一元一次方程单元测试卷(供参考)

合集下载

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元一次方程的是:A. 3x - 5 = 0B. 2x + 3y = 6C. 4x = 12D. 5x - 7 = 8答案:B2. 解方程2x - 3 = 7,x的值是:A. 5B. 10C. -5D. -10答案:A3. 方程3x + 2 = 11的解是:A. x = 1B. x = 3C. x = 2D. x = 4答案:B4. 方程5x - 15 = 0的解是:A. x = 3C. x = 5D. x = -5答案:A5. 方程2x + 4 = 10的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:B6. 方程6x - 9 = 15的解是:A. x = 4B. x = 3C. x = 2D. x = 1答案:A7. 方程4x + 8 = 20的解是:A. x = 2B. x = 3C. x = 4D. x = 5答案:B8. 方程3x - 7 = 2x + 8的解是:B. x = 8C. x = 7D. x = 5答案:A9. 方程2x = 6的解是:A. x = 3B. x = 2C. x = 1D. x = 0答案:B10. 方程5x + 10 = 25的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:A二、填空题(每题2分,共20分)11. 方程ax + b = 0的解是 x = _______。

答案:-b/a12. 方程2x - 5 = 3,解得 x = _______。

答案:413. 方程3x + 6 = 0,解得 x = _______。

答案:-214. 方程4x = 16,解得 x = _______。

答案:415. 方程5x - 2 = 18,解得 x = _______。

答案:416. 方程6x + 12 = 30,解得 x = _______。

4单元测试卷-一元一次方程

4单元测试卷-一元一次方程

单元测试卷---《一元一次方程》(试卷总分:120分)一、选择题(每小题4分,满分40分,每小题有且只有一个选项正确)1.解是x =2的方程是( ).A .2(x -1)=6B .2x +1=xC .12x +10=2xD .213x +=1-x 2.已知(m 2-1)x 2+(m -1)x +7=0是关于x 的一元一次方程,则m 的值为( ).A .±1B .-1C .1D .以上答案都不对3.若(a -3)与(2a -3)互为相反数,则a 的值为( ).A .-3B .1C .2D .04.如果x =0是关于x 的方程3x -2a =4的解,则a 的值是( )A .2B .-2C .43D .-435.关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为( ).A .9B .8C .5D .46.下列结论中错误的有( ).①若a =b ,则ac -3=bc -3;②若ax =ay ,则x =y ; ③若a b =c b ,则a =c ;④若0.320.2x -=5,则3202x -=5. A .0个B .1个C .2个D .3个 7.解方程:2-243x -=-76x -,去分母得( ). A .2-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7C .2-(2x -4)=-(x -7)D .12-2(2x -4)=-(x -7)8.某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店( ).A .不盈不亏B .亏损10元C .盈利9.6元D .盈利10元9.解方程4(x -1)-x =2(x +12),步骤如下:①去括号,得4x -4-x =2x +1;②移项,得4x +x -2x =1+4;③合并同类项,得3x =5;④系数化为1,得x =53.检验知,x =53不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ).A .①B .②C .③D .④10.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ).A .3x +3(100-x )=100B .3x -3(100-x )=100 C .3x +1003x -=100 D .3x -1003x -=100二.填空题(每小题4分,满分24分)11.在解方程12x -=43x +1时,去分母后正确的是__________. 12.已知x =2是方程(a +1)x -4a =0的解,则a 的值是__________. 13.小强在解方程时,不小心把一个数字用墨水污染成了x =1-5x -●,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是__________.14.某种家电商场将一种品牌的电脑按标价的9折出售,仍可获利20%,已知该品牌电脑进价为9000元,如果设该电脑的标价为x 元,根据题意得到的方程是__________.15.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x 张铝片制瓶身,则可列方程为__________.16.对于三个数a ,b ,c ,我们规定用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=1233-++=43,min {-1,2,3}=-1,如果M {3,2x +1,4x -1}=min {2,-x +3,5x },那么x =__________.三.解答题(满分56分)17.(8分)解方程:(1)5(x -3)=7(x -5);(2)216x --314x -=1+13x +.18.(6分)已知关于x 的方程43x -m =65x -1,当m 为某些正整数时,方程的解为正整数,试求正整数m 的最小值.19.(8分)我们规定x的一元一次方程ax=b的解为b-a,则称该方程是“差解方程”,例如:3x=4.5的解为4.5-3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=__________.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=__________.(3)已知关于x的一元一次方程4x=mn+m和-2x=mn+n都是“差解方程”,求代数式-3(m+11)+4n+2[(mn+m)2-m]-12[(mn+n)2-2n]的值.20.(10分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?21.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?22.(12分)缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳.(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税__________元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是__________元.。

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

一元一次方程单元测试题.docx

一元一次方程单元测试题.docx

一元一次方程单元测试题一、选择题(每题2分,共10分)1. 解下列方程,求x的值:\[ 3x - 5 = 14 \]A. -1B. 3C. 5D. 72. 已知方程 \( ax + b = 0 \) 的解是 \( x = 5 \),那么 \( a \) 和 \( b \) 的关系是:A. \( a = 0 \)B. \( b = 0 \)C. \( 5a + b = 0 \)D. \( 5a = -b \)3. 如果方程 \( 2x - 1 = 7x + 3 \) 的解是正数,那么 \( x \) 的范围是:A. \( x > -1 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x < -1 \)4. 方程 \( 3x + 2 = 2x + 5 \) 的解是:A. \( x = 1 \)B. \( x = 2 \)C. \( x = 3 \)D. \( x = 4 \)5. 根据题目中的信息,下列哪个方程没有解:A. \( x + 2 = 3x \)B. \( x - 5 = 2x + 3 \)C. \( 3x - 4 = 2x + 6 \)D. \( 4x + 5 = 5x - 4 \)二、填空题(每题2分,共10分)6. 解方程 \( 4x + 6 = 2x + 10 \) 后,\( x \) 的值为 _______。

7. 如果 \( x \) 是方程 \( 5x - 3 = 2x + 7 \) 的解,那么 \( 3x \) 的值为 _______。

8. 方程 \( ax - b = 0 \) 的解是 \( x = \frac{b}{a} \),当\( a \) 不等于 _______ 时,方程有唯一解。

9. 已知 \( x \) 是方程 \( 3x + 1 = 2x + 4 \) 的解,那么 \( x- 1 \) 的值为 _______。

10. 如果方程 \( 2x = 6 \) 的解也是方程 \( 3x - 5 = 0 \) 的解,那么 \( x \) 的值为 _______。

一元一次方程章节测试卷(含答案)

