<0,所以B∈,所以A,B均为钝角,不合题意,舍去.所以A=,cos B=,所以B=,所以C=π.20.是否存在角α,β,α∈,β∈(0,π),使等式同时成立?若存在,求出α,β的值;若不存在,说明理由.【解析】由条件,得由①2+②2,得sin2α+3cos2α=2, ③又因为sin2α+cos2α=1, ④由③④得sin2α=,即sin α=±,因为α∈,所以α=或α=-.当α=时,代入②得cos β=,又β∈(0,π),所以β=,代入①可知符合.当α=-时,代入②得cos β=,又β∈(0,π),所以β=,代入①可知不符合.综上所述,存在α=,β=满足条件.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.函数y=sin的最小正周期为( C )A.πB.2πC.4πD.2.函数y=-cos x(x>0)的图象中距离y轴最近的最高点的坐标为( B )A. B.(π,1) C.(0,1) D.(2π,1)3.函数f(x)=的定义域为( A )A.B.C.D.4.已知a∈R,函数f(x)=sin x-|a|,x∈R为奇函数,则a等于( A )A.0B.1C.-1D.±15.下列函数中,同时满足:①在上是增函数,②为奇函数,③以π为最小正周期的函数是 ( A )A.y=tan xB.y=cos xC.y=tanD.y=|sin x|6.下列关系式中正确的是( C )A.sin 11°<cos10°<sin168°B.sin 168°<sin11°<cos10°C.sin 11°<sin168°<cos10°D.sin 168°<cos10°<sin 11°7.函数y=3tan的对称中心的坐标为8.下列各组函数中,图象相同的是(4).(1)y=cos x与y=cos(π+x);(2)y=sin与y=sin;(3)y=sin x与y=sin(-x);(4)y=sin(2π+x)与y=sin x.9.函数y=cos的单调增区间是10.若函数y=2sin ωx(ω>0)的图象与直线y+2=0的两个相邻公共点之间的距离为,则ω的值为3.11.在[0,2π]内用五点法作出y=-sin x-1的简图.【解析】(1)按五个关键点列表(2)描点并用光滑曲线连接可得其图象,如图所示.12.已知定义在R上的函数f(x)满足f(x+2)f(x)=1,且对∀x∈R,f(x)≠0,求证:f(x)是周期函数.【证明】因为f(x+2)f(x)=1且f(x)≠0,所以f(x+2)=,所以f(x+4)=f[(x+2)+2]===f(x).所以函数f(x)是周期函数,4是一个周期.B组提升练(建议用时20分钟)13.如图所示,函数y=cos x|tan x|的图象是( C )14.在(0,2π)上使cos x>sin x成立的x的取值范围是( A )A.∪B.∪C. D.15.若tan≤1,则x的取值范围是16.已知函数f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈,则f(x)的取值范围是.17.已知函数f(x)=试画出f(x)的图象.【解析】在同一坐标系内分别画出正、余弦曲线,再比较两个函数的图象,上方的画成实线,下方的画成虚线,则实线部分即为f(x)的图象.18.已知函数f(x)=2asin+a+b的定义域为,值域是[-5,1],求a,b的值.【解析】因为0≤x≤,所以≤2x+≤.所以-≤sin≤1.所以a>0时,解得a<0时,解得综上,a=2,b=-5或a=-2,b=1.C组培优练(建议用时15分钟)19.函数f(x)=-cos xln x2的部分图象大致是图中的( A )20.设函数y=-2cos,x∈,若该函数是单调函数,求实数a的最大值.【解析】由2kπ≤x+≤2kπ+π(k∈Z),得4kπ-π≤x≤4kπ+π(k∈Z).所以函数的单调递增区间是(k∈Z),同理函数的单调递减区间是(k∈Z).令π∈,即≤k≤,又k∈Z,所以k不存在.令π∈,得k=1.所以π∈,这表明y=-2cos在上是减函数,所以a的最大值是.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度2.已知ω>0,函数f(x)=cos的一条对称轴为x=,一个对称中心为,则ω有( A )A.最小值2B.最大值2C.最小值1D.最大值13.函数y=sin在区间上的简图是( A )4.若函数f(x)=sin的图象向右平移个单位后与原图象关于x轴对称,则ω的最小正值是( D )A. B.1 C.2 D.35.已知f(x)=2sin的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为( A )A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=6.将函数f(x)=sin ωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是( D )A. B.1 C. D.27.利用“五点法”作函数y=Asin(ωx+φ)(A>0)的图象时,其五点的坐标分别为,,,,,则A= ,周期T= π.8.函数y=sin 2x的图象向右平移φ个单位长度(φ>0)得到的图象恰好关于x=对称,则φ的最小值是π.9.将函数y=sin 4x的图象向左平移个单位,得到函数y=sin(4x+φ)(0<φ<π)的图象,则φ的值为.10.在函数y=-2sin的图象与x轴的交点中,离原点最近的交点坐标是.11.用“五点法”画函数y=3sin,x∈的图象.【解析】①列表:2x+-y=3sin②描点:在坐标系中描出下列各点:,,,,.③连线:用光滑的曲线将所描的五个点顺次连接起来,得函数y=3sin,x∈的简图,如图所示.12.已知曲线y=Asin(ωx+φ) (A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数表达式.(2)用“五点法”画出(1)中函数在[0,π ]上的图象.【解析】(1)由题意知A=,T=4×=π,则ω==2. 所以y=sin (2x+φ).又因为sin=1,所以+φ=2kπ+,k∈Z.所以φ=2kπ+,k∈Z.又因为φ∈,所以φ=.所以y=sin.(2)列出x、y的对应值表:πππ2x+π-描点,连线,如图所示:B组提升练(建议用时20分钟)13.要得到函数f(x)=cos的图象,只需将函数g(x)=sin的图象( C )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度14.已知函数y=Asin(ωx+φ)+m的最大值是4,最小值是0,最小正周期是,直线x=是其图象的一条对称轴,则下面各解析式符合条件的是( D )A.y=4sin+2B.y=2sin+2C.y=2sin+2D.y=2sin+215.将函数f(x)=sin(ωx+φ)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sin x的图象,则f=.16.