胡寿松自控习题答案 第二章习题解答
自动控制原理-胡寿松第5版-课后习题及答案-完整(汇编)
⾃动控制原理-胡寿松第5版-课后习题及答案-完整(汇编)《⾃动控制原理》习题课习题讲解第⼆章内容1、试建⽴图⽰电路各系统的传递函数和微分⽅程。
解:(a) 应⽤复数阻抗概念可写出)()(11)(11s U s I cs R cs R s U c r ++= (1)2)()(R s Uc s I =(2)联⽴式(1)、(2),可解得: Cs R R R R Cs R R s U s U rc 212112)1()()(+++=微分⽅程为: rr c c u CR dt du u R CR R R dtdu 121211+=++(2) 由图解2-1(d )可写出[]Cs s I s I s I R s U c R R r 1)()()()(++= (5))()(1)(s RI s RI Cs s I c R c -= (6)[]Cs s I s I R s I s U c R c c 1)()()()(++= (7)联⽴式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c微分⽅程为 r r r c c c u R C dt du CR dt du u R C dt du CR dt du 222222221213++=++2、试建⽴图⽰电路各系统的传递函数解:由图可写出s C R s U c 221)(+ = s C R s C R s C R s U r 111112111)(+?++ 整理得)()(s U s U r c = 1)(1)(21221122121221122121+++++++s C R C R C R s C C R R s C R C R s C C R R 3、试⽤结构图等效化简求图2-32所⽰各系统的传递函数)()(s R s C 。
解(a )所以: 432132432143211)()(G G G G G G G G G G G G G G s R s C ++++=(b )所以: H G G G s R s C 2211)()(--=(c )所以:32132213211)()(G G G G G G G G G G s R s C +++= (d )所以:2441321232121413211)()(H G G G G G G H G G H G G G G G G G s R s C ++++++= (e )所以: 2321212132141)()(H G G H G H G G G G G G s R s C ++++=4、电⼦⼼脏起博器⼼律控制系统结构图如题3-49图所⽰,其中模仿⼼脏的传递函数相当于⼀纯积分环节。
《自动控制原理》 胡寿松 习题答案(附带例题课件)
二、本课程实验的基本理论与实验技术知识
采用 MATLAB 软件上机进行实验,就是利用现代计算机硬件和计算机软件技术,以数字仿真技术为核 心,实现对自动控制系统基本理论和分析方法的验证以及控制系统设计。 通过上机实验,使学生在 MATLAB 软件的基本使用、编程调试、仿真实验数订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
5
《自动控制原理》电子教案
《自动控制原理》课程实验教学大纲
一、实验教学目标与基本要求
《自动控制原理》 课程实验通过上机使用 MATLAB 软件, 使学生初步掌握 MATLAB 软件在控制理论中的 基本应用,学会利用 MATLAB 软件分析控制系统,从而加深对自动控制系统的认识,帮助理解经典自动控 制的相关理论和分析方法。 通过本课程上机实验, 要求学生对 MATLAB 软件有一个基本的了解, 掌握 MATLAB 软件中基本数组和矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论 常用函数的使用,学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步 掌握利用 MATLAB 软件进行控制系统设计,让学生得到撰写报告的基本训练。
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲) 。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念 2. 典型非线性特性、非线性系统的主要特征 3. 描述函数定义、应用条件和求取方法 4. 应用描述函数分析非线性系统的稳定性 5. 非线性系统自激振荡分析和计算 6. 介绍非线性系统相平面分析法(选讲)
胡寿松自动控制原理课后习题答案
dx(t ) d 2 x(t ) p(t ) f kx(t ) m dt dt 2
移项整理,得系统的微分方程为
m
d 2 x(t ) dx(t ) f kx(t ) p(t ) 2 dt dt