一元一次方程章节测试卷(含答案)

第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。

同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。

《一元一次方程》单元试卷及答案

《一元一次方程》单元试卷及答案

《一元一次方程》检测试卷班级: 姓名: 成绩:一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( )A. 243x x -=B. 0x =C. 23x y +=D. 11x x-=2.若方程2152x kx x -+=-的解为1-,则的值为( )A. 10B. 4-C.6-D. 8-3.一个两位数的个位数字与十位数字都是,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列的方程是( )A. 2312x +=B. 10310x x ++=C. ()()()10101210x x x x +-+-+=D. ()()10121012x x x x +++=++4. 若方程235x +=,则610x +等于()A.15B.16C.17D.345.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A.0x =B.3x =C.3x =-D.2x = 6.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设xs 后甲可追上乙,则下列四个方程中不正确的是( )A. 7 6.55x x =+B. 75 6.5x x +=C. ()7 6.55x -=D. 6.575x x =-7. 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是( )A.6B.7C.9D.88.某商人在一次买卖中均以120元卖出两件衣服,一件赚0025,一件赔0025,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定9. 已知:()2135m --有最大值,则方程5432m x -=+的解是x = ( ) A.79 B. 97 C. 79- D. 97- 10.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A.1B.2C.3D.4二、填空题(每小题5分,共20分)11.若52x +与29x -+互为相反数,则2x -的值为 _________.12.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为人x ,可列方程为_________. 14. 商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打_________折.三、解答题(共50分)15.(15分)解下列方程:(1)2(2)3(41)9(1)y y y +--=-;(2)7151322324x x x-++-=-;(3)0.89 1.33511.20.20.3x x x--+-=.16. (8分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h,乙单独做需要4 h,甲先做30 min,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?17.(8分)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.18.(9分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,求这一天有几名工人加工甲种零件.19. (10分)某地区居民生活用电基本价格为每千瓦时0.4元,若每月用电量超过a千瓦时,70收费.则超过部分按基本电价的00(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费多少元?《一元一次方程》检测试卷参考答案1. B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;D. 11x x -=中,分母中含有未知数,所以不是一元一次方程。

第五章一元一次方程 单元测试题(含答案)初中数学北师大版七年级上册

第五章一元一次方程 单元测试题(含答案)初中数学北师大版七年级上册

第五章一元一次方程 单元测试卷一、选择题1.在方程3x -y =2,x +1=0,12x =12,x 2-2x -3=0中,一元一次方程的个数为( )A.1B.2C.3D.42.一元一次方程的解是( )A .B .C .D .3.关于x 的方程的解是,则m 的值是( )A .B .0C .2D .84.下列运用等式性质进行的变形中,正确的是( ) A. 若 ,则 B. 若,则C. 若,则D. 若,则6.方程去分母得( )A .B .C .D .7.某品牌电脑降价以后,每台售价为元,则该品牌电脑每台原价为( )A .元B .元C .元D .元8.如果关于x 的方程 和方程 的解相同,那么a 的值为( )A .6B .4C .3D .29.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .B .C .D .10.如图,将长与宽比为的长方形分割成一个阴影长方形和由196个面积相等的小正方形构成的边框,(边框的宽度即为小正方形的边长),则阴影长方形的长与宽的比为( )10x -==1x -0x =1x =2x =240x m +-=2x =-8-247236x x ---=-22(24)(7)x x --=--122(24)7x x --=--12(24)(7)x x --=--122(24)(7)x x --=--213x +=213a x--=42(94)35x x +-=42(35)94x x +-=24(94)35x x +-=24(35)94x x +-=3:2ABCDA .B .C .D . .15.已知整式 是关于x 的二次二项式,则关于y 的一元一次方程 的解为 .三、解答题16.解方程:(1).(2).17.解下列一元一次方程 (1)2(x+3)=-x; (2)18.小明解方程2x -15+1=x +a 2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x =4,试求a 的值,并正确地求出方程的解.四、解答题19.某届足球比赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,则小李预定了小组赛和淘汰赛的球票各多少张?3:229:1929:1729:2132(24)7(3)2m x x n x --++-(3)160m n y ny -++=20.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形铁片和长方形铁片才能合理地将铁片配套?23.如图①,在数轴上有一条线段AB,点A,B表示的数分别是2和﹣7.(1)线段AB= ;(2)若M是线段AB的中点,则点M在数轴上对应的数为 ;(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B';处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案一、选择题1—5 BCDBC6—10 DCBDB二、填空题11.7212.3x-2x=10 13.2 14.2031 15.y=-2三、解答题16.解:(1)去括号得:,移项,合并同类项得:,未知数系数化为1得:.(2)去分母,得:,去括号,得:,移项,合并同类项,得:,系数化成1,得:.17.解:(1)去括号,得:2x+6=-x移项,得:2x+x=-6合并同类项,得:3x=-6系数化成1,得:x=-2(2)去分母,得:2(x-1)-12(x+1)=1去括号,得:2x-2-12x-12=1移项,合并同类项,得: -10x=15系数化成1,得:18..四、解答题19、解:设小李预定了小组赛球票x张,则预定了淘汰赛球票(10-x)张,根据题意,得550x+700(10-x)=5 800.解得x=8.则10-x=10-8=2(张).答:小李预定了小组赛球票8张、淘汰赛球票2张.20.解:设安排x人生产长方形铁片,则(42-x)人生产圆形铁片,依题意得120(42-x)=2x80x,解得x=18,所以42-18=24(人)则安排24人生产圆形铁片,18人生产长方形铁片21.解:设笔袋的单价为x元,则水笔的单价为(x-22)元,所以x=6(x-22)+2, 解得x=26,则x-22=26-22=4(元),答:笔袋的单价为26元,则水笔的单价为4元.(2)甲书店:50x26+4(a- 20) = 4a +1220(元),乙书店:50x 26 + 4a x 0.5 = 2a+1300(元),所以到甲书店购买所花的费用是(4a+1220)元,到乙书店购买所花的费用是(2a+1300)元(3) 甲书店:4a+1220≤1400,解得a ≤45,此时购买的笔袋和水笔的总数量为 50+a ≤50+45= 95<100,不满足题意,乙书店:2a+1300≤1400,解得a ≤50,此时购买的笔袋和水笔的总数量为50+a ≤50+50=100,满足题意,所以王老师到乙书店能完成本次采购任务.五、解答题22、解:(1)3x-(6+x)=-16, 解得 x=-5,2x+4=x+10, 解得 x=6.∵(-5)+6=1,∴方程3x-(6+x)=-16与方程2x+4=x+10互为“美好方程”.(2)x2+m=0, 解得 x=-2m ,3x=x+4,解得 x=2.∵关于x 的方程一+m=0与方程3x=x+4互为“美好方程”,.∴.-2m+2=1,解得 m=12.23(1)9(2)-2.5(3)解:设 AB'=x ,∵AB′=,则 B'C =5x .∴由题意BC =B′C =5x ,∴ AC =B'C ﹣AB'=4x ,∴ AB =AC+BC =AC+B'C =9x ,即9x =9,∴x=1,∴由题意AC=4,又∵点A表示的数为2,2﹣4=﹣2,∴点C在数轴上对应的数为﹣2.。