关于函数f(x)=2sin,以下说法:①其最小正周期为;②图象关于点对称;③直线x=-是其一条对称轴.其中正确的序号是①②③.17.已知函数f(x)=sin.(1)求函数f(x)的单调增区间.(2)当x∈时,求函数f(x)的最大值和最小值及相应的x的值. 【解析】(1)令-+2kπ≤2x-≤+2kπ,k∈Z,解得-+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调增区间是,k∈Z.(2)因为x∈,所以2x-∈,所以sin∈,所以f(x)min=-,此时x=0;f(x)max=1,此时x=π.18.函数f(x)=Asin(ωx+φ)的一段图象如图所示.(1)求f(x)的解析式.(2)把f(x)的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?【解析】(1)由题意知A=3,T===5π,所以ω=.由f(x)=3sin的图象过点,得sin=0,又|φ|<,所以φ=-.所以f(x)=3sin.(2)由f(x+m)=3sin=3sin为偶函数(m>0),知-=kπ+(k∈Z),即m=kπ+(k∈Z).因为m>0,所以m min=.故至少把f(x)的图象向左平移个单位长度,才能使得到的图象对应的函数是偶函数.C组培优练(建议用时15分钟)19.已知函数f(x)=2sin ωx,其中常数ω>0.(1)若y=f(x)在上单调递增,求ω的取值范围.(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.【解析】(1)因为ω>0,根据题意有⇒0<ω≤.所以ω的取值范围是.(2)由f(x)=2sin 2x可得,g(x)=2sin+1=2sin+1,令g(x)=0⇒sin=-⇒x=kπ-或x=kπ-π,k∈Z,即g(x)的零点相离间隔依次为和,故若y=g(x)在[a,b]上至少含有30个零点,则b-a的最小值为14×+15×=.20.已知函数f(x)=asin+1(a>0)的定义域为R,若当-≤x≤-时,f(x)的最大值为2.(1)求a的值.(2)用五点法作出函数在一个周期闭区间上的图象.(3)写出该函数的对称中心的坐标.【解析】(1)当-≤x≤-时,则-≤2x+≤,所以当2x+=时,f(x)有最大值为+1.又因为f(x)的最大值为2,所以+1=2,解得a=2.(2)由(1)知f(x)=2sin+1.令2x+分别取0,,π,,2π,则求出对应的x与y的值,如表所示.2x+-1画出函数在区间上的图象如图.(3)f(x)=2sin+1,令2x+=kπ,k∈Z,解得x=-,k∈Z,所以函数f(x)=2sin+1的对称中心的横坐标为-,k∈Z.又因为函数f(x)=2sin+1的图象是函数f(x)=2sin的图象向上平移一个单位长度得到的,所以函数f(x)=2sin+1的对称中心的纵坐标为1,所以对称中心坐标为,k∈Z.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.电流I(A)随时间t(s)变化的关系是I=3sin 100πt,t∈[0,+∞),则电流I变化的周期是( A )A. B.50 C. D.1002.商场人流量被定义为每分钟通过入口的人数,劳动节某商场的人流量满足函数F(t)=50+4sin(t≥0),则在下列哪个时间段内人流量是增加的( C )A.[0,5]B.[5,10]C.[10,15]D.[15,20]3.一种波的波形为函数y=-sin x的图象,若其在区间[0,t]上至少有2个波峰(图象的最高点),则正整数t的最小值是( C )A.5B.6C.7D.84.函数y=x+sin|x|,x∈[-π,π]的大致图象是( C )5.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为( A )A.f(x)=2sin+7(1≤x≤12,x∈N+)B.f(x)=9sin(1≤x≤12,x∈N+)C.f(x)=2sin x+7(1≤x≤12,x∈N+)D.f(x)=2sin+7(1≤x≤12,x∈N+)6.如图所示,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致是( C )7.如图所示的图象显示的是相对平均海平面的某海湾的水面高度y(m)在某天24 h内的变化情况,则水面高度y关于从夜间0时开始的时间x 的函数关系式为y=-6sin x.8.某摩天轮建筑,其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为85米.9.一根长a cm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(cm)和时间t(s)的函数关系式是s=3cos,t∈[0,+∞),则小球摆动的周期为.10. (2018·福州高一检测)如图,在平面直角坐标系xOy中,质点M,N间隔3分钟先后从点P出发,绕原点按逆时针方向作角速度为弧度/分钟的匀速圈周运动,则M与N的纵坐标之差第4次达到最大值时,N 运动的时间为37.5分钟.11.已知电流I与时间t的关系式为I=Asin(ωt+φ).(1)如图是I=Asin(ωt+φ)(ω>0,|φ|<)在一个周期内的图象,根据图中数据求解析式.(2)如果t在任意一段秒的时间内,电流I=Asin(ωT+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?【解析】(1)由图知,A=300,=-=,所以T=,所以ω=,由·+φ=0,得φ=.所以I=300sin;(2)因为t在任意一段秒内I都能取到最大值和最小值,所以T≤,ω≥300π>942,所以ω最小取值为943.12.已知某地一天从4~16时的温度变化曲线近似满足函数y=10sin+20,x∈[4,16].(1)求该地区这一段时间内温度的最大温差.(2)若有一种细菌在15 ℃到25 ℃之间可以生存,那么在这段时间内,该细菌最多能生存多长时间?【解析】(1)由函数易知,当x=14时函数取最大值,此时最高温度为30 ℃,当x=6时函数取最小值,此时最低温度为10 ℃,所以最大温差为30 ℃-10 ℃=20 ℃.(2)令10sin+20=15,得sin=-,而x∈[4,16],所以x=.令10sin+20=25,得sin=,而x∈[4,16],所以x=.故该细菌能存活的最长时间为-=(小时).B组提升练(建议用时20分钟)13.稳定房价是我国实施宏观调控的重点,国家出台的一系列政策已对各地的房地产市场产生了影响,某市房地产中介对本市一楼盘的房价作了统计与预测:发现每个季度的平均单价y(每平方米的价格,单位:元)与第x季度之间近似满足:y=500sin(ωx+φ)+9 500(ω>0),已知第一、二季度平均单价如表所示:则此楼盘在第三季度的平均单价大约是( C )A.10 000元B.9 500元C.9 000元D.8 500元14.(2018·沈阳高一检测)有一块半径为R(R是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B在圆的直径上,C,D,E在半圆周上,如图.