2-2 试列写图 2-2 所示机械系统的运动微分 方程。 解:由牛顿第二运动定律,不计重力时,得
是非电量,一般需要将其转换成为电量。常用的测量元部件有 测速发电机、热电偶、各种传感器等; ⑥ 放大元件: 将比较元件给出的偏差进行放大,用来推动执行元件去控制被 控对象。如电压偏差信号,可用电子管、晶体管、集成电路、 晶闸管等组成的电压放大器和功率放大级加以放大。 ⑦ 校正元件: 亦称补偿元件,它是结构或参数便于调整的元件,用串联或反 馈的方式连接在系统中,用以改善系统的性能。常用的校正元 件有电阻、电容组成的无源或有源网络,它们与原系统串联或 与原系统构成一个内反馈系统。
CsUC1 ( s) CsUC 2 ( s) U R 2 ( s) R2
(1 ) (2 ) (3 )
U i ( s) U o ( s) CsUC 2 ( s) R1
(4 )
整理得传递函数为
U o (s) R1R2C 2 s 2 R1Cs U i ( s) Cs 2 1 1 R1R2C 2 s 2 ( R1 2 R2 )Cs 1 R1 R2 R1R2Cs
(3) F ( s)
2 s 2 5s 1 s( s 2 1)
s 1 1 2 ( s 2)( s 5) s 2 s 5
1 2 ] s2 s5
解: (1 ) F ( s )
L1[ F ( s)] L1[
1 2 ] 2 L1[ ] s2 s5 e2t 2e5t L1[
胡寿松_第二章_数学模型_参考解答_11-24
C (s) 。 R(s)
答案:信号流图略。 参见题 2-17 的答案。
2-20
递函数
画出图 2-66 中各系统结构图相对应的信号流图,并用梅逊增益公式求系统的传
C (s) C (s) 和 。 R(s) N ( s)
答案:信号流图略。 参见题 2-18 的答案。
2-21 试绘制图 2-67 中系统结构图对应的信号流图,并用梅逊增益公式求系统的传递函
胡寿松第二章数学模型参考解答1124数学模型习题参考解答自动控制原理胡寿松胡寿松七年级上册数学第二章高一数学必修1第二章八年级上册数学第二章高中数学必修一第二章数学必修二第二章高一数学必修一第二章
第二章 控制系统的数学模型 (P.69-76)第一部分:11-24
2-11 在图中,已知 G(s)和 H(s)两方框相对应的微分方程分别是
图(c)答案:存在 2 条前向通道,3 个回路(2 对不相交回路) ∆ = 1 + 10 + 2 + 0.5 + 0.5 *10 + 0.5 * 2 = 19.5
P1 = 5 * 10 = 50 ; P2 = 10 * 2 = 20 ;
故有:
∆ 1 = 1 + 0.5 = 1.5 ∆ 2 = 1 + 10 = 11
图(b): 图(c):
图(d): 图(e):
C ( s) G1G2G3 = R( s ) 1 + G1H1 + G2 H 2 + G3 H 3 + G1G3 H1H 3
C ( s ) G1G2 G3 + G4 (1 + G2 H 1 + G2 G3 H 2 − G1G2 H 1 ) = R( s) 1 + G2 H 1 + G2 G3 H 2 − G1G2 H 1 = G4 + G1G2 G3 1 + G2 H 1 + G2 G3 H 2 − G1G2 H 1
自动控制原理第五版 胡寿松课后习题答案完整版
第 一 章1-1 图1-2是液位自动控制系统原理示意图。
在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。
图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位r u (表征液位的希望值r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。
工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c 。
当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c 。
反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c。
系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统?(1)222)()(5)(dt t r d t t r t c ++=;(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++; (3)dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω; (5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(;(6))()(2t r t c =;(7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。