(完整版)一元一次方程单元测试题

(完整版)一元一次方程单元测试题

《一元一次方程》单元测试题时间:100分钟 满分:110分班别: 座号: 姓名: 分数:一、选择题(每小题3分,共36分)1、方程2x+1=0的解是 ( )(A) 21 (B ) 21- (C ) 2 (D ) —-22、已知下列方程中①x x 22=-、②0.3x=1、③152-=x x、④34=-x x⑤x=6、⑥x+2y=0、⑦x x x x 3222+=+-,其中是一元一次方程的有( )(A ) 2个 (B ) 3个 (C ) 4个 (D )5个3、下列解方程错误的是( )(A )由-31x =9得x =-3 (B)由7x =6x -1得7x -6x =-1(C )由5x =10得x =2 (D )由3x =6-x 得3x+x =64、方程2(x-7)=x+4的解是 ( )(A ) x=—5 (B )x=5 (C ) x=14 (D) x=185、对于等式x x 2131=-,下列变形正确的是 ( )(A ) 1231=+x x (B)1312-=-x x (C )135=x (D) x x 23=-6、下列等式变形错误的是 ( )(A)由a=b,得a+5=b+5 (B )由a=b ,得33-=-ba(C )由x+2=y+2,得x=y (D)由-3x=-3y, 得x=-y7、方程x x 73374-=的解是 ( )(A) x=3 (B) 21=x (C) 21-=x (D ) x=—38、将方程11)14(3)12(7=---x x 去括号后正确的是( )(A)1112714=+--x x (B) 11312714=+--x x(C )11312114=---x x (D) 14x-1—12x+3=119、方程16531=-+x x 的解是 ( ) (A )31- (B) 34 (C) 31 (D) 34- 10、方程)1(4242103-=++x x a 的解为3=x ,则a 的值为( ) (A )2 (B )22 (C)10 (D )-211、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。

人教版七年级数学上册《第三章一元一次方程》单元测试卷(带有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试卷(带有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式是一元一次方程的是( )A .30x y --=B .20x =C .123x+= D .238x x +=2.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 3.如果5x 2-2n -1=0是关于x 的一元一次方程,那么n 的值为( )A .0B .1C .12D .324.下列方程是一元一次方程的是( )A .1132x x -=B .231x x -=C .11x= D .29x y += 5.已知关于 x 的方程 286x +=- 与 235x a -=- 的解相同,则 a 的值为( )A .13B .3C .3-D .86.已知()130kk x-+=∣∣是关于x 的一元一次方程.则此方程的解是( )A .-1B .2-C .32D .±17.解方程11136x x +--=需下列四步,其中开始发生错误的一步是( ) A .去分母,得2(x+1)-(x-1)= 6 B .去括号,得2x+2-x+1=6 C .移项,得2x-x=6-2+1D .合并同类项,得x= 58.方程2-2x 4x 7312--=- 去分母得( ). A .2-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7 C .24-4(2x -4)=-(x -7)D .12-4x +4=-x +79.下面说法中正确的是( )A .若104x +=,则x+1=4 B .若ax =ay ,则x =y C .若x =y ,则x 2=y 2D .若﹣2x =5,则x =5+210.一元一次方程7x =﹣3(x+5)的解是( )A .12B .32C .﹣23D .﹣32二、填空题11.将方程x+3y=8变形为用含y 的式子表示x ,那么x= 12.如果x=-1是方程3kx -2k=8的解,则k= . 13.若x=2是方程2a ﹣3x=6的解,则a 的值是 .14.《诗经》是我国第一部诗歌总集,共分为《风》《雅》《颂》三部分.其中《颂》有40篇,比《风》.的篇数少34,则《风》有 篇. 三、解答题15.据北京市交通委介绍,兴延高速公路将服务于2019年延庆世园会及2022年冬奥会.兴延高速南起西北六环双横立交,北至延庆京藏高速营城子立交收费站以北,昌平境内约31千米,延庆境内约11千米,全程的总造价约为159亿元;由于延庆段道路多穿过山区,造价比昌平段每千米的平均造价多3亿元,求延庆段和昌平段的高速公路每千米的平均造价各是多少亿元?16.(盈利问题)某商场新进一批同型号的电脑,按进价提高40%标价,此商场为了促销,又对该电脑打8折销售,每台电脑仍可盈利420元,那么该型号电脑每台进价为多少元.17.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16. (1)求(﹣2)☆3的值;(2)若(12a +☆3)☆(﹣12)=8,求a 的值; (3)若2☆x=m ,(14x )☆3=n (其中x 为有理数),试比较m ,n 的大小.18.已知4a ﹣1与﹣(a+14)互为相反数,求a 的值.四、计算题19.解方程(1)312732x x -+=+ (2)122(21)3(1)x x -+=+ (3)2(3)7636x x x --+=- 五、综合题20.某超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.价格\类型 A 型 B 型 进价(元/只) 30 70 标价(元/只)50100(1)这两种计算器各购进多少只?(2)若A 型计算器按标价的9折出售,B 型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元?21.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物. (1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?为什么?小张能节省多少元钱? (3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.对a ,b ,c ,d 规定运算a b ad bc c d=-.(1)请计算a a ba 2b a 2b++-.(2)若x 1x 210x 2x 1++=-+,求x 的值.23.下表是三种电话计费方式:月使用费(元)主叫限定时间 (分钟)主叫超时收费(元/分钟)被叫方式一 18 60 0.2 免费 方式二 28 120 0.2 免费 方式三482400.2免费说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费. 设一个月内主叫通话 t 分钟( t 为正整数).(1)当 90t = 时,按方式一计费为 元;按方式二计费为 元.(2)当 120240t ≤≤ 时,是否存在某一时间 t ,使方式二与方式三的计费结果相等?若存在,请求出对应的值,若不存在,请说明理由.(3)当 90180t ≤≤ 时,哪一种收费方式最省钱?请说明理由.答案解析部分1.【答案】B【解析】【解答】A 、是二元一次方程,故错误;B 、是一元一次方程,故正确;C 、是分式方程,故错误;D 、是一元二次方程,故错误; 故答案为:B.【分析】根据一元一次方程的定义“含有一个未知数且未知数的最高次数是1的整式方程叫作一元一次方程”即可判断求解.2.【答案】D【解析】【解答】解:A 、由567x x +=-得675x x -=--,故选项错误,不符合题意;B 、由2(1)3x --=得223x -+=,故选项错误,不符合题意;C 、由310.7x -=得103017x -=,故选项错误,不符合题意; D 、由139322x x +=--得212x =-,故选项正确,符合题意.故答案为:D.【分析】根据等式的性质,在方程的两边同时加上“-6x-5”等式依然成立,据此判断A ;根据去括号法则“括号前是负号,去掉括号和负号,括号里的每一项都要变号;括号前面是正号,去掉括号和正号,括号里的每一项都不变号,括号前的数要与括号里的每一项都要相乘”可判断B ;根据分数的性质,在分数的分子、分母中分别乘以10,分数的大小不变可判断C ;根据等式的性质,在方程的两边同时加上“32x-9”等式依然成立,据此判断D.3.【答案】C【解析】【分析】根据一元一次方程的定义即可得到关于a 的方程,解出即可。