设∠BOC=θ,征地面积为f(θ),当θ满足g(θ)=f(θ)+R2sin θ取得最大值时,开发效果最佳,开发效果最佳的角θ和g(θ)的最大值分别为( B )A.,R2B.,R2C.,R2(1+)D.,R2(1+)15.如图所示是一弹簧振子作简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是y=2sin.16.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O 旋转,当时间t=0时,点A与钟面上标12的点B重合,若将A,B两点的距离d(cm)表示成时间t(s)的函数,则d= 10sin ,其中t∈[0,60].17.如图所示,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离.【解析】依题意,有A=2,=3,即T=12.又T=,所以ω=.所以y=2sin x,x∈[0,4].所以当x=4时,y=2sin=3.所以M(4,3).又P(8,0),所以MP===5(km).即M,P两点间的距离为5 km.18.如图,一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数.(2)点P第一次到达最高点大约需要多少时间?【解析】(1)如图所示建立直角坐标系,设角φ是以Ox为始边,OP0为终边的角.OP每秒钟内所转过的角为=.OP在时间t(s)内所转过的角为t=t.由题意可知水轮逆时针转动,得z=4sin+2.当t=0时,z=0,得sin φ=-,即φ=-.故所求的函数关系式为z=4sin+2.(2)令z=4sin+2=6,得sin=1,令t-=,得t=4,故点P第一次到达最高点大约需要4 s.C组培优练(建议用时15分钟)19.一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如表,则可近似地描述该物体的位移y和时间t之间的关系的一个三角函数式为20.为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入,为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,入住客栈的游客人数基本相同;②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系.(2)请问哪几个月份要准备400份以上的食物?【解析】(1)设该函数为f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<|φ|<π),根据条件①,可知这个函数的周期是12;由②可知,f(2)最小,f(8)最大,且f(8)-f(2)=400,故该函数的振幅为200;由③可知,f(x)在[2,8]上单调递增,且f(2)=100,所以f(8)=500.根据上述分析可得,=12,故ω=,且解得根据分析可知,当x=2时,f(x)最小,当x=8时,f(x)最大,故sin=-1,且sin=1.又因为0<|φ|<π,故φ=-.所以入住客栈的游客人数与月份之间的关系式为f(x)=200sin+300.(2)由条件可知,200sin+300≥400,化简,得sin≥⇒2kπ+≤x-≤2kπ+,k∈Z,解得12k+6≤x≤12k+10,k∈Z.因为x∈N*,且1≤x≤12,故x=6,7,8,9,10.即只有6,7,8,9,10五个月份要准备400份以上的食物.关闭Word文档返回原板块单元质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.扇形的周长是4,面积为1,则该扇形的圆心角的弧度数是( C )A. B.1 C.2 D.42.若120°角的终边上有一点(-4,a),则a的值为 ( C )A.-4B.±4C.4D.23.下列三角函数值的符号判断正确的是 ( C )A.sin 156°<0B.cos>0C.tan<0D.tan 556°<04.sin 300°+tan600°的值等于 ( B )A.-B.C.-+D.+5.已知函数f(x)=3sin x-4cos x(x∈R)的一个对称中心是(x0,0),则tan x0的值为 ( D )A.-B.C.-D.6.下列函数中,最小正周期为π,且图象关于直线x=对称的是( B )A.y=sinB.y=sinC.y=cosD.y=cos7.函数f(x)=Asinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A= ( B )A.3B.C.D.18.函数y=sin的图象可由函数y=cos x的图象至少向右平移m(m>0)个单位长度得到,则m= ( A )A.1B.C.D.9.函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω,φ的值分别是 ( B )A.2,-B.2,-C.4,D.4,10.函数y=cos2x+sin x-1的值域为 ( C )A. B.C. D.[-2,0]11.已知函数f(x)=tan ωx在内是减函数,则实数ω的取值范围是 ( B )A.(0,1]B.[-1,0)C.[-2,0)D.12.已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点, x=为y=f(x)图象的对称轴,且f(x)在单调,则ω的最大值为 ( B )A.11B.9C.7D.5二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.若2sin α-cos α=0,则=-.14.函数f(x)=sin+cos的最大值为.15.设函数f(x)=cos x,先将f(x)纵坐标不变,横坐标变为原来的2倍,再将图象向右平移个单位长度后得g(x),则函数g(x)到原点距离最近的对称中心为.16.给出下列命题:①存在实数x,使sin x+cos x=;②函数y=sin是偶函数;③若α,β是第一象限角,且α>β,则cos α<cos β;④函数y=sin 2x的图象向左平移个单位,得到函数y=sin的图象.其中结论正确的序号是②.(把正确的序号都填上)三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知tan α+=,求2sin2(3π-α)-3cos·sin+2的值.【解析】因为tan α+=,所以2tan2α-5tan α+2=0.解得tan α=或tan α=2.2sin2(3π-α)-3cos sin+2=2sin2α-3sin αcos α+2=+2=+2.当tan α=时,原式=+2=-+2=;当tan α=2时,原式=+2=+2=.18.(本小题满分12分)已知f(α)=. (1)化简f(α).(2)当α=-时,求f(α)的值.【解析】(1)f(α)===-cos α.(2)当α=-时,f(α)=-cos=-cos=-.。

