高中数学:高考数学试题分类汇编 计数原理
【数学】2012新题分类汇编:计数原理(高考真题+模拟新题)
计数原理(高考真题+模拟新题)课标理数12.J2[2011·北京卷] 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)课标理数12.J2[2011·北京卷] 14【解析】若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2222,3333”这两个数,故共有16-2=14个满足要求的四位数.大纲理数7.J2[2011·全国卷] 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种大纲理数7.J2[2011·全国卷] B【解析】若取出1本画册,3本集邮册,有C14种赠送方法;若取出2本画册,2本集邮册,有C24种赠送方法,则不同的赠送方法有C14+C24=10种,故选B.大纲文数9.J2[2011·全国卷] 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种大纲文数9.J2[2011·全国卷] B【解析】从4位同学中选出2人有C24种方法,另外2位同学每人有2种选法,故不同的选法共有C24×2×2=24种,故选B.课标理数15.J2[2011·湖北卷] 给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如图1-3所示:图1-3由此推断,当n=6时,黑色正方形互不相邻....的着色方案共有________种,至少有两个黑色正方形相邻..的着色方案共有________种.(结果用数值表示)课标理数15.J2[2011·湖北卷] 2143【解析】(1)以黑色正方形的个数分类:①若有3块黑色正方形,则有C34=4种;②若有2块黑色正方形,则有C25=10种;③若有1块黑色正方形,则有C16=6种;④若无黑色正方形,则有1种.所以共有4+10+6+1=21种.(2)至少有2块黑色相邻包括:有2块黑色相邻,有3块黑色相邻,有4块黑色相邻,有5块黑色相邻,有6块黑色相邻等几种情况.①有2块黑色正方形相邻,有(C23+C13)+A24+C15=23种;②有3块黑色正方形相邻,有C12+A23+C14=12种;③有4块黑色正方形相邻,有C12+C13=5种;④有5块黑色正方形相邻,有C12=2种;⑤有6块黑色正方形相邻,有1种.故共有23+12+5+2+1=43种.课标理数12.J3[2011·安徽卷] 设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.课标理数12.J3[2011·安徽卷] 0【解析】a10,a11分别是含x10和x11项的系数,所以a10=-C1121,a11=C1021,所以a10+a11=-C1121+C1021=0.大纲理数13.J3[2011·全国卷] (1-x)20的二项展开式中,x的系数与x9的系数之差为________.大纲理数13.J3[2011·全国卷] 0 【解析】 展开式的第r +1项为C r 20(-x )r =C r 20(-1)r x r 2,x 的系数为C 220,x 9的系数为C 1820,则x 的系数与x 9的系数之差为0.大纲文数13.J3[2011·全国卷] (1-x )10的二项展开式中,x 的系数与x 9的系数之差为________.大纲文数13.J3[2011·全国卷] 0 【解析】 展开式的第r +1项为C r 10(-x )r =C r 10(-1)r x r,x 的系数为-C 110,x 9的系数为-C 910,则x 的系数与x 9的系数之差为0.课标理数6.J3[2011·福建卷] (1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10课标理数6.J3[2011·福建卷] B 【解析】 因为(1+2x )5的通项为T r +1=C r 5(2x )r =2r C r 5x r,令r =2,则2r C r 5=22C 25=4×5×42=40,即x 2的系数等于40,故选B.课标理数10.J3[2011·广东卷] x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答) 课标理数10.J3[2011·广东卷] 84 【解析】 先求⎝⎛⎭⎫x -2x 7中x 3的系数,由于T r +1=C r 7x 7-r ⎝⎛⎭⎫-2x r =C r 7x 7-2r (-2)r ,所以7-2r =3,所以r =2,即x 4的系数为C 27(-2)2=84.课标理数11.J3[2011·湖北卷] ⎝⎛⎭⎫x -13x 18的展开式中含x 15的项的系数为________.(结果用数值表示)课标理数11.J3[2011·湖北卷] 17 【解析】 二项展开式的通项为T r +1=C r 18x 18-r ⎝⎛⎭⎫-13x r=()-1r ⎝⎛⎭⎫13r C r 18·x 18-32r .令18-32r =15,解得r =2.所以展开式中含x 15的项的系数为()-12⎝⎛⎭⎫132C 218=17.课标文数12.J3[2011·湖北卷] ⎝⎛⎭⎫x -13x 18的展开式中含x 15的项的系数为________.(结果用数值表示)课标文数12.J3[2011·湖北卷] 17 【解析】 二项展开式的通项为T r +1=C r 18x 18-r ⎝⎛⎭⎫-13x r=()-1r ⎝⎛⎭⎫13r C r 18·x 18-32r .令18-32r =15,解得r =2.所以展开式中含x 15的项的系数为()-12⎝⎛⎭⎫132C 218=17.课标理数8.J3[2011·课标全国卷] ⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40课标理数8.J3[2011·课标全国卷] D 【解析】 令x =1得各项系数和为⎝⎛⎭⎫1+a1(2-1)5=(1+a )=2, ∴a =1,所以原式变为⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5,⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(2x )r ⎝⎛⎭⎫-1x 5-r =(-1)5-r 2r C r 5x 2r -5.