(完整版)第三章一元一次方程单元测试题及答案,推荐文档

(完整版)第三章一元一次方程单元测试题及答案,推荐文档

第三章一元一次方程 单元测试题一、 选择题(每小题3分,共36分)1.下列等式中是一元一次方程的是( )A .S=21ab B. x -y =0 C.x =0 D .321+x =1 2.已知方程(m +1)x ∣m ∣+3=0是关于x 的一元一次方程,则m 的值是( )A.±1B.1C.-1D.0或13.下列解方程过程中,变形正确的是( )A.由2x -1=3得2x =3-1 B.由4x +1=1.013.0+x +1.2得4x +1=1103+x +12 C.由-75x =76得x =-7675 D.由3x -2x =1得2x -3x =6 4.已知x =-3是方程k (x +4)-2k -x =5的解,则k 的值是( )A.-2 B.2 C.3 D.55.若代数式x -31x +的值是2,则x 的值是 ( ) (A)0.75 (B)1.75 (C)1.5 (D) 3.56.方程2x -6=0的解是( )A.3 B.-3 C.±3D.31 7.若代数式3a 4b x 2与0.2b 13-x a 4是同类项,则x 的值是( ) A.21 B.1 C.31 D.0 8. 甲数比乙数的41还多1,设甲数为x ,则乙数可表示为 ( ) A.141+x B.14-x C.)1(4-x D. )1(4+x 9.初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是( )A.164B.178C.168D.17410.设P=2y -2,Q=2y +3,且3P-Q=1,则y 的值是( )A. 0.4B. 2.5C. -0.4D. -2.511.方程2-67342--=-x x 去分母得 ( ) A .2-2(2x -4)=-(x -7) B.12-2(2x -4)=-x -7C.12-2(2x -4)=-(x -7)D.以上答案均不对12.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40%B.20% C25% D.15%二、填空题(每小题3分,共24分)13.一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程________________.14.在公式中v =v 0+at ,已知v =15,v 0=5,t =4,则a =_____.15.关于x 的两个方程5x -3=4x 与ax -12=0的解相同,则a =_______.16.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a +b )x 2+3cd•x -p 2=0的解为________.17.已知轮船逆水前进的速度为m 千米/时,水流速度为2千米/时,则轮船在静水中的速度 是__________.18.我校球类联赛期间买回排球和足球共16个,花去900元钱,已知排球每个42元,足球每个80元,则排球买了________个.19.三个连续奇数的和是75,这三个数分别是__________________.20.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________.三、解答题(共60分)21.解下列方程(4分⨯6=24分)(1)x x 524-=- (2)111223x x -=+(3)432543x x -=- (4) 22836x x -=+(5)32[23(141-x )-421]=x +2 (6) 3.02.03.0255.09.08.0-++=+x x x22(5分).已知x=-2是方程2x-∣k-1∣=-6的解,求k的值。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。

A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。

5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。

三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。

7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。

四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。

如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。

7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。

8. 解:设需要 \( x \) 天完成。

第五章一元一次方程(单元重点综合测试)(原卷版)

第五章一元一次方程(单元重点综合测试)(原卷版)

第五章一元一次方程(单元重点综合测试)时间:120分分数:120分一、单项选择题(每题3分,共12题,共计36分)1.(2022秋•白云区期末)下列方程为一元一次方程的是()A.y+3=0B.x+2y=3C.x2=2x D.+y=22.(2023春•南关区校级月考)已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc+5D.a=3.(2023春•江北区期中)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.54.(2023春•兴隆县期中)解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x5.(2022秋•江北区校级期末)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x6.(2023秋•南岗区校级月考)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣27.(2023春•株洲期中)方程2x﹣1=3x+2的解为()A.x=1B.x=﹣1C.x=3D.x=﹣38.(2023•龙川县校级开学)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=9.(2022秋•宁波期末)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=10.(2023秋•南岗区校级月考)某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元11.(2022秋•长寿区期末)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④12.(2022秋•广阳区校级期末)为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各班领取:第一班领取全部的,第二班领取100棵和余下的,第三班领取200棵和余下的,第四班领取300棵和余下的…,最后树苗全部被领完,且各班领取的树苗相等,则树苗总棵数为()A.6400B.8100C.9000D.4900二、填空题(每题2分,共6题,共计12分)13.(2022秋•达川区校级期末)已知x=3是方程ax﹣6=a+10的解,则a=.14.(2022秋•河池期末)若m+1与﹣2互为相反数,则m的值为.15.(2023秋•道里区校级月考)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.16.(2023春•衡南县期末)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为元.17.(2023•思茅区校级开学)设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为.18.(2022秋•新化县期末)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、综合题(共8题,共计72分)19.(8分)(2022秋•渠县校级期末)解方程:﹣=1.20.(8分)(2023•雁塔区校级模拟)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.(8分)(2022秋•岳阳县期末)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?22.(8分)(2023秋•南岗区校级月考)整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?23.(10分)(2022秋•唐河县期末)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.24.(10分)(2022秋•攸县期末)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)25.(10分)(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.26.(10分(2022秋•汝城县期末)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.。