人教版高一数学A必修4全册例题讲解及练习题(71页)

人教版高一数学A必修4全册例题讲解及练习题(71页)

(2)设人在距离标语 xm 处,则 x = l » 5 » 3439 (m) ,故视力正常的人,能在约 3439m 远处
a 0.001454 看清长宽均为 5m 的大字标语.
【例 4】已知扇形的面积为 S ,当扇形的圆心角为多少弧度时,扇形的周长最小?并求出此最小值.
解法 1:设扇形的半径为 R ,弧长为 l ,由 S = 1 lR ,得 l = 2S ,
8 §1.5 函数 y = Asin (w x + j ) 的图像……………(15)
9 §1.6 三角函数模型的简单运用………………(17) 10 第一章 三角函数 复习………………………(19)
11 §2.1 向量的物理背景与概念、几何表示……(21) 12 §2.1.3 相等向量与共线向量…………………(23) 13 §2.2 向量的加减法运算及其几何意义………(25) 14 §2.2.3 向量数乘运算及几何意义………………(27) 15 §2.3 平面向量基本定理及坐标表示…………(29) 16 §2.3.3 平面向量的坐标运算……………………(31)
{ } 引申: 终边在坐标轴上的角的集合 a a = k × 90o , k Î Z ;终边在 y = x 上的角的集合
{ } { } a a = 45o + k ×180o ,k Î Z
;终边在 y = ± x 上的角的集合
a
a
= 45o
o
+ k × 90 , k Î Z
.
【例 3】如果角a 与角q + 45o 具有同一条终边,角 b 与角q - 45o 具有同一条终边,那么a 与 b 的关
23 §3.1.1 两角差的余弦公式……………………(45) 24 §3.1.2 两角和与差的正弦,余弦,正切公式(1)…(47) 25 §3.1.2 两角和与差的正弦,余弦,正切公式(2)…(49) 26 §3.1.3 二倍角的正弦,余弦,正切公式(1)………(51) 27 §3.1.3 二倍角的正弦,余弦,正切公式(2)………(53) 28 §3.1.3 简单的三角恒等变换…………………(55) 29 第三章 三角恒等变换 复习…………………(57)

高一数学必修4全册习题(答案详解)

高一数学必修4全册习题(答案详解)

高一三角同步练习1(角的概念的推广)一.选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα 6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7、已知角2α的终边在x 轴的上方,那么α是 ( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角 8、若α是第四象限的角,则α- 180是 .(89上海)A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角二.填空题1、写出-720°到720°之间与-1068°终边相同的角的集合___________________.2、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.3、若角α的终边为第二象限的角平分线,则α的集合为______________________.4、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .三.解答题1、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210-; (2)731484'-.2、求θ,使θ与900-角的终边相同,且[]1260180,-∈θ.3、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|, {}Z k k x k x B ∈⋅<<-⋅=,360210360|,求B A ,B A .4、已知角α是第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。

2020年高中数学必修4 平面向量解答题专练(含答案)

2020年高中数学必修4 平面向量解答题专练(含答案)
(2)若(2a-b)·(3a+b)=3,求 a 与 b 的夹角.
19.已知向量 a、b 的长度|a|=4,|b|=2. (1)若 a、b 的夹角为 120°,求|3a-4b|; (2)若|a+b|=2 3,求 a 与 b 的夹角θ.
第 7 页 共 15 页
20.已知|a|=1,|b|= 2 .
(1)若 a∥b,求 a·b; (2)若 a、b 的夹角为 60°,求|a+b|; (3)若 a-b 与 a 垂直,求 a 与 b 的夹角.
x∈[0,
]、
2
(1)求 f(x)= OA·OB 的最大值和最小值;
(2)当 OA ⊥ OB ,求| AB |、
8.已知向量 a=(2,3),b=(-1,2). (1)求(a-b)(a+2b); (2)若向量 a+λb 与 2a-b 平行,求λ的值.
9.已知向量 a=-e1+3e2+2e3,b=4e1-6e2+2e3,c=-3e1+12e2+11e3,问 a 能否表示成 a=λb +μc 的形式?若能,写出表达式;若不能,说明理由.
21.已知 a⊥b,且|a|=2,|b|=1,若有两个不同时为零的实数 k,t,使得 a+(t-3)b 与-ka+ tb 垂直,试求 k 的最小值.
22.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61. (1)求 a 与 b 的夹角θ; (2)求|a+b|和|a-b|.
第 8 页 共 15 页
3.如图所示,P、Q 是△ABC 的边 BC 上的两点,且B→P=Q→C,求证:A→B+A→C=A→P+A→Q.
第 1 页 共 15 页
4.如图,以向量 OA = a
, OB
=b
为邻边作▱OADB, BM