胡寿松自动控制原理课后习题答案
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,2020/3/27从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
胡寿松版完整答案自动控制原理第五版课后习题答案
胡寿松版完整答案自动控制原理第五版课后习题答案2-1设质量-弹簧-摩擦系统如图2-1所示,途中f为黏性摩擦系数,k为弹簧系数,系统的输入量为力p(t),系统的输出量为质量m的位移x(t)。
试列出系统的图2-1练习2-1质量弹簧摩擦系统示意图输入输出微分方程。
解决方案:显然,系统的摩擦力是FDX(T),弹簧力是KX(T)。
根据牛顿第二运动定律,有dtdx(T)d2x(T)P(T)吗?Fkx(t)?系统的微分方程是d2x(t)dx(t)m?f?kx(t)?p(t)dt2dt2-2试列写图2-2所示机械系统的运动微分方程式解:由牛顿第二运动定律,不计重力时,得d2y1dyk2[y2(t)?y1(t)]?m12?k1y1?f1?Fdtdt整理得d2y1dym12?f1?(k1?k2)y1(t)?Fk2y2(t)dtdt2-3求下列函数的拉氏变换。
图2-2练习2-2机械系统示意图(1)f(t)?3(1?sint)(2)f(t)?teat(3)f(t)?cos(3t??4)解决方案:(1)l[f(T)]?l[3(1?辛特)]3(l[1]l[sint])113(2)ss13(s2s1)s(s21)(2)f(t)?teatl[t]?12s12(s?a)l[f(t)]?l[乳头]??2[sin(3t)?cos(3t)](3)f (t)?cos(3t?)?42l[f(t)]?2[sin(3t)?cos(3t)]22(l[sin(3t)]?l[cos(3t)]223s?(2?2)2s?9秒?92秒?3.2s2?9?2-4求下列函数的拉氏反变换(1)f(s)?s?1(s?2)(s?5)s?6s2(s?3)(2)f(s)?2s2?5秒?1(3)f(s)?s(s2?1)解:(1)f(s)?s?1?12??(s?2)(s?5)s?2秒?5l?1[f(s)]?L1[?12?] s2秒?512]? 2l?1.s?2秒?5.2e?5t??L1[?e?2t(2)f(s)?s?621?122s(s?3)sss?3l?1[f (s)]?L1[21?1??] 2sss?311? 11? 1]? l[]?l.[s2ss]?3.2t?1.E3t?2l?1[2s2?5s?11s?5?2(3)f(s)?2s(s?1)ss?11s?5l?1[f(s)]?L1[?2]ss?11s?5?l?1[]?l?1[2]ss?1?1?cost?5sint2-5试着在图2-3中写下每个无源网络的微分方程(让电容器C上的电压为UC(T),电容器C1上的电压为uc1(T),依此类推)。
《自动控制原理》 胡寿松 习题答案(附带例题课件)
自动控制原理
电子教案
《自动控制原理》电子教案
《自动控制原理》课程教学大纲
课程编号: 课程名称:自动控制原理 英文名称:Automatic Control Theory 课程类型::专业基础必修课 总 学 时:64 学 学 时:64 分:4 讲课学时:56 上机学时:8
适用对象:电气工程及其自动化专业(电力系统及自动化、电力系统继电保护、电网监控技术、供 用电技术专业方向) 先修课程: 高等数学、大学物理、积分变换、电路、数字电子技术、模拟电子技术
大纲制订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
7
《自动控制原理》电子教案
自动控制原理授课计划(64 学时)
2.利用 MATLAB 程序绘制控制系统阶跃响应曲线、计算性能指标,讨论开环放大倍数对闭环系统响 应速度、稳定性和稳态误差的影响 。 (验证性实验) 2 学时
3. 利用 MATLAB 程序绘制控制系统的 Nyquist 曲线、 Bode 图, 计算控制系统的幅值裕度和相位裕度。 (验证性实验) 4.利用 MATLAB 软件设计控制系统(设计性实验) 2 学时 2 学时
六、实验报告要求
每次上机实验必须提交实验报告。实验报告由实验原理、实验内容、仿真程序、实验数据记录及分析 处理等内容组成。
七、考核方式与成绩评定标准
实验成绩:预习 10%、上机操作 50%、报告 40%
八、教材及主要参考资料
教 材: 《自动控制理论实验指导书》 ,王芳、杨志超编写,2007 年 参考书:《自动控制原理》,国防工业出版社,王划一主编,2001 年 《基于 MATLAB 的系统分析与设计》-控制系统,楼顺天、于卫编著,西安电子科技大学出 版社,1999 年 《MATLAB 控制系统设计与仿真》,赵文峰编著,西安电子科技大学出版社,2002 年
自动控制原理胡寿松第5版课后习题及答案完整