第3章《一元一次方程》单元测试卷(附答案)

第3章《一元一次方程》单元测试卷(附答案)

《一元一次方程》单元测试卷第Ⅰ卷(选择题)一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.24.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=26.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.57.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶第Ⅱ卷(非选择题)二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了次.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为.三.解答题(共6小题)17.解方程:﹣=1.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:9(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?人教版数学七年级(上)第3章《一元一次方程》单元测试卷参考答案与试题解析一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数【解答】解:已知(m﹣n)x=m﹣n,根据等式的性质可得x=1,则m﹣n≠0,那么m、n必须满足的条件是:m≠n.故选:C.2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)【解答】解:A、整理后,符合一元一次方程的定义,故此选项正确;B、含有两个未知数,故不是一元一次方程,故此选项错误;C、分母中含有未知数,是分式方程,故此选项错误;D、整理后,不含有未知数,故不是一元一次方程,故此选项错误.故选:A.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.4.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.6.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶【解答】解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣(瓶),所以第三天喝了{(x﹣x﹣0.5)﹣}+0.5(瓶),(x+0.5)++ {(x﹣x﹣0.5)﹣}+0.5=x,解得x=7.故选:C.二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了4次.【解答】解:设路程为x,相向而行相遇时间=,相背而行相遇时间=;最后相遇在A点时相遇次数:≈4(次).答:从出发到结束他们共相遇了4次.故答案为:4.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是1043.【解答】解:设第一个数是x,则第2个数是2x,第3个数是4x,第4个数是8x,第5个数是16x,依题意有x+2x+4x+8x+16x=2018,解得x=65,∵x为整数,x最大取65,31x=31×65=2015,8x+1=8×65+1=521,521×2+1=1043.答:最后一个数的最小可能值是1043.故答案为:1043.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是30米.【解答】解: +×=,1﹣=,设自动扶梯的长度是x米,依题意有(﹣)x=(0.3﹣0.2)×(27+3),解得x=27.答:自动扶梯的长度是30米.故答案为:30米.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为(50++)x=50.【解答】解:设三人一共用了x天完成织布任务,则可列方程为:(50++)x=50.故答案是:(50++)x=50.三.解答题(共6小题)17.解方程:﹣=1.【解答】解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?【解答】解:设购买了桂花树苗x棵,根据题意,得:5(x+11﹣1)=6(x﹣1),解得:x=56.答:购买了桂花树苗56棵.20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【解答】解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?【解答】解:(1)设每月主叫时间为x分钟.①当0≤x≤200时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同;②当200<x≤400时,计费方式一收费58+0.2(x﹣200)=0.2x+18,计费方式二收费88元,∴0.2x+18=88,解得:x=350,∴当主叫时间为350min时,两种方式收费相同.(2)当x>400时,计费方式二收费88+0.25(x﹣400)=0.25x﹣12.根据题意得:0.2x+18=0.25x﹣12,解得:x=600,又∵0.25>0.2,∴当400<x<600时,选择计费方式二省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一省钱.22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:根据以上材料回答问题:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?【解答】解:(1)设经过x小时两车相遇根据题意列方程得90x+60x=300解得:x=2答:两车2小时相遇.(2)小轿车到达目的地,碳足迹为22.5×3=67.5(Kg)公共汽车分别到达目的地碳中和树木棵数为:0.005×3=0.015(棵)(3)通过观察得出,我们应尽量选择公共交通出行,有利于环保.。

一元一次方程检测卷及答案

一元一次方程检测卷及答案

《一元一次方程》单元检测题姓名一、选择题(每小题4分,共40分)1、下列方程中,是一元一次方程的是( )(A )243x x -= (B );0=x (C );12=+y x (D ).11xx =- 2、下列方程中,解是2x =的是 ( )A .2 4.x =B .1 4.2x =C .4 2.x =D .12.4x =3、 方程2x -1=5的解是 ( ) (A ).2=x (B ). 2-=x (C ).3=x ( D ). =x -34、方程042=-+a x 的解是2-=x ,则a 等于( )(A );8- (B );0 (C );2 (D ).8 5、解方程2631xx =+-,去分母,得( ) (A );331x x =-- (B );336x x =-- (C );336x x =+- (D ).331x x =+- 6、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=t (D )方程15.02.01=--xx 化成101010125x x--=7、 天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x 克,可列出方程为( )(A )2x+10=6x+5. (B )2x-10=6x-5. (C )2x+10=6x-5. (D )2x-10=6x+5.8、一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )(A).a 米 (B).(a+60)米 ( C).60a 米 (D).60米9、.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了2天未完成,剩下的工作量由乙完成,还需的天数为 ( )(A).1 天 (B)2 天 (C)3 天 (D)4天 10、 小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元 二、填空题(每小题4分,共24分)11、某数的3倍比它的一半大2,若设某数为y ,则列方程为____. 12、当=x ___时,代数式24+x 与93-x 的值互为相反数. 13、如果06312=+--a x是一元一次方程,那么=a ,方程的解为=x 。

一元一次方程单元测试卷pdf

一元一次方程单元测试卷pdf

一元一次方程单元测试卷pdf一、选择题(每题3分,共15分)1.下列方程中,是一元一次方程的是()A. x2−4=0B. 2x+y=5C. x+3=7D. x1=22.方程3x−5=16 的解是()A. x=3B. x=5C. x=7D. x=213.若方程2x+a=10 的解是x=3,则a的值为()A. 2B. 3C. 4D. 54.下列变形中,正确的是()A. 由7x=4 得x=74B. 由5x−3=2x得2x=3C. 由x+8=5−x得2x=−3D. 由−3x=9 得x=−25.某数的3倍比它的2倍多5,设这个数为x,则列出的方程是()A. 3x−2x=5B. 3x+2x=5C. 3x=2x+5D. 2x=3x+5二、填空题(每题3分,共15分)6.方程4x−7=1 的解是x= _______。

7.若2x−3=13,则x+5= _______。

8.已知方程3x+5=14 的解也是关于x的方程6x+k=30 的解,则k= _______。

9.已知y=1 是方程3−2y=y−a的解,则a= _______。

10.某商品原价为x元,降价10%后的价格为 _______ 元。

三、解答题(每题10分,共70分)11.解方程:5x+3=2x−9。

12.解方程:32x−1=1−2x−3。

13.已知方程3x+2=11 的解也是方程3x+8=2(x+a) 的解,求a的值。

14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?15.某水果店进了某种水果1t,进价是7元/kg,售价为10元/kg,销售了一半以后,为了尽快售完,准备降价出售。