高中数学人教A版 必修4 各章节同步练习+章节测试汇编300页含答案

高中数学人教A版 必修4 各章节同步练习+章节测试汇编300页含答案

高中数学人教A版必修4 各章节同步练习(AB卷)+章节测试汇编目录【同步练习】人教A版必修4数学《角和弧度制》同步练习(A)含答案【同步练习】人教A版必修4数学《角和弧度制》同步练习(B)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(A)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(B)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(A)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(B)含答案人教A版必修4高中数学第一章三角函数综合测试卷(A)含答案人教A版必修4高中数学第一章三角函数综合测试卷(B)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(A)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(B)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(A)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(B)含答案人教A版必修4高中数学第二章平面向量综合测试卷(A)含答案人教A版必修4高中数学第二章平面向量综合测试卷(B)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(A)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(B)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(A)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(B)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(A)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(B)含答案专题一任意角和弧度制测试卷(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与60-°的终边相相同的角是 ( ) A.3πB. 23πC. 43πD. 53π【答案】D【解析】因为π603o -=-, π5π2π33-=-,所以与60-°的终边相相同的角是5π3;故选D. 2.460是( )A. 第一象限B. 第二象限C. 第三象限D. 第五象限【答案】B【解析】由题意得, 460360100︒=︒+︒,因此460与100︒在同一象限第二象限,故选B. 3.下列角终边位于第二象限的是( )A. 420B. 860C. 1060D. 1260【答案】B【解析】00042036060=+终边位于第一象限, 0008602360140=⨯+终边位于第二象限,选B. 4.已知圆的半径为π,则060圆心角所对的弧长为( )A. 3πB. 23πC. 23πD. 223π【答案】C【解析】60化为弧度制为3π,由弧长公式有233l r ππαπ==⨯=,选C.5.终边在第二象限的角的集合可以表示为( ) A. 00{|90180}αα<<B. 0{|270360180360,}k k k Z αα-+⋅<<-+⋅∈ C. 0{|90180180180,}k k k Z αα+⋅<<+⋅∈ D. 0{|270180180180,}k k k Z αα-+⋅<<-+⋅∈ 【答案】B6.下列说法中, ①与角5π的终边相同的角有有限个; ②圆的半径为6,则15 的圆心角与圆弧围成的扇形面积为23π;正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个 【答案】B【解析】①错;②22113156221802S r ππα==⨯⨯⨯=,对;因而正确的个数为0.选B.7.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )【答案】B【解析】由扇形面积公式12S lr =,则4l =,又422l r α===.故本题答案选B . 8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A. B.C.D. A=B=C【答案】B【解析】 锐角必小于,故选B.9.已知α是锐角,则2α是( )A. 第一象限角B. 第二象限角C. 小于180的正角D. 第一或第二象限角 【答案】C【解析】α是锐角,∴()20απ∈,,∴2α是小于180的正角.10.扇形的圆心角为 )A.54πB. πC. 3D.29 【答案】A【解析】扇形的面积2211552264S R ππθ==⨯⨯=11.终边在直线y x =上的角的集合是( ) A. {|,}4k k Z πααπ=+∈ B. {|2,}4k k Z πααπ=+∈C. 3{|,}4k k Z πααπ=+∈D. 5{|2,}4k k Z πααπ=+∈【答案】A【解析】与α终边在一条直线上的角的集合为{|,}k k Z ββαπ=+∈,∴与4π终边在同一直线上的角的集合是{|,}4a k k Z παπ=+∈.故选A.12.已知α为第三象限角,则2α所在的象限是( )A. 第一或第三象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限 【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.的角属于第_________象限.【答案】二 【解析】在第二象限,所以的角属于第二象限14.53π-的角化为角度制的结果为__________, 135-的角化为弧度制的结果为__________.【答案】 300- 34π- 【解析】由题意得, 5518030033π-=-⨯︒=-︒, 135- 31351804ππ=-︒⨯=-︒ .15.已知扇形的半径为4cm ,弧长为12cm ,则扇形的圆周角为 ;【答案】3 【解析】3412===r l α 16.已知扇形的周长为10cm ,面积为42cm ,则扇形的中心角等于__________(弧度). 【答案】12【解析】由题意2108{{ 81r l l lr r +==⇒==或2{ 4l r ==,则圆心角是12l r α==,应填答案12.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.写出(0)y x x =±≥所夹区域内的角的集合。

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。

高中人教A版数学必修4:习题课(二) pdf版含解析

高中人教A版数学必修4:习题课(二) pdf版含解析

答案:(-π,0]
解析:由 y=cosx 的图象可知,a 的取值范围是-π<a≤0.
1 log2 8.函数 y= tanx的定义域是________.
{ } π
xkπ < x ≤ kπ+ ,k ∈ Z
答案:
4
1
π
解析:要使函数有意义,只需 log2tanx≥0,∴0<tanx≤1,∴kπ<x≤kπ+4,k∈Z,∴
2 (k∈Z).
π
11.设函数 f(x)=sin(-2x+φ)(0<φ<π),y=f(x)图象的一条对称轴是直线 x=8.
(1)求 φ;
(2)求函数 y=f(x)的单调区间.
π
π
解:(1)令(-2)×8+φ=kπ+2,k∈Z,


∴φ=kπ+ 4 ,k∈Z,又 0<φ<π,∴φ= 4 .
( )3π
( ) 7
7
π-
-cos4=cos 4 .
3
π1
7
∵2=1.5,2-10≈1.47,π-4≈1.39, 3π 1 7
∴π>2>2-10>π-4>0.
又∵y=cosx 在(0,π)上是减函数,
31
7
∴cos2<sin10<-cos4.
5.函数 y= log1tanx 的定义域是( )
2
A.Error!
由2+2kπ≤2x- 4 ≤ 2 +2kπ,k∈Z,


得 8 +kπ≤x≤ 8 +kπ,k∈Z,
[ ] 5π 9π
+kπ, +kπ
即 g(x)的单调减区间为 8
8Байду номын сангаасk∈Z,

2020-2021学年高一数学人教A版必修四练习:第二章 平面向量2.4.2 Word版含解析

2020-2021学年高一数学人教A版必修四练习:第二章 平面向量2.4.2 Word版含解析
5.已知a=(-1,3),b=(1,t),若(a-2b)⊥a,则|b|=________.
解析:∵a=(-1,3),b=(1,t),∴a-2b=(-3,3-2t).∵(a-2b)⊥a,∴(a-2b)·a=0,即(-3)×(-1)+3(3-2t)=0,解得t=2,∴b=(1,2),∴|b|= = .
答案:
即x2-2x-3=0,解得x=-1或x=3.
(2)若a∥b,则1×(-x)-x(2x+3)=0,
即x(2x+4)=0,解得x=0或x=-2.
当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.
当x=-2时,a=(1,-2),b=(-1,2),
a-b=(2,-4),|a-b|= =2 .
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.已知向量a=(0,-2 ),b=(1, ),则向量a在b方向上的投影为( )
A. B.3
C.- D.-3
解析:向量a在b方向上的投影为 = =-3.选D.
答案:D
2.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=( )
答案:D
4.a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于( )
A. B.-
C. D.-
解析:设b=(x,y),则2a+b=(8+x,6+y)=(3,18),所以 解得 故b=(-5,12),所以cos〈a,b〉= = .
答案:C
二、填空题(每小题5分,共15分)
答案: 或
12.已知向量a=(-2,2),b=(5,k).
(1)若a⊥b,求k的值;
(2)若|a+b|不超过5,求k的取值范围.