且初始条件c(0)=-1,c&(0)=0。试求阶跃输入r(t)=1(t)时,系统的输出响应c(t)。
解:由系统的传递函数得:
dc(t)3dc(t)2c(t)2r(t)
(1)
dt2dt
对式(1)取拉氏变换得:
s2C(s)−sc(0)−c&(0)3sC(s)−3c(0)2C(s)2R(s)
将初始条件代入(2)式得
解:系统结构图及微分方程得:
G(s)
20
6s10
H(s)
10
20s5
1020
E(s)1010
C(s)
10G(s)
6s10
R(s)
1G(s)H(s)
2010
R(s)
1G(s)H(s)12010
1
6s1020s5
6s1020s5
10(20s5)(6s10)
1200s21500s500
200(20s5)
200(20s5)
LsRa
(s)
Ea(s)CeΩm
(s)
aa
CmIa(s)Mm(s)
Mm(s)−Mc(s)Ω
(s)
Jmsfm
得到系统结构图如下:
Mc
Ua(s)
1Ia(s)CmMm
1Ωm(s)
-Las+RaJms+fm
Ce
Ωm(s)
Cm
LasRa
1
JmsfmCm
Ua(s)
1CeCm
LasRa
1
Jmsfm
(LasRa)(Jmsfm)CeCm
(f1
K
1
s1)(f2
K2
s1)
(f1
K
胡寿松自控课后课后答案-12345章
lim
s0
s • En2 (s)
lim
s0
s • en2(s) • N2 (s)
0
根据叠加原理:ess(n1n2) essn1 essn2 0
[3-20]*设随动系统的微分方程为
T1
d2c(t) dt2
dc(t) dt
K2u(t)
u(t) K1[r(t) b(t)]
差动电位器
最大工作角度330o
30k Ω
20k Ω
+15v
ui
-15v10k
uo 10k
10k
u1 –
-K1Biblioteka 10k + ut-K2
u2
功放 K3
ua SM
TG
运放
+15v -15v
K0=30v/330o=1/11(v/o)=5.21(v/rad)
K1=3 K2=2
i K0 ui u K3 u1 K2
z
1
1(0 附加了零点)
( 由P.97式(3 - 45)至(3 - 50)
1
开系环统增型益别K2
10 1
由静态误差系数法:ess2
r(t)t
1 K
1 K2
0.1
[3-18]控制系统如图所示,其中
G(s)
KP
K s
,
F(s)
1 Js
输入r(t)、扰动n1(t)和n2(t)均为单位阶跃函数,求: (1)在r(t)作用下系统的稳态误差;
(s
Ka (s 4) 12)(s 2)
闭环系统特征方程:
胡寿松版完整答案自动控制原理第五版课后习题答案
自动控制原理课后答案1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
胡寿松自动控制原理课后习题答案
dx(t ) d 2 x(t ) p(t ) f kx(t ) m dt dt 2
移项整理,得系统的微分方程为
m
d 2 x(t ) dx(t ) f kx(t ) p(t ) 2 dt dt
2-2 试列写图 2-2 所示机械系统的运动微分 方程。 解:由牛顿第二运动定律,不计重力时,得
(2) f (t ) te at
L[t ] 1 s2
L[ f (t )] L[te at ]
1 ( s a) 2
2 [sin(3t ) cos(3t )] (3) f (t ) cos(3t ) 4 2
L[ f (t )] 2 [sin(3t ) cos(3t )] 2
2 ( L[sin(3t )] L[cos(3t )]) 2 2 3 s ( 2 2 ) 2 s 9 s 9 2 s3 2 s2 9
2-4 求下列函数的拉氏反变换 (1) F ( s)
s 1 ( s 2)(s 5) s6 s ( s 3)
2
(2) F ( s)
CsUC ( s)
U C ( s) U o ( s) R1 R2
(1 ) (2 )
U C ( s) U i ( s) U o ( s)
(2)代入(1) ,整理得传递函数为
U o (s) R1R2Cs R2 1 1 U i ( s) Cs R1R2Cs R1 R2 R1 R2
uc1 (t ) ui (t ) uR 2 (t ) uc 2 (t ) uo (t ) uR 2 (t )
C duc1 (t ) du (t ) u (t ) C c2 R2 dt dt R2
胡寿松自控习题答案 第二章习题解答
1 (T2 s + 1) U 0 ( s) Z2 C2 s (T1 s + 1)(T2 s + 1) = = = 所以: R1 1 U i ( s) Z1 + Z 2 R1C 2 s + (T1 s + 1)(T2 s + 1) + (T2 s + 1) T1 s + 1 C 2 s
即 F − F0 = K 1 ( y − y 0 )
其中 K 1 = = 12.65 × 1.1y 0 dy y= y