如果要使总利润不低于2000元,那么余下的水果最低可以按多少元/kg出售?(只列不等式,不求解)16.小明计划在本周星期六、日两天到爸爸单位参观学习,周六早上去,周日晚上回,若来回都坐公共汽车,则需花车费4元;若来回都坐出租车,则需车费12元;已知出租车的车费比公共汽车的车费每趟多3元,问:公共汽车和出租车的车费各是多少元/趟?17.某商店经销一种品牌的空调,其中某一型号的空调每台进价为m元,商店将进价提高30%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号空调的零售价为每台多少元?。

第五章一元一次方程(单元测试)七年级数学上册同步精品课堂(冀教版2024)[含答案]

第五章一元一次方程(单元测试)七年级数学上册同步精品课堂(冀教版2024)[含答案]

第五章 一元一次方程(单元测试)(试卷满分120分,考试用时120分钟)注意事项:本试卷满分100分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.3x =是下列方程( )的解.A .390x +=B .5124x x -=+C .112x x +=D .112x -=2.下列方程中,一元一次方程的是( )A .1y =B .37x +>C .431x x =-D .34a -3.三个连续偶数的和是3a ,最大的一个偶数是( )A .aB .2a +C .4a +D .2a4.如果3-是3a -的相反数,那么a 的值是( )A .0B .3C .6D .6-5.已知关于x 的方程322x a +-=的解为5x =,则a 的值为( )A .1B .11-C .3-D .13-6.若2x =-是关于x 的方程32x a +=的解,则a 的值为( )A .8-B .10C .8D .127.在()48613a -¸这个式子中,当a 是多少时,这个式子的结果是零( )A .9B .8C .78.已知:2321353a b c ´=´=¸,且a ,b ,c 都不等于0,则a ,b ,c 中最小的数是( )A .aB .bC .cD .无法确定9.某同学出生时父亲26岁,现在父亲的年龄是该同学年龄的3倍,则现在父亲的年龄是( )A .30岁B .36岁C .39岁D .48岁10.“ ”表示一种运算,已知232349=++= ,727815=+= ,3534567=++++ 25=,按此规则,若860n = ,则n 的值为( )A .3B .4C .5D .611.把方程 2113332x x x -++=-去分母正确的是( )A .()()32131x x x +-=-+B .()()182211831x x x +-=-+C .()()18221181x x x +-=-+D .()()3221331x x x +-=-+12.根据如图所示的程序计算,若输入x 的值是1-时,输出的值是5.若输入x 的值是3,则输出值为( )A .13B .0C .1-D .113.小邱同学做这样一道题“计算()6-+■”,其中“■”是被墨水污染看不清的一个数,他翻看了后面的答案,得知该题的答案是15,那么“■”表示的数是( )A .9B .9或21-C .21-D .9-或2114.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( )A .41404050x +=+B .41404050x +=´C .41404050x x ++=D .4441404050--++=x x 15.【简单方程】某校图书馆买来文艺书和科技书共1500本,其中买来的文艺书本数比买来的科技书的2倍少36本,买来的科技书有多少本?如果设买来的科技书有x 本,那么下列方程正确的是( )A .2150036x x +=-B .2361500x -=C .21500x x +=D .2361500x x +-=16.如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验,已知支点到直尺左右两端的距离分别为a ,b ,通过实验可得如下结论:左端棋子数a ´=右端棋子数b ´,直尺就能平衡,现在已知10a =厘米并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡( )A .8枚B .4枚C .2枚D .1枚二、填空题(本大题共4个小题,共12分;17~18小题各2分,19~20小题各4分,每空2分,答案写在答题卡上)17.若代数式12x -与65的值互为倒数,则x = .18.已知2331m n -=+,则23m n -= .19.某厂会计发现现金多了273.6元,经查账发现原来是一笔支出款的小数点错了一位,则这笔款是 元.20.如图,在一张普通的月历中,任意圈出一竖列上的相邻的三个数,用方程的思想来研究,中间日期数为 时,三个日期数之和为69.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)21.已知关于x 的方程()1213m m x m -+-=+∣∣是一元一次方程,求m 的值.22.检验下列方程后面括号内所列各数是否为相应方程的解:(1)5118x x +=-;3(,3)2-(2)2291341y y y ---=-()()().10,10-() 23.一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少元?设这件衬衫的成本为x 元(1)填写表格(用含x 的代数式表示):成本/元标价/元售价/元x(2)根据相等关系列出方程.24.阅读下列材料:让我们来定义一种运算:a b ad bc c d =-,例如:2325341012245=´-´=-=-,再如:24214x x =-.按照这种运算的规定,请解答下列问题.(1)1321=-______(只填最后结果);(2)求x 的值,使0323x x -=(写出解题过程).25.一项工程,由甲、乙两个工程队合作完成.已知甲工程队单独完成需要4天,乙工程队单独完成需要6天.(1)甲、乙合作需要______天完成;(2)若先由乙工程队单独做1天,再由甲、乙两队合作完成.问还需几天可以完成这项工程?1.B【分析】本题主要考查了一元一次方程的解,将3x =分别代入四个选项,能使得方程左边等于右边即为方程的解.【详解】解:把3x =代入,A 、左边33918=´+=,右边0=,因此不是的解,故不符合题意;B 、左边53114´-=,右边24314+´=,因此是的解,故符合题意;C 、左边153122´+=,右边3=,因此不是的解,故不符合题意;D 、左边312-=,右边12=,因此不是的解,故不符合题意;故选:B .2.A【分析】本题考查了一元一次方程的定义,只含有一个未知数、未知数的最高次数为1且两边都为整式的等式叫做一元一次方程.根据一元一次方程的定义逐项判断即可.【详解】解:A .1y =是一元一次方程,符合题意;B . 37x +>不是等式,不是一元一次方程,不符合题意;C . 431x x =-不是整式方程,不是一元一次方程,不符合题意;D .34a -不是等式,不是一元二次方程,不符合题意;故选:A .3.B【分析】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.先设最大的偶数,再根据三个连续的偶数的和是3a ,即可列出相应的方程,然后求解即可.【详解】解:设最大的偶数为x ,则另为两个偶数为2x -,4x -,由题意可得:()()423x x x a -+-+=,解得2x a =+,故选:B .4.C【分析】本题主要考查相反数的概念及性质:如果a 和b 互为相反数.则0a b +=.根据相反数的性质,互为相反数的两个数的和为0,得出330a -+-=,解方程求出a 的值.【详解】解:∵3-是3a -的相反数,∴330a -+-=,∴6a =,故选:C .5.B【分析】本题考查一元一次方程的解、解一元一次方程,将方程的解代入已知方程中求解即可.【详解】解:∵方程322x a +-=的解为5x =,∴3522a ´+-=,解得11a =-,故选:B .6.C【分析】本题考查了一元一次方程的解,解题的关键是理解方程的解,即为能使方程左右两边相等的未知数的值.根据方程解的定义,把2x =-代入方程32x a +=,,即可得到一个关于a 的方程,从而求得a 的值.【详解】解:把2x =-代入方程32x a +=,得()322a ´-+=,则8a =.故选:C .7.B【分析】本题考查了解一元一次方程,正确掌握一元一次方程的解的定义是解题的关键.根据题意列出方程()486130a -¸=,并求解即可.