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k·360°<β<90°+k·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k·360°<β<360°+k·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-.说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角. 答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)si n263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变 D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ). A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x ∈[0,+∞);(2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12-2232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。

高中数学 必修4 (王后雄电子版)

高中数学  必修4  (王后雄电子版)

第1章节 三角函数1.1 任意角和弧度制【例题1】下列命题正确的是( )A. 终边相同的角一定相等B. 第一象限角都是锐角C. 锐角都是第一象限角D.小于90°的角都是锐角【例题2】给出下列四个命题:①﹣75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④﹣315°是第一象限角。

其中正确的命题有( )。

A.1个B.2个C. 3个D.4个 【例题3】如图,点A 在半径为1且圆心在原点的圆商,且∠=45°。

点P从点A 处出发,依逆时针方向匀速地沿单位圆旋转。

已知点P 在1秒钟内转过的角度为θ(0°<θ<180°),经过2秒钟到达第三象限,经过14秒钟后又回到出发点A ,求θ,并判断其所在的象限【例题4】设E ={小于90°的角},F ={锐角}。

G ={第一象限的角},M ={小于90°但不小于0°的角},则有( )。

A .B .C .() D .【例题5】在与角10030°终边相同的角中,求满足下列条件的角。

(1)最大的负角;(2)最小的正角;(3)360°~720°的角。

【例题6】与﹣457°角终边相同的角的集合是( )A .{}00360457,k k Z αα=⋅+∈B .{}0036097,k k Z αα=⋅+∈C .{}00360263,k k Z αα=⋅+∈D .{}00360263,k k Z αα=⋅-∈ 【例题7】下列各命题中,假命题是( ) A. “度”与“弧度”是度量角的两种不同的度量单位 B. 一度的角是周角的,一弧度的角是周角的C. 根据弧度的定义,180°一定等于π的弧度D. 不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关。

【例题8】若两角的和是1弧度,此两角的差是1°,试求这两个角的大小。

高中数学 必修4 (王后雄电子版)

高中数学  必修4  (王后雄电子版)

3.1两角和与差的正弦、余弦和正切公式【例题1】 (1)化简:)18sin()27sin()18cos()27cos(︒-︒++︒-︒+x x x x .(2))3cos(),0,2(,54cos αππαα--∈=求的值. 【例题2】已知)cos(,54sin sin ,53cos cos βαβαβα-=+=+求的值.【例题3】在△ABC 中,C B A cos ,135cos ,53sin 求==的值.【例题4】已知αβαβαπαβπ2sin ,53)sin(,1312)cos(,434求-=+=-<<<的值.【例题5】求出下列各式的值,完成填空。