令2r -5=-1,得r =2; 令2r -5=1,得r =3,所以常数项为(-1)5-222C 25+(-1)5-323C 35=(-4+8)C 25=40.课标理数14.J3[2011·山东卷] 若⎝⎛⎭⎫x -ax 26展开式的常数项为60,则常数a 的值为________.课标理数14.J3[2011·山东卷] 4 【解析】 T r +1=C r 6x 6-r ⎝⎛⎭⎫-a x 2r =C r 6x 6-r (-1)r a r 2x -2r =C r 6x 6-3r(-1)r a r 2,由6-3r =0,得r =2, 所以C 26a =60,所以a =4.课标理数4.J3[2011·陕西卷] (4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20课标理数4.J3[2011·陕西卷] C 【解析】 由T r +1=C r n a n -r b r 可知所求的通项为T r +1=C r 6(4x )6-r (-2-x )r =C r 6(-1)r (2x )12-3r ,要出现常数项,则r =4,则常数项为C 46(-1)4=15,故选C.大纲文数13.J3[2011·四川卷] (x +1)9的展开式中x 3的系数是________.(用数字作答) 大纲文数13.J3[2011·四川卷] 84 【解析】 本题主要考查二项展开式通项的应用. (x +1)9的展开式通项为T r +1=C r 9x 9-r,所以x 3的系数是C 69=9×8×73×2×1=84.课标理数5.J3[2011·天津卷] 在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( )A .-154 B.154 C .-38 D.38课标理数5.J3[2011·天津卷] C 【解析】 由二项式展开式得,T r +1=C r 6⎝⎛⎭⎫x 26-r ⎝⎛⎭⎫-2x r=()-1r 22r -6C r 6x 3-r ,令r =1,则x 2的系数为()-1·22×1-6C 16=-38.课标理数13.J3[2011·浙江卷] 设二项式⎝⎛⎭⎫x -ax 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.课标理数13.J3[2011·浙江卷] 2 【解析】 由题意得T r +1=C r 6x 6-r ⎝⎛⎭⎫-a x r =()-a r C r 6x 6-32r , ∴A =()-a 2C 26,B =()-a 4C 46. 又∵B =4A ,∴()-a 4C 46=4()-a 2C 26,解之得a 2=4. 又∵a >0,∴a =2.大纲理数4.J3[2011·重庆卷] (1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )A .6B .7C .8D .9大纲理数4.J3[2011·重庆卷] B 【解析】 由题意可得C 5n 35=C 6n 36,即C 5n =3C 6n ,即n !5!(n -5)!=3·n !6!(n -6)!,解得n =7.故选B.大纲文数11.J3[2011·重庆卷] (1+2x )6的展开式中x 4的系数是______.大纲文数11.J3[2011·重庆卷] 240 【解析】 ∵(1+2x )6的展开式中含x 4的项为C 46(2x )4=240x 4,∴展开式中x 4的系数是240.[2010·绵阳三诊] 某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、…、19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90[2011·安徽示范学校月考] 设集合A ={0,2,4},B ={1,3,5},分别从A 、B 中任取2个元素组成无重复数字的四位数,其中能被5整除的数共有( )A .24个B .48个C .64个D .116个[2011·四川树德中学模拟] (C 14x +C 24x 2+C 34x 3+C 44x 4)2的展开式的所有项的系数和为()A .64B .224C .225D .256[2011·汕头期末] 设a 为函数y =sin x +3cos x (x ∈R )的最大值,则二项式6a x x ⎛ ⎝的展开式中含x 2项的系数是( ) A .192 B .182C .-192D .-182[2011·德州一中模拟] 为落实素质教育,山东省德州一中拟从4个重点研究性课题和6个一般研究性课题中各选2个课题作为本年度该校启动的课题项目,若重点课题A 和一般课题B至少有一个被选中的不同选法种数是k ,那么二项式(1+kx 2)6的展开式中x 4的系数为__________.[2011·宁波八校联考] 将正方体ABCD-A1B1C1D1的各面涂色,任何相邻两个面不同色,现在有5种不同的颜色,并且涂好了过顶点A的3个面的颜色,那么其余的3个面的涂色方案共有__________种.[2011·宁波模拟] 若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于()A.-10B.-5C.5D.10。
专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
【题目来源】2020年高考数学课标Ⅲ卷理科·第14题
18.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
【答案】16
解析:方法一:直接法,1女2男,有 ,2女1男,有
【题目栏目】计数原理\二项式定理\二项式定理
【题目来源】2020年高考数学课标Ⅰ卷理科·第8题
5.(2019年高考数学课标Ⅲ卷理科·第4题) 的展开式中 的系数为()
A.12B.16C.20D.24
【答案】【答案】A
【解析】因为 ,所以 的系数为 ,故选A.