【详解】解:由题意得:()486130a -¸=,解得:8a =,故选:B .8.B【分析】本题考查了有理数乘除的应用,等式的性质,根据等式的性质可知:乘积相等,一个因数越大,另一个因数越小;先把除法化成乘法,比较数字因数的大小,再根据乘积相等,一个因数越大,另一个因数越小判断字母因数的大小即可.【详解】解:2321353a b c ´=´=¸Q ,23111352a b c \´=´=´,213<1<1325Q ,<<b c a \,\a ,b ,c 中最小的数是b ,故选:B .9.C【分析】本题考查一元一次方程的应用,设该同学现在的年龄是a 岁,根据题意列方程求解即可.【详解】解:设该同学现在的年龄是a 岁,根据题意,得326a a =+,解得13a =,33339a =´=,∴现在父亲的年龄是39岁,故选:C .10.B【分析】本题主要考查了数字类规律的探索,解一元一次方程,观察所给三个式子可得“ ”运算表示的是,从“ ”前面的数开始的连续的整数求和,“ ”后面的数表示的是有多少个整数求和,据此可得123456760n n n n n n n n ++++++++++++++=,解方程即可得到答案.【详解】解:232349=++= ,727815=+= ,3534567=++++ 25=,……,以此类推可知,“ ”运算表示的是,从“ ”前面的数开始的连续的整数求和,“ ”后面的数表示的是有多少个整数求和,∵860n = ,∴123456760n n n n n n n n ++++++++++++++=,∴4n =,故选:B .11.B【分析】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.根据题意可得将方程两边同时乘以6即可去掉分母,据此进一步计算判断即可.【详解】解:2113332x x x -++=-,去分母,得:()()182211831x x x +-=-+,故选:B .12.B【分析】本题考查代数式求值、一元一次方程的应用,先根据流程图,将1x =-,5y =代入2y x b =-+求得b ,再将3x =代入3x b y -+=求解即可.【详解】解:由题意,∵12-<,∴将1x =-,5y =代入2y x b =-+中,得()521b =-´-+,解得3b =,∵32>,∴3x =代入33x y -+=中,得3303y -+==,故选:B .13.D【分析】本题考查了绝对值的意义,一元一次方程的应用,掌握绝对值的意义是解题的关键.根据绝对值的意义,可得绝对值里面式子等于15±,继而根据有理数的减法进行计算即可求解.【详解】解:∵()5|61|-+=■,∴()615-+=±■,∴()1569=---=-■或()15621=--=■.故选:D .14.D【分析】本题考查了一元一次方程的应用;关系式为:甲4天的工作量+甲乙合作(40)x -天的工作量1=,把相关数值代入即可求解.找到工作量之间的等量关系解决本题的关键.【详解】解:甲4天的工作量为:440;甲乙合作其余天数的工作量为:444050x x --+,\可列方程为:4441404050--++=x x ,故选:D .15.D 【分析】根据题意,文艺书的本数+科技书的本数1500=本,又知买来的文艺书本数比买来的科技书的2倍少36本,设买来的科技书有x 本,则买来文艺书有(236x -)本,据此列方程答.此题属于含有两个未知数的问题,关键是找出等量关系,设其中一个数未知数为x ,另一个未知数用含有字母的式子表示,据此列方程解答.【详解】解:设买来的科技书有x 本,则买来文艺书有()236x -本,则列方程为2361500x x +-=故选D .16.C【分析】本题考查了一元一次方程的应用,根据直尺平衡可得()4103010b ´=-,解方程即可求解.【详解】解:根据题意,得()4103010b ´=-,解得2b =,即右端需放2枚棋子,故选:C .17.83【分析】本题考查了倒数的定义,解一元一次方程,根据互为倒数的两个数的乘积为1进行列式,结合等式的性质进行计算,即可作答.【详解】解:∵代数式12x -与65的值互为倒数,∴16125x -´=,∴66110x -=,∴去分母得6610x -=,∴移项得616x =,∴系数化1,得83x =,故答案为:83.18.4【分析】本题考查了等式的性质,根据等式两边同时加上或者减去同一个数,等式仍成立,据此即可作答.【详解】解:∵2331m n -=+,∴等式两边同时加上3,得234m n =+,∴等式两边同时减去上3n ,得234m n -=,故答案为:4.19.30.4【分析】本题考查一元一次方程的应用,设笔款是x 元,根据现金多了273.6元列方程即可.【详解】解:设笔款是x 元,则现在数量为10x (元),由题意可得,10273.6x x -=,解得30.4x =,答:这笔款是30.4元,故答案为:30.4.20.23【分析】本题主要考查一元一次方程的应用,解题的关键是理解题意;设中间日期为x ,则跟它相邻的两个数分别为7x -和7x +,然后根据题意可列方程进行求解.【详解】解:设中间日期为x ,则跟它相邻的两个数分别为7x -和7x +,由题意得:7769x x x -+++=解得:23x =;故答案为:23.21.2【分析】本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,列出方程与不等式,求解即可.【详解】解:由题意,得11m -=∣∣,且20m +¹,所以2m =±,且2m ¹-,所以2m =.22.(1)32x =-不是方程的解,3x =是方程的解;(2)10y =-是方程的解;10y =不是方程的解.【分析】(1)根据方程解的定义,把数分别代入方程左、右两边的代数式,能使得左右两边相等的即为方程的解;(2)根据方程解的定义,把数分别代入方程左、右两边的代数式,能使得左右两边相等的即为方程的解;【详解】(1)把32x =-代入原方程;左边35()1132816´-+==-,右边35122=--=-.∵¹左边右边,∴32x =-不是该方程的解.把3x =代入方程,得左边53128´+==,右边312=-=.∵=左边右边,∴3x =是该方程的解;(2)把10y =-代入原方程.左边2(102)9(110)123=---+=-,右边34101123[]=´´--=-(),∵=左边右边,∴10y =-是原方程的解;把10y =代入原方程.左边2(102)9(110)97=---=,右边3(4101)117=´´-=,∵¹左边右边,∴10y =不是原方程的解.【点睛】本题考查方程解的定义,理解方程解的定义是解题的关键.23.(1)标价:60x + 售价:0.848x +(2)0.84824x x +-=【分析】此题考查了一元一次方程的应用,代数式,理解成本价、标价、销售价,以及利润、成本、售价之间的关系是解本题的关键.(1)设这件衬衫的成本是x 元,根据题意:标价=成本价60+,售价=标价0.8´,由此即可解决问题.(2)设这件衬衫的成本是x 元,根据:利润=销售价-成本,即可列出方程.【详解】(1)解:根据题意可得:标价为:60x +,售价为:()0.8600.848x x +=+;(2)根据题意可得:0.84824x x +-=.24.(1)7(2)9x =【分析】此题考查了一元一次方程与有理数的混合运算,解题的关键是理解题意,将所给式子转换为正常运算.(1)首先根据题意可得()21121133´-=´--,则可求得答案;(2)由0323x x -=,根据题意可得一元一次方程:()2330x x --=,解此方程即可求得答案.【详解】(1)解:()11321671321´-´-=+==-;(2)解:Q 0323x x -=, ()2330x x \--=,2390x x \-+=,9x \-=-,解得:9x =.25.(1)125(2)2天【分析】本题考查了一元一次方程的应用,涉及工作总量、工作时间、工作效率等知识内容,正确掌握相关性质内容是解题的关键.(1)设甲乙合作需要x 天完成,因为甲工程队单独完成需要4天,乙工程队单独完成需要6天,则11146x æö+=ç÷èø,解出即可作答.(2)依题意,设还需要y 天,因为乙工程队单独做1天,再由甲、乙两队合作完成,所以1164y y ++=,解出即可作答.【详解】(1)解:设甲乙合作需要x 天完成,依题意:11146x æö+=ç÷èø,解得125x = ,所以需要125天;(2)解:设还需要y 天:依题意,1164y y ++=,解得2y =,故还需要2天.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。