(1).____________________15tan 3115tan 3=︒+︒-(2)__;__________32tan 28cot 158cot 62tan =︒⋅︒+︒-︒ (3).____________75tan 115cot 1=︒-︒+【例题6】求︒︒+︒︒55cos 10cos 35cos 80cos 值.【例题7】︒⋅︒-︒︒⋅︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_________________.【例题8】已知)4tan(),23,(,1312cos πθππθθ-∈-=求的值.【例题9】化简:)3cot(31)6(tan 3απαπ--++.【例题10】化简:(1)︒︒+︒+︒30tan 15tan 30tan 15tan ; (2)︒︒+︒+︒42tan 18tan 342tan 18tan .【例题11】(1)求125cos12cos ππ的值; (2)已知__________)4(2sin ,215sin =--=πx x 则. (3)若2cos 2sin ,3231sin ααπαπα+<<=则且=___________________. 【例题12】已知θθππθsin ,51|2cos |2345则),,(=∈的值是( )A. 510-B. 510C. 515-D. 1515【例题13】若απαπ2cos 21212121,223++<<化简:. 【例题14】(1)求下式的值: ︒︒-︒-︒50cot 85tan 40tan 5cot . (2)化简)cos(cos cos 2)(cos cos 22B A B A B A A +-++.【例题15】求值:(1)︒︒︒70sin 50sin 10sin ; (2)︒︒︒︒78sin 66sin 42sin 6sin .【例题16】求值:)44tan 1)...(2tan 1)(1tan 1(︒+︒+︒+.【例题17】化简: (1)︒⋅︒36cos 72cos ; (2)︒⋅︒⋅︒⋅︒80cos 60cos 40cos 20cos ; (3)1322cos (2)cos2cos2coscos -⋅⋅⋅n ααααα;【例题18】已知βαtan tan 、是方程0332=--x x 的两根,试求-+-+)sin(3)(sin 2βαβα)(cos 32βα+的值.【例题19】已知)sin(,135)43sin(,53)4cos(,434,40βαβπαππαππβ+=+=-<<<<求的值.【例题20】(1)已知ββαβααcos ,900,900,1411)cos(,34tan 求︒<<︒︒<<︒-=+=的值;(2)已知ααππα2cos ,257)4sin(),4,0(求=-∈.【例题21】求︒︒+︒+︒50cos 20sin 50cos 20sin 22的值. 【例题22】求︒⋅︒+︒+︒80sin 2)]10tan 31(10sin 50sin 2[2. 【例题23】(1)函数)3cos(cos π++=x x y 的最大值是_________________.(2)当2π-≤x ≤2π,函数x x x f cos 3sin )(+=的( ). A. 最大值是1,最小值是-1. B. 最大值是1,最小值是-21. C. 最大值是2,最小值是-2. D. 最大值是2,最小值是-1. 【例题24】已知)cos(,21cos cos ,31sin sin βαβαβα-=--=-求的值. 【例题25】化简αααα3cos cos 3sin sin 22+. 【例题26】求︒︒︒︒70sin 50sin 30sin 10sin 的值. 【例题27】已知βα、都是锐角,且βαβα+==求,1010sin ,55sin . 【例题28】已知△ABC 的三个内角A 、B 、C 满足A+C=2B ,且2cos ,cos 2cos 1cos 1CA B C A --=+求的值. 【例题29】在△ABC 中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan CA C A ++的值. 【例题30】已知11122=-+-ab b a ,求证:122=+b a .【例题31】化简:nx x n x x x x tan )1tan(...3tan 2tan 2tan tan -++⋅+⋅.【例题32】如图3-1-2,扇形AOB 的半径为1,中心角为60°,PQRS 是扇形的内接矩形, 问P 在怎样的位置时,矩形PQRS 的面积最大?并求出这个最大值.4能力•题型设计速效基础演练1. ︒︒+︒︒25sin 110sin 335cos 70cos 的结果是( ) A. 1 B.22 C. 23 D. 21 2. =-x x sin 6cos 2( )A. )6cos(22x -πB. )3cos(22x -πC. )6cos(22π+x D. )3cos(22π+x3. 已知)4(2tan ,2tan π-=x x 则等于( )A. 34B. 34-C. 43D. 43-4. 已知)43cos(,43cot ,2πααπαπ--=<<则的值是( )A.102 B. -102 C. 1027 D. -10275. 已知)5tan(,41)5tan(,52)tan(παπββα+=-=+那么的值为_______________. 6. △ABC 中,若,cos cos sin sin B A B A <则这个三角形是_________________三角形.知能提升突破1. =︒︒+︒︒313sin 253sin 223sin 163sin ( ) A. 21-B. 21C. 23-D. 232. 设=+=∈)4cos(2,53sin ),2,0(πααπα则若( ) A. 57 B. 51 C. -57 D. -513. ϕππϕϕ则),,(),sin(32cos 3sin 3-∈+=-x x x 的值是( ) A. -6π B. 6π C. 65π- D. 65π4. 若)2sin()2sin(,0sin )cos(cos )sin(βαβαββαββα-++=+-+则等于( ) A. 1 B. -1 C. 0 D. ±15. 已知α是第三象限角,且2tan ,2524sin αα则-=等于( ) A. 34 B. 43 C. -34 D. -436. 化简αααα4sin 4cos 14sin 4cos 1+-++的值为( )A. α2tanB. α2cotC. αtanD. αcot7. 已知)4tan(tan θπθ-和是方程02=++q px x 的两个根,则q p 、满足关系式___________.8. 若2cos 212cos2sincot 21)(2ααααα--=f ,那么)12(πf 的值为_____________. 9. 已知)cos(,20,135)32sin(,53)3cos(αβπβπαβπαπ-<<<<=--=+则且的值为_____________.10.︒-︒80sin 310sin 1=_____________.11. 是否存在锐角βα、,使得(1)32tan 2tan )2(,322-==+βαπβα同时成立?若存在,求出锐角βα、的值;若不存在,说明理由.12. 已知x x x x 4sin ),2(,61)4sin()4sin(求ππππ∈=-+的值.13. 已知βα、为锐角,2921)cos(,178sin =-=βαα,求βcos .14. 是否存在正实数m 使得1)10tan 3(50sin =︒+︒m ,如果存在,求出m 的值;如果不存在,说明理由.最新5年高考名题诠释【考题1】已知函数)(|,cos sin |21)cos (sin 21)(x f x x x x x f 则--+=的值域是( ) A. [-1,1] B. ]1,22[-C. ]22,1[- D. ]22,1[-- 【考题2】函数])0,[cos 3sin )(π-∈-=x x x x f (的单调递增区间是( ) A. ]65,[ππ-- B. ]6,65[ππ-- C. ]0,3[π- D. ]0,6[π- 【考题3】函数x x x x f cos sin 3sin )(2+=在区间]2,4[ππ上最大值是( )A. 1B.231+ C. 23D. 1+3 【考题4】已知)67sin(,354sin )6cos(πααπα+=+-则的值是( ) A. 532-B. 532C. 54- D. 54 【考题5】︒-︒-10cos 270sin 32=( )A.21B. 22C. 2D. 23【考题6】函数)2sin(sin 3)(x x x f ++=π的最大值是__________.【考题7】若βαβαβαtan tan ,53)cos(,51)cos(⋅=-=+则=_____________. 【考题8】已知函数)0)(2sin(sin 3sin )(2>++=ωπωωωx x x x f 的最小正周期为π.(1)求ω的值.(2)求函数)(x f 在区间]32,0[π上的取值范围. 【考题9】设x x x f 2sin 3cos 6)(2-=. (1)求)(x f 的最大值及最小正周期. (2)若锐角α满足αα54tan,323)(求-=f 的值. 【考题10】已知函数412sin 21)(),3cos()3cos()(-=-+=x x g x x x f ππ. (1)求函数)(x f 的最小正周期.(2)求函数)()()(x g x f x h -=的最大值,并求使)(x h 取得最大值的x 的集合. 【考题11】设函数)0(cos 2)cos (sin )(22>++=ωωωωx x x x f 的最小正周期为32π. (1)求ω的值;(2)若函数)(x g y =的图象是由)(x f y =的图象向右平移2π个单位长度得到,求)(x g y =的单调递增区间.【考题12】 定义在区间)2,0(π上的函数x y cos 6=的图象与x y tan 5=的图象的交点为P ,过点P 作x PP ⊥1轴于点1P ,直线x y PP sin 1=与的图象交于点2P ,则线段21P P 的长为_____________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 三角函数
例1 判断下列各角是第几象限角: ○
1-600

26060
○3-9500
12/
例2、在直角坐标系中,写出终边在y 轴上的角的集合(用00-3600的角表示) 3、把450化成弧度;把
5
3rad 化成度。