0
dF
0.1
0.1 = 13.915 × 1.1y 0
2-8 设晶闸管三相桥式全控整流电路的输入量为控制角,输出量为空载整流电压,它们之间的关系为:
ed = E d 0 cos α
xi (0) = x0 (0) = 0
则系统传递函数为
X 0 (s) fs + K 1 = X i ( s ) fs + ( K 1 + K 2 )
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58
电网络与机械系统
1 C1 s R1 R1 1 解:(a):利用运算阻抗法得: Z 1 = R1 // = = = 1 C1 s R1C1 s + 1 T1 s + 1 R1 + C1 s R1
& (t ) + x(t ) = t ; (1) 2 x
解:对上式两边去拉氏变换得: (2s+1)X(s)=1/s2→ X ( s ) =
胡寿松《自动控制原理》(第6版)笔记和课后习题(含考研真题)详解2
(2)当
,试求 统初 状态为零
。[
技 2010 ]
解: 题可
统应
(1) 统状态 为
(2) (1) 统状态转 阵为:
初
为
,已
,可得:
2.已 统 动态 为
求初态为x1(0)=2,x2(0)=3 , 统 单位阶 入 下:
(1) 统 状态 应表 式;
(2)求 统 出范 最小 刻t;
(3)写出 统
函 。[ 院2008 ]
统性能得:
3.某 反馈 统开环 函
合要求。
(1)求 统 角裕度 幅 裕度。
(2) 角裕度
联 前校正 联滞后校正 主要特点。为 统
,试分 统应
联 前校正还 联滞后校正?
[
技 2009 ]
解:(1)求截止频率与
裕度:
求幅 裕度:
(2)要 节 校正。
统 角裕度
,
前校正,则需要校正环
不合
前校正,可以
联滞后
最小 位环节组成。若控制 统为单位反馈 统,其开环 函 为
试问:(1)这些校正网络特性 , 性最 ?
可 已校正 统
(2)为 网络特性?
12Hz 正弦
削弱10 左右,
校正
图6-3 解:(1)图(a)校正网络为
,校正后 统 函 为
计 截止频率得
rad/s, 角裕度为
校正后 统不 。 图(b)校正网络为
:
① 为对 幅频渐近 特性
低频渐近
率为
,
;
②
, 率变化
,对应惯性环节.
此 统 开环 函 为
低频渐近 延
点
, 统 开环 函 为
, .
统 校正 函
自动控制原理(胡寿松)课后习题答案详解
=
0.04 s 2
1 + 0.24s
+1
C (s)
=
0.04 s 2
10 6s + 10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
E(s) =
10
=
10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
=
(6s
200(20s + 5) + 10)(20s + 5) +
200
=
200(20s + 5) 120s 2 + 230s + 250
U 0 (s) + U i (s) R0
U1 (s) R0
U 2 (s) R0
式(1)(2)(3)左右两边分别相乘得
9
胡寿松自动控制原理习题解答第二章
U0 (s)
= − Z1 Z 2 R2 即
U 0 (s) + U i (s) R0 R0 R0
U 0 (s) + U i (s) = − R03
U0 (s)
正比,此时有
F
d(H − dt
H0)
=
(Q1
−
Q0 )
−
(Q2
−
Q0 )
于是得水箱的微分方程为
F
dH dt
= Q1 − Q2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
iC 2
=
uC1
+ iC1R R
K 2 x0 = f (x& − x&0 )
消去中间变量 x,可得系统微分方程
f (K1
+
K
2
)
dx0 dt
+
K1K2 x0
=
K1 f
dxi dt
对上式取拉氏变换,并计及初始条件为零,得系统传递函数为
X 0 (s) =
fK1s
X i (s) f (K1 + K2 )s + K1K2
③图 2—57(c):以 x0 的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:
u0
= (iC
+ iR1 )R2
=
C
duC dt
+
uC R1
R2
=
C
d
(ui −
dt
u0
)
+
ui
− u0 R1
R2
整理得:
CR2
du0 dt
+ C
R2 R1
+ 1u0
= CR2
dui dt
+C
R2 R1ui − u0 = uC1 (1)
iC1
=
C1
duC1 dt
K
=
1
K2
( f1 s + 1)( f 2 s + 1) + f1
K 1
K2
K2
所以图 2-58(a)的电网络与(b)的机械系统有相同的数学模型。 2—4 试分别列写图 2-59 中个无源网络的微分方程式。