【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数,是常规考法。
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2017年高考数学课标Ⅲ卷理科·第4题
9.(2017年高考数学课标Ⅱ卷理科·第6题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
2013-2022十年全国高考数学真题分类汇编
专题11计数原理
一、选择题
1.(2020年新高考I卷(山东卷)·第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 安排方法共有()
A.120种B.90种
C.60种D.30种
【答案】C
现在可看成是3组同学分配到3个小区,分法有:
根据分步乘法原理,可得不同的安排方法 种
高考数学试题逐类透析——计数原理
精品基础教育教学资料,仅供参考,需要可下载使用!九、计数原理与古典概率(一)计数原理一、高考考什么?[考试说明]1. 理解分类加法计数原理和分步乘法计数原理.2. 了解排列、组合的概念,会用排列数公式、组合数公式.解决简单的实际问题[知识梳理] 1.排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。
2.组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01=!,01n C =. 3.排列数、组合数的性质:①m n mn n C C -=; ②111m m m n n n C C C ---=+;③; ④1121++++=++++r n r n r r r r r r C C C C C ; 4.解排列组合11k k n n kC nC --=问题的常用方法:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。
(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。
(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。
[全面解读]考试说明寥寥数语,仅需掌握两个原理,两个概念,但具体到题上却灵活多变,主要要解决几个数学模型:排数问题、排队问题、涂色问题,解题时要注意是有序的还是无序的,是相邻的还是互不相邻的,有没有特殊元素或特殊位置,这些注意到了,正确率就提高了。
高考数学试题分类汇编 计数原理.pdf
十四、计数原理 1.(重庆理4)的展开式中的系数相等,则n=A.6 B.7 C.8 D.9 【答案】B 2.(天津理5)在的二项展开式中,的系数为 A. B. C. D. 【答案】C 3.(四川理12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则 A. B. C. D. 【答案】D 基本事件:其中面积为的平行四边形的个数其中面积为的平行四边形的个数为其中面积为的平行四边形的个数其中面积为的平行四边形的个数其中面积为的平行四边形的个数;其中面积为的平行四边形的个数其中面积为的平行四边形的个数其中面积为的平行四边形的个数 4.(陕西理4)(x∈R)展开式中的常数项是 A.-20 B.-15C.15 D.20 【答案】C 5.(全国新课标理8)的展开式中各项系数的和为2,则该展开式中常数项为 (A)—40 (B)—20 (C)20 (D)40 【答案】D 6.(全国大纲理7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A.4种 B.10种 C.18种 D.20种 【答案】B 7.(福建理6)(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 【答案】B 8.(安徽理8)设集合则满足且的集合为 (A)57 (B)56 (C)49 (D)8 【答案】B 9.(安徽理12)设,则 . 【答案】0 10.(北京理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。
(用数字作答) 【答案】14 11.(浙江理13)设二项式(x-)6(a>0)的展开式中X的系数为A,常数项为B, 若B=4A,则a的值是 。
【答案】2 12.(山东理14)若展开式的常数项为60,则常数的值为 . 【答案】4 13.(广东理10)的展开式中,的系数是 (用数字作答) 【答案】84 14.(湖北理11)的展开式中含的项的系数为 (结果用数值表示) 【答案】17 15.(湖北理15)给个自上而下相连的正方形着黑色或白色。
高考数学 专题十 计数原理
专题十 计数原理一、单项选择题1.(2016课标Ⅱ,5,5分)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9答案 B 分两步,第一步,从E→F ,有6条可以选择的最短路径;第二步,从F→G ,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B .2.(2023届黑龙江牡丹江二中段考一,2)若3个班级分别从6个风景点中选择一处游览,则不同选法有( )A.A 63种B.C 63种C.36种D.63种答案 D 每个班级有6种选法,则3个班级有6×6×6=63种不同的选法.故选D . 3.(2023届贵阳一中月考一,5)二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年—1665年间提出,据考证,我国至迟在11世纪,北宋数学家贾宪就已经知道了二项式系数法则.在(x 2+12x)5的展开式中,x 的系数为( )A.10B.52C.54D.58答案 C (x 2+12x )5的展开式的通项为T k +1=C 5k (x 2)5k(12x )k=C 5k (12)kx103k (k =0,1,2,3,4,5),令10-3k =1,解得k =3,所以在(x 2+12x )5的展开式中,x 的系数为C 53×(12)3=54.故选C .4.(2022河南开封模拟,4)(x √x3)8的展开式中所有有理项的系数和为( )A.85B.29C.-27D.-84答案 C (x −√x3)8展开式的通项为T r +1=C 8rx8−r √x3)r=(-1)r C 8rx8−4r3,其中r =0,1,2,3,4,5,6,7,8.当r =0,3,6时,T r +1为有理项,故有理项系数和为(-1)0C 80+(-1)3C 83+(-1)6C 86=1+(-56)+28=-27,故选C .5.