例4如图,利用弧度制证明扇形面积公式 ○
1S=2 1 αr 2 ○2 S=2
1
lr 例5 在直角坐标系的单位圆中,α=—4
π
, ○1画出角α

2求出角α的终边与单位圆的交点坐标 ○3 求出角α的正弦函数值和 余弦函数值 例6、已知角α终边上一点P(-
2
3,2),求角α的正弦函数值和 余弦函数值。

例1 求下列各角的三角函数值:

1sin(-4 7) = ○2 cos(3
2)= ○3 cos(-6
31)=求下列函数值
例9 用五点法画出下列函数的简图,并根据图像讨论他的性质。

(定义域、值域、奇偶性、周期性、单调性、最大值与最小值)

1y=sinx
○2 y=-sinx ○3 y= sinx ○4 y= sin x
○5 y=1+sinx ○6 y=sinx-1例10、 若tan α= , 借助三角函数定义求角α的正弦函数值和 余弦函数值。

例12、用五点法画出下列函数的简图,并根据图像讨论它们与函数y=sinx 的关系。

(指出定义域、值域、奇偶性、周期性、单调性、最大值与最小值) ○
1y=2sinx 与y=2
1sinx ○2y=sin (x+4π)与y=sin (x-6π
) ○
3y=sin2x 与y=sin 2
1 x 例13画出函数y=3sin (2x+
6
π
)+1的简图。

例14、求下列函数的最大值、最小值,以及达到最大值、最小值时x 值的集合。


1 y=sin x-
2 ○
2 y= 34sin 2 1x ○
3 y=2
1 cos (3x+ 4
π) 例15、○1求函数y=2sin(2 1x-3
π
)的递增区间。

○2求函数y=31cos(4x+6

)的递减区间。

第一章 三角恒等变形
例1、 已知sin α=-5
3,且α在第三象限,求cos α和
tan α.
例2、 已知cos α=
13
12,求sin α和tan α. 例3、 已知tan α=m(m ≠0),求cos α和sin α. 例4、 已知tan α=2,1800<α<2700,求 例6 化简: 例7 求证
例8 不查表,求cos750,cos150的 值。

例9 已知sin α=5 4,α∈(2
π,π),cos β=-13 5,
β∈(π,
2

),求,cos (α-β),cos(α+β)的值。

例10求f(x)=sinx+e cosx 的最大值和周期。

例11、已知tan α=2,,tan β=-3 1,其中α∈(0,2
π),β∈(
2
π
,π), ○
1求tan (α-β); ○2求α+β的值。

例13若tan (α+β)=52 ,tan (β- 4
π )= 41
,求tan (α+
4
π
)的值。

例14、已知tan α=2
1,求tan2α的值。

例15、设α是第二象限角,已知cos α=-
5
3, 求sin2α,cos2α和tan2α的值。

例16、在△ABC 中,已知AB=AC=2BC (如图),求角A 的正弦值。

例17、要把半径为R 的半圆形木料截成长方形(如图),应怎样截取,才能使长方形的面积最大? 例18、利用二倍角公式证明: 例19、已知cos α=
25 7, α ,例20、sin2α=-13
12,
2
πξκαβχθθ≠≈≤≥<>∫±∈√∥·…≠⊙≌㏒/∝∵∴∪∩↑↓△ABC ※︿τλη㏒±¼½¾α÷⊆∠A ⊥
求证:π是函数f(x)=sin(2x+
4
π
)的一个周期。

例2 (韦达定理)已知X 1和X 2是一元二次方程
ax 2+bx+c (a ≠0,b 2—4ac ≥0)的两个根,求证:
X 1+X 2=- a b ,X 1X 2=a
c。

例3 已知:x,y,z 为互不相等的实数,且
x+y
1
=y+z 1=z+x 1,求证:x 2y 2z 2=1.
例4 已知:a,b 是互不相等的正数,求证:a 3+b 3>
a 2b+a
b 2 例5 求证:
8+7>5+10.
求证:函数f(x)=2x 2-12x+16在区间(3,+∞)上是增加
的。

例7如图已知BE,CF 分别为△ABC 的边AC,AB 上的高,G 为EF 的中点,H 为BC 的中点,求证:HG1EF. 例8 已知;a,b,c 都是正整数,且ab+bc+ca=1.求证:a+b+c ≥3.
例9求证:1,2,5不可能是一个等差数列中的三项 例10证明:首项为a 1,公差为d 的等差数列{a n }的前
n 项和公式为S n =na 1+
2
1)d
-n(n 。

例11已知数列{a n }满足a n+1=a
-21
,a 1=0,试猜想{a n }的通
项公式并用数学归纳法证明。

例12用数学归纳法证明:(1+α)n ≥1+n α(其中α>-1,n 是正整数)。

第四次月考数学试卷
一、单项选择题(每题5分,共10题)。

1.若双曲线22
a
x —32y =1(a >0)的离心率为2,则a 等

A 、2
B 、3.
C 、
2
3
D 、1 2、设A={X/2≤X ≤6},B={X/2a ≤X ≤a+3},若B ⊆A ,则实数a 的取值范围是 A 、【1,3】 B 、【3,+∞) C 、【1,+∞)D 、
(1,3)
3、有下述命题
○1若f(a)*f(b) <0,则函数f(x)在(a,b)内必有零点。


2当a >1时,总存在x 0
∈R, 当x >x 0时,总有a x >x n >log a x

3函数y=1(x ∈R)是幂函数。


4若A B 则Card(A) <Card(B) (Card(A)表示集合A 中元素的个数)其中真命题的个数是
A 、0
B 、1
C 、2
D 、3 4、 x >1,y >1,且
41lnx, 41, 4
1
lny 成等比数列,则,xy 有
A 、最小值e
B 、最小值e
C 、最大值e
D 、最大值e 5、已知
a 、
b 为非零向量,则“a1b ”
是函数f(x)=(xa+b)*(xb-a)为一次函数”的
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件 6、如图,偶函数f(x)的图像如字母M , f(x) f(x)
f(x)
A 、
B 、
C 、
D 、
A 、
B 、
C 、
D 、。

相关文档
最新文档