接着,将式子进行计算,得到2x = 4。

最后,将方程两边同时除以2,得到x = 2。

答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。

接着,将常数项移动到等号的右边,得到4x = 16 + 20。

最后,将方程两边同时除以4,得到x = 9。

答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。

接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。

接着,将方程两边同时减去5x,得到x - 1 = 14。

最后,将方程右边的常数项移动到等号左边,得到x = 15。

答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。

接着,将方程两边同时减去4x,得到x = 2 - 3。

最后,将右边的常数项进行计算,并化简方程,得到x = -1。

答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程单元试卷1
出的四个选项中,只有一项是符合题目要求的)
1、下列方程①x-2=x
3,②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,⑥x x 61
312=+中是一元一次方程的有( ).
A .2个
B .3个
C .4个
D .5个 2、解方程3x +4=4x -5时,移项正确的是( )
A .3x -4x =-5-4
B .3x +4x =4-5
C .3x +4x =4+5 3、把方程
x=1变形为x=2,其依据是( )
A 、分数的基本性质
B 、等式的性质1
C 、等式的性质2
D 、解方程中的移项 4、方程2x ﹣1=3x+2的解为( )
A 、x=1
B 、x=﹣1
C 、x=3
D 、x=﹣3 5、下列运用等式的性质对等式进行的变形中,正确的是( ).
A .若x
y ,则5
5x y B .若a b ,则ac bc
C .若
a b
c
c ,则23a b D .若x y ,则x
y a a
6、小李在解方程513a x -=(x 为未知数)时,误将x -看作x +, 得方程的解为2x =-,则原方程的解为( ). (A )3x =- (B )0x = (C )2x = (D )1x =
7、 三个连续整数的和为54,则这三个数为( )
A. 15,16,17
B. 16,17,18
C. 7,18,19
D.18,19,20
8、已知甲有图书80本,乙有图书48本,要使甲、乙两人的图书一样多, 应从甲调到乙多少本图书?若设应调x 本,则所列方程正确的是( ). A. 80+x=48-x B. 80-x=48 C. 48+x=80-x D. 48+x=80 9、已知方程2 x -3=3 x -2+k 的解是x =2,则k 的值为( )
A .-1
B .-2
C .-3
D .-4
10、在一张日历表中,任意圈出一个竖列上相邻的三个数,它们的和不可能是( )
A .60
B .39
C .40
D .57
二、填空题(本大题共5个小题,每小题3分,共15分.把答案写在题中横线上)
11、方程434x x =-的解是_______ . 12、若1-a 与2a 互为相反数,则a = . 13、已知x=1是方程x+2m=7的解,则m=________. 14、若︱x -y ︱+(y +1)2=0,则x 2+y 2=__________。

15、在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5= -2×1+3×5=13,则方程x ⊕4=0的解为________. 三、解答题(共75分)
16、解下列方程(每小题5分,共40分)
(1)13
2
-=x (2)76163x x +=-
(3) y y 3942-=- (4)x x 45.15.35+-=+
题号 一 二 三 总分 分数
(5)
x x 5
2
41852-=- (6)3221+=-x x
(7)2131-=-x (8)4
5
4436+=-y y
17、(8分)王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg 。

采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两 个的樱桃一样多。

他们采摘用了多少时间?
18、(9分)A,B 两地相距1120km ,甲、乙两车从A,B 两地同时出发, 两车的速度比为7:9,7小时后相遇,求甲、乙两车的速度分别是多少? 19、(9分)把一堆桃子分给一群猴子,每个猴子分3个,则剩余20个
桃子,每个猴子分4个,则差25个桃子。

问共有多少个桃子?多少只猴子? 20、(9分)小明、小华、小丽三个小朋友用积木搭长城,三人用的积木 数量之比为1:3:2,小华用的积木比小丽用的多11块,请你帮小朋友 算算共有多少块积木?

4。

相关文档
最新文档