(2023届哈尔滨质检,5)小张接到5项工作,要在周一、周二、周三、周四这4天中完成,每天至少完成1项,且周一只能完成其中1项工作,则不同的安排方式有( ) A.180种 B.480种 C.90种D.120种答案 A 首先从5项工作中选一项安排到周一,再从其余4项工作中选出2项作为一个整体,最后将这三组安排到周二、周三、周四三天,则不同的安排方式有C51C42A33=180种.故选A.6.(2023届四川南江中学阶段测试,9)4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为( ) A.288 B.336 C.368 D.412答案 B 当四位数中不出现1时,排法有C21×C21×A44=96种;当四位数中出现一个1时,排法有2×C21×C21×A44=192种;当四位数中出现两个1时,排法有C21×C21×A42=48种.所以可构成不同的四位数的个数为96+192+48=336.故选B.7.(2022湖北荆门龙泉中学二模,3)若今天(第一天)是星期二,则第1510天是( )A.星期三B.星期日C.星期二D.星期五答案 C 1510=(14+1)10的展开式的通项为T r+1=C10r1410-r,又14可被7整除,所以当10-r≠0时,T r+1均可被7整除,当10-r=0时,T11=1,所以第1510天是星期二.故选C.8.(2023届黑龙江牡丹江二中段考一,8)若(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=( ) A.1 B.32 C.81 D.243答案 D 因为-2<0,所以x的奇数次幂的系数a1,a3,a5均为负数,即|a1|=-a1,|a3|=-a3,|a5|=-a5,令x=-1,可得a0-a1+a2-a3+a4-a5=35=243,即|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=243,故选D.二、多项选择题9.(2022重庆巴蜀中学3月适应性月考(八),11)若122 022+a能被7整除,则整数a的值可以是( ) A.4 B.6 C.11 D.13答案BD 122 022=(14-2)2 022与(-2)2 022=22 022被7除同余,22 022=8674=(7+1)674被7除余1,故1+a能被7整除,则a=7k+6(k∈Z),故选BD.10.(2022湖南新高考教学教研联盟联考一,10)已知(1+x)n=a0+a1x+a2x2+a3x3+…+a n x n(n∈N*),则下列结论正确的是( )A.a0=a nB.当a3=10时,n=5C.若(1+x)n(n∈N*)的展开式中第7项的二项式系数最大,则n等于12或13D.当n=4时,a12+a24+a38+a416=6516答案ABD a0=a n=1,A正确;x3的系数a3=C n3,则C n3=10,所以n=5,B正确;若(1+x)n(n∈N*)的展开式中第7项的二项式系数最大,当n为偶数时,n等于12,当n为奇数时,n等于11或13,C错误;当n=4时,(1+x)4=a0+a1x+a2x2+a3x3+a4x4.令x=12,则(1+12)4=a0+a12+a24+a38+a416=8116,又a0=1,所以a12+a24+a38+a416=6516,D正确.故选ABD.11.(2021江苏百校联考4月调研,11)设(1-2x)29=a0+a1x+a2x2+…+a29x29,则下列结论正确的是( )A.a15+a16>0B.a1+a2+a3+…+a29=-1C.a1+a3+a5+…+a29=-1+3292D.a1+2a2+3a3+…+29a29=-58答案ACD 对于选项A,a15+a16=C2915(-2)15+C2916(-2)16>0,故选项A正确;对于选项B,令x=0,可得a0=1,令x=1,得a0+a1+…+a29=-1,所以a1+a2+…+a29=-2,故选项B错误;对于选项C,令x=-1,得a0-a1+a2-a3+…-a29=329,则2(a1+a3+…+a29)=-1-329,故选项C正确;对于选项D,在等式两边对x求导可得-58(1-2x)28=a1+2a2x+…+29a29x28,令x=1,可得a1+2a2+…+29a29=-58,故选项D正确.故选ACD.12.(2022山东滨州邹平一中3月月考,9)如图,在某城市中,M,N两地之间有整齐的方格形道路网,其中A1,A2,A3,A4是道路网中位于一条对角线上的4个交会处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止,则下列说法正确的有( )A.甲从M到达N处的方法有120种B.甲从M必须经过A3到达N处的方法有9种C.甲、乙两人在A3处相遇的概率为9100D.甲、乙两人相遇的概率为41100答案BD 对于A,甲从M到达N处,需要走6步,其中向上3步,向右3步,所以从M 到达N处的方法有C63=20种,故A错误;对于B,甲从M到达A3,需要走3步,其中向上1步,向右2步,共C31=3种,从A3到达N,需要走3步,其中向上2步,向右1步,共C31=3种,所以甲从M必须经过A3到达N处的方法有3×3=9种,故B正确;对于C,甲经过A3的方法数为C31×C31=9,乙经过A3的方法数为C31×C31=9,所以甲、乙两人在A3处相遇的方法数为C31×C31×C31×C31=81种,故甲、乙两人在A3处相遇的概率P=81C63C63=81400,故C错误;对于D,甲、乙两人沿着最短路径行走,只能在A1,A2,A3,A4处相遇,若甲、乙两人在A1处相遇,甲经过A1处,前3步必须向上走,乙经过A1处,则前3步必须向左走,两人在A1处相遇走法有1种,若甲、乙两人在A2或A3处相遇,由选项C知,各有C31×C31×C31×C31=81种,若甲、乙两人在A4处相遇,甲经过A4处,则前3步必须向右走,乙经过A4处,则乙前3步必须向下走,则两人在A4处相遇的走法有1种.所以甲、乙两人相遇的概率P=1+81+81+1C63C63=164400=41100,故D正确.故选BD.三、填空题13.(2023届成都七中万达学校9月月考,14)(5-3x+2y)n的展开式中不含y的项的系数和为64,则展开式中的常数项为.答案15 625解析(5-3x+2y)n的展开式中不含y的项,即展开式中y的指数为0,即(5-3x)n的展开式.令x=1,得(5-3x+2y)n的展开式中不含y的项的系数和为(5-3)n=64,所以n=6.因为(5-3x+2y)6=[5-(3x-2y)]6,所以展开式中的常数项为C60×56=15 625.14.(2023届陕西师范大学附属中学期中,16)已知(a2+1)n的展开式中各项系数之和等于(16 5x2+√x5的展开式的常数项,而(a2+1)n的展开式的二项式系数最大的项为54,则正数a的值为. 答案√3解析(165x2+√x)5的展开式的通项为T r+1=C5r·(165)5−r·x10−2r·x−r2=(165)5−r·C5r·x10−5r2,0≤r≤5,r∈Z.令10-5r2=0,解得r=4,故(165x2+√x5的展开式的常数项为165×C54=16.