解:(a) :列写电压平衡方程:
ui − u0 = uC
iC
=C
duC dt
iR1
=
uC R1
胡寿松自动控制原理习题解答第二章
2—1 设水位自动控制系统的原理方案如图 1—18 所示,其中 Q1 为水箱的进水流量, Q2 为水箱的用水流量, H 为水箱中实际水面高度。假定水箱横截面积为 F,希望水面高度 为 H 0 ,与 H 0 对应的水流量为 Q0 ,试列出
水箱的微分方程。
解 当 Q1 = Q2 = Q0 时,H = H 0 ;当 Q1 ≠ Q2 时,水面高度 H 将发生变化,其变化率与流量差 Q1 − Q2 成
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
//
1 C1s
=
R1 C1s
R1
+
1 C1s
=
R1 = R1 R1C1s + 1 T1s + 1
Z2
=
R2
+
1 C2s
正比,此时有
F
d(H − dt
H0)
=
(Q1
−
Q0 )
−
(Q2
−
Q0 )
于是得水箱的微分方程为
F
dH dt
= Q1 − Q2
2—2 设机械系统如图 2—57 所示,其中 xi 为输入位移, x0 为输出位移。试分别列写各系统的微分方程式
及传递函数。
图 2—57 机械系统 解 ①图 2—57(a):由牛顿第二运动定律,在不计重力时,可得
X 0 (s) =
f1 f2s2 + ( f1K2 + K1 f2 )s + K1K2
= K1K2
K 1
K2
X i (s) f1 f2s2 + ( f1K2 + K1 f1 + K1 f2 )s + K1K2
f1 f2 s2 + ( f1 + f2 )s +1+ f1
K1 K 2
K 1
K2
K2
( f1 s + 1)( f 2 s + 1)
K1 (xi − x) + f (x&i − x&0 ) = K 2 x0
移项整理得系统微分方程
f
dx0 dt
+ (K1
+ K2 )x0
=
f
dxi dt
+ K1xi
对上式进行拉氏变换,并注意到运动由静止开始,即
xi (0) = x0 (0) = 0
则系统传递函数为
X 0 (s) = fs + K1 X i (s) fs + (K1 + K 2 )
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
K1x = f1 (x&0 − x&) (2)
所以 K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = K1x (3)
对(3)式两边取微分得
K 2 (x&i − x&0 ) + f 2 (&x&i − &x&0 ) = K1x&
对上式去拉氏变换得
3
胡寿松自动控制原理习题解答第二章
[ ] f1 f 2 s 2 + ( f1K 2 + K1 f1 + K1 f 2 )s + K1K 2 X 0 (s) [ ] = f1 f 2 s 2 + ( f1K 2 + K1 f 2 )s + K1K 2 X i (s)
所以:
f1 f2 s2 + ( f1 + f2 )s +1
于是传递函数为
X 0 (s) =
f1
X i (s) ms + f1 + f 2
②图 2—57(b):其上半部弹簧与阻尼器之间,取辅助点 A,并设 A 点位移为 x ,方向朝下;而在其下半部工。
引出点处取为辅助点 B。则由弹簧力与阻尼力平衡的原则,从 A 和 B 两点可以分别列出如下原始方程:
K1 (xi − x) = f (x& − x&0 )
1
胡寿松自动控制原理习题解答第二章
f1 (x&i − x&0 ) − f 2 x&0 = m&x&0
整理得
m d 2 x0 dt 2
+ ( f1
+
f
2
)
dx0 dt
=
f1
dxi dt
将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得
[ ] ms 2 + ( f1 + f2 )s X 0 (s) = f1sX i (s)
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)
=
(T1s + 1)(T2 s + 1)
Ui (s)
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
(4)
将(4)式代入(1)式中得
K1K 2 (xi − x0 ) + K1 f 2 (x&i − x&0 ) = K1 f1x&0 − f1K 2 (x&i − x&0 ) − f1 f 2 (&x&i − &x&0 )
整理上式得
f1 f 2 &x&0 + f1K 2 x&0 + K1 f1x&0 + K1 f 2 x&0 + K1K 2 x0 = f1 f 2 &x&i + f1K 2 x&i + K1 f 2 x&i + K1K 2 xi