令a2=1,则(a2+1)n=2n=16,故n=4.∵(a2+1)n=(a2+1)4的展开式的二项式系数最大的项为C42a4=54,∴a2=3,解得a=±√3.∵a>0,∴a=√3.15.(2022福建漳州三模,13)711除以6的余数是.答案1解析711=(1+6)11=C11060+C11161+C11262+⋯+C1111611,因为C11161+C11262+⋯+C1111611可被6整除且C11060=1,所以711除以6的余数是1.16.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案16解析解法一:从2位女生,4位男生中选3人,且至少有1位女生入选的情况有以下2种:①2女1男:有C22C41=4种选法;②1女2男:有C21C42=12种选法,故至少有1位女生入选的选法有4+12=16种.解法二:从2位女生,4位男生中选3人有C63=20种选法,其中选出的3人都是男生的选法有C43=4种,所以至少有1位女生入选的选法有20-4=16种.。
计数原理(理科专用)(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题19计数原理(理科专用)1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式,故选:B2.【2021年乙卷理科】将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据C⨯=种不同的分配方案,乘法原理,完成这件事,共有254!240故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.3.【2020年新课标1卷理科】25()x x y xy ++的展开式中x 3y 3的系数为()A .5B .10C .15D .20【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.4.【2020年新课标2卷文科】如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A .5B .8C .10D .15【答案】C【解析】【分析】根据原位大三和弦满足3,4k j j i -=-=,原位小三和弦满足4,3k j j i -=-=从1i =开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===.故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.5.【2020年新高考1卷(山东卷)】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A .120种B .90种C .60种D .30种【答案】C【解析】【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.6.【2020年新高考2卷(海南卷)】要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A .2种B .3种C .6种D .8种【答案】C【解析】【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种故选:C【点睛】解答本类问题时一般采取先组后排的策略.7.【2019年新课标3卷理科】(1+2x 2)(1+x )4的展开式中x 3的系数为A .12B .16C .20D .24【答案】A【解析】【分析】本题利用二项展开式通项公式求展开式指定项的系数.【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.8.【2018年新课标3卷理科】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .80【答案】C【解析】【详解】分析:写出103152r r r r T C x -+=⋅⋅,然后可得结果详解:由题可得()5210315522rr r r r rr T C x C x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅令103r 4-=,则r 2=所以22552240r r C C ⋅⋅==点睛:本题主要考查二项式定理,属于基础题.9.【2022年新高考1卷】1−(+p 8的展开式中26的系数为________________(用数字作答).【答案】-28【解析】【分析】1−+8可化为+8−+8,结合二项式展开式的通项公式求解.【详解】因为1+8=+8+8,所以1+8的展开式中含26的项为C 8626−8535=−2826,1−+8的展开式中26的系数为-28故答案为:-2810.【2020年新课标2卷理科】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解.【详解】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.11.【2020年新课标3卷理科】262(x x+的展开式中常数项是__________(用数字作答).【答案】240【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】 622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rr r r C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r rx C x --⋅=⋅1236(2)r r rC x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()n a b +的展开通项公式1C r n r r r n T a b -+=,考查了分析能力和计算能力,属于基础题.12.【2018年新课标1卷理科】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.。
高中数学计数原理(解析版)
热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解.【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数.【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2021·全国高三专题练习)()()()()()234511111x x x x x -----的展开式中各项的指数之和再减去各项系数乘以各项指数之和的值为( ) A .0 B .55 C .90 D .120【答案】C【分析】()()()()()234511111x x x x x -----151413109876521x x x x x x x x x x x =--+++---++-,所以,()()()()()234511111x x x x x -----的展开式中各项的指数之和为15141310987652190++++++++++=,展开式中各项系数乘以各项指数之和为1514131098765210--+++---++=, 因此,所求结果为90090-=. 故选:C.2.(2021·山东高三专题练习)已知()20121nn n px b b x b x b x -=+++⋅⋅⋅+,若123,4b b =-=,则p =( ) A .1 B .12C .13D .14【答案】C【分析】()1npx -展开式的通项为:()()()11n rrrr rr n n T C px C px -+=⋅⋅-=⋅-,故()113n b C p pn =⋅-=-=-,()2222142n n n b C p p -=⋅==,解得9n =,13p =. 故选:C.3.(2021·山东高三专题练习)2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种 B .20种 C .22种 D .24种【答案】B【分析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有2232C A 种不同 分配方案,当医院B 有2人,则共有1222C A 种不同分配方案,所以当医院A 只分配1人时, 共有2232C A +122210C A =种不同分配方案;第二类:若医院A 分配2人,当乙在医院A 时,共有33A 种不同分配方案,当乙不在A 医院, 在B 医院时,共有1222C A 种不同分配方案,所以当医院A 分配2人时, 共有33A +122210C A =种不同分配方案; 共有20种不同分配方案. 故选:B4.(2021·全国高三专题练习)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走了几个单位,如果掷出的点数为()1,2,,6i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点A 处的所有不同走法共有( )A.21种B.22种C.25种D.27种【答案】D【分析】由题意,正方形ABCD的周长为8,抛掷三次骰子的点数之和为8或16,①点数之和为8的情况有:1,1,6;1,2,5;1,3,4;2,2,4;2,3,3,排列方法共有13311 3333321C A A C C++++=种;②点数之和为16的情况有:4,6,6;5,5,6,排列方法共有11336C C+=种.所以,抛掷三次骰子后棋子恰好又回到起点A处的所有不同走法共有21627+=种.故选:D.5.(2021·山东高三专题练习)已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有()A.240种B.360种C.480种D.600种【答案】C【解析】:用分类讨论的方法解决:如图中的6个位置:①当领导丙在位置1时:不同的排法有55120A=种::当领导丙在位置2时:不同的排法有143472C A=种::当领导丙在位置3时:不同的排法有2323233348A A A A+=种::当领导丙在位置4时:不同的排法有2323233348A A A A +=种::当领导丙在位置5时:不同的排法有143472C A =种::当领导丙在位置1时:不同的排法有55120A =种:由分类加法计数原理可得不同的排法共有480种: 故选C:6.(2021·山东高三专题练习)某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种 B .288种 C .192种 D .216种【答案】D【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .7.(2020·全国高三专题练习(理))某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( ) A .72种 B .48种 C .36种 D .24种【答案】C【分析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有336A =种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有236A =种排法,则后六场开场诗词的排法有6636⨯=种, 故选:C.8.(2020·全国高三专题练习(理))为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( ) A .12B .13C .14D .16【答案】D【分析】记第i 名民工选择的项目属于基础设施类、民生类、产业建设类 分别为事件i A ,i B ,i C ,1,2,3i =.由题意,事件i A ,i B ,i C ,1,2,3i =相互独立,则301()602i P A ==,201()603i P B ==,101()606i P C ==,1,2,3i =, 故这3名民工选择的项目所属类别互异的概率是331111()62366i i i P A P A B C ==⨯⨯⨯=.故选:D.9.(2020·全国高三专题练习(理))在()()()()()2345111111x x x x x ++++++++++的展开式中,含2x 项的系数是( ) A .10 B .15 C .20D .25【答案】C【分析】解法一:()21x +中含2x 的项为222C x ,()31x +中含2x 的项为223C x ,()41x +中含2x 的项为224C x ,()51x +中含2x 的项为225C x ,则含2x 项的系数为2222234520C C C C +++=.故选:C .解法二:由等比数列求和公式知:()()()()()()6234511111111x x x x x x x+-++++++++++=,()31x +中含3x 的系数为3620C =,∴原式含2x 项的系数为20.故选:C .10.(2020·全国高三专题练习(理))若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=( ) A .284 B .356 C .364 D .378【答案】C【分析】令x =1,则a 0+a 1+a 2+…+a 12=36, ① 令x =-1,则a 0-a 1+a 2-…+a 12=1, ② ①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,再令x =0,则a 0=1, 所以a 2+a 4+…+a 12=364. 故选:C.11.(2020·山西高三月考(理))如图所示的是古希腊数学家阿基米德的墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为荣的发现.设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,则621m x nx ⎛⎫- ⎪⎝⎭的展开式中的常数项是( )A .15B .-15C .1354D .1354-【答案】A【分析】:设球的半径为R ,则圆柱的底面半径为R ,高为2R ,所以圆柱的体积23122V R R R ππ=⨯=,球的体积3243V R π=,所以313223423V R m V R ππ===.又圆柱的表面积为2212226S R R R R πππ=⨯+=,球的表面积为224S R π=,所以21226342S R n S R ππ===,1m n =,662211m x x nx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,展开式的通项()123161rr rr T C x-+=-,令1230r -=,解得4r =,其常数项为()42426115C x x ⎛⎫-= ⎪⎝⎭. 故选:A12.(2020·江西吉安市·白鹭洲中学高三期中(理))已知随机变量()2~1,X N σ,且()()0P X P X a ≤=≥,则()43221ax x x ⎛⎫+⋅+ ⎪⎝⎭的展开式中2x 的系数为( )A .40B .120C .240D .280【答案】D【分析】根据正态曲线的性质可知,012a +=⨯,解得2a =,()312x +的展开式的通项公式为132rr rr T C x +=⋅,{}0,1,2,3r ∈,422x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()243814422s s s s s s s s T C x c x -+--++=⋅=⋅,{}0,1,2,3,4s ∈, 令两式展开通项之积x 的指数为382r s -+=,可得33r s =⎧⎨=⎩或02r s =⎧⎨=⎩,∴()432212x x x ⎛+⋅⎫+ ⎪⎝⎭的展开式中2x 的系数为333300223434222225624280C C C C ⋅⋅⋅+⋅⋅⋅=+=,13.(2020·湖南长沙市·高三月考)某单位有6名员工,2020年国庆节期间,决定从6人中留2人值班,另外4人分别去张家界、南岳衡山、凤凰古城、岳阳楼旅游.要求每个景点有1人游览,每个人只游览一个景点,且这6个人中甲、乙不去衡山,则不同的选择方案共有( ) A .120种 B .180种 C .240种 D .320种【答案】C【分析】以人为对象,分类讨论:甲不值班乙值班:31343372C C A =;甲值班乙不值班:31343372C C A =;甲乙都不值班;21342372C C A =;甲乙都值班;4424A =.故不同的选择方案72727224240N =+++=. 故选:C14.(2020·全国高三专题练习(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种 B .50种 C .60种 D .90种【答案】B【分析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1121020C C ⋅=若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1131030C C ⋅=所以共有203050+=种 故选B15.(2020·湖北武汉市·华中师大一附中高三其他模拟(理))2020年湖北抗击新冠肺炎期间,全国各地医护人员主动请缨,支援湖北,某地有3名医生、6名护士来到武汉,他们被随机分到3家医院,每家医院1名医生、2名护士,则医生甲和护士乙分到同一家医院的概率为( ) A .16B .12C .18D .13【答案】D【分析】3名医生平均分成3组,有1种分法,6名护士平均分成3组有226433156156C C A ⨯==种分法,3名医生、6名护士分到3家医院,每家医院1名医生、2名护士的分配方法有333315540A A ⨯⨯=(种),医生甲和护士乙分到同一家医院的分配方法有211224532222180C C C A A A ⨯⨯⨯=(种),则医生甲和护士乙分到同一家医院的概率为18015403=. 故选:D .16.(2020·全国高三其他模拟(理))公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.141592631415927π<<.,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( ) A .15B .17C .45D .67【答案】D【分析】由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:①选出两个1,共可组成1个数字;②选出一个1,共可组成12428C A ⋅=个不同数字;③没有选出1,共可组成2412A =个不同数字;所以共可组成181221++=个不同的数字;其中小于等于3.14的数字有:3.11、3.12、3.14,共3个,则大于3.14的数字个数为18, 故所求概率186217P ==. 故选:D.17.(2020·全国高三专题练习(理))某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ). A .444种 B .1776种 C .1440种 D .1560种【答案】B【分析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有14C 4=(种).对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有114244192C C A =(种);第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有133C =(种),语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有14C 4=(种),其他三科可以全排列,有()12332334252C A A +=(种).综上,共有()41922521776⨯+=(种). 故选:B18.(2020·全国高三专题练习)函数261()()=-f x x x的导函数为()f x ',则()f x '的展开式中含2x 项的系数为( ) A .20 B .20-C .60D .60-【答案】D【分析】函数()f x 导函数为25211()6()(2)f x x x x x '=-+, 则251()x x-的展开式的通项公式为251031551()()(1)r rr r r r r T C x C x x--+=-=-, 令1031r -=,则3r =,此时含x 项为335(1)10C x x -=-,再令1034r -=,则2r,此时含4x 项为22445(1)10C x x -=,所以含2x 的项为4221(10210)660x x x x x -⨯+⨯⨯=-, 故含2x 项的系数为60-, 故选:D .19.(2020·湖南郴州市·高三二模(理))中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A .408 B .120 C .156 D .240【答案】A【分析】解:根据题意,首先不做任何考虑直接全排列则有66720A =(种),当“乐”排在第一节有55120A =(种),当“射”和“御”两门课程相邻时有2525240A A =(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有242448A A =(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有72012024048408--+=(种),故选:A .20.(2020·全国高三专题练习)6331x x ⎛⎫⎫⎪⎪⎭⎭展开式中的常数项为( ) A .66- B .15C .15-D .66【答案】C61x ⎫⎪⎭展开式的通项公式为()363216611rrrr rrr T C C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,而3323323x x x---=-,故要想产生常数项,则333122r r -=⇒=或33302r r -=⇒= ,则所求常数为()106621315C C ⨯⨯--⨯=-. 故选:C .。
适用于老高考旧教材2024版高考数学一轮总复习第11章计数原理第1节分类加法计数原理与分步乘法计数原
)
答案:(1)D (2)B
解析:(1)5日至9日,即5,6,7,8,9,有3个奇数日,2个偶数日,第一步安排奇数日
出行,每天都有2种选择,共有23=8(种);第二步安排偶数日出行分两类:
第一类,先选1天安排甲的车,另外一天安排其他车,有2×2=4(种),
第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8(种).
“凸数”为120与121,共2个.若a2=3,
则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).
若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有
8×9=72(个).故所有凸数有2+6+12+20+30+42+56+72=240(个).
规律方法 使用分类加法计数原理应遵循的原则
规定每个区域只涂一种颜色,相邻区域颜色不同,
则不同的涂色方法种数为(
A.120
B.160
C.180
D.240
)
答案:C
解析:根据题意,可分步进行,区域A有5种涂法,B有4种涂法,D有3种涂法,C
有3种涂法,所以共有5×4×3×3=180(种)不同的涂色方法.故选C.
考向4 与实际生活有关的问题
例6(2022河南安阳模拟)为推动就业与培养有机联动、人才供需有效对接,
强基础•固本增分
1.两个计数原理
名
称
条
件
类类独立,不重不漏
步步相依,缺一不可
分类加法计数原理
分步乘法计数原理
完成一件事,可以有 n类不同方案 . 完成一件事需要 n个步骤 ,做
在第1类方案中有m1种不同的方法,在 第1步有m1种不同的方法,做第2
2022高考数学真题分类汇编08计数原理(含答案及解析)
2022高考数学真题分类汇编:八、计数原理一、选择题1.(2022·北京卷T )8. 若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A. 40B. 41C. 40-D. 41-【答案】B【解析】 【分析】利用赋值法可求024a a a ++的值.【详解】令1x =,则432101a a a a a ++++=,令1x =-,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.2.(2022·浙江卷T12)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】 ①. 8 ②. 2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 的项为:()()3232222244C 12C 14128x x x x x x ⋅⋅⋅-+⋅⋅⋅-=-+=,故28a =; 令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.(2022·新高考Ⅰ卷T13)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).【答案】-28【解析】 【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解. 【详解】因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭, 所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28 故答案为:-28。
高考数学 计数原理、排列与组合 高考真题
专题十 计数原理10.1 计数原理、排列与组合考点 计数原理、排列、组合1.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种 答案 C 解题思路:第一步:安排甲场馆的志愿者,则甲场馆的安排方法有C 61=6种,第二步:安排乙场馆的志愿者,则乙场馆的安排方法有C 52=10种,第三步:安排丙场馆的志愿者,则丙场馆的安排方法有C 33=1种.所以共有6×10×1=60种不同的安排方法.故选C (易错:注意分配到每个场馆的志愿者是不分顺序的,所以不用全排列).2.(2022新高考Ⅱ,5,5分,应用性)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有( )A.12种B.24种C.36种D.48种 答案 B 丙和丁相邻共有A 22·A 44种站法,甲站在两端且丙和丁相邻共有C 21·A 22·A 33种站法,所以甲不站在两端且丙和丁相邻共有A 22·A 44−C 21·A 22·A 33=24种站法,故选B .3.(2021全国乙理,6,5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种B.120种C.240种D.480种 答案 C 先将5人分为4组,其中一组有2人,另外三组各1人,共有C 52=10种分法,然后将4个项目全排列,共有A 44=24种排法,根据分步乘法计数原理得到不同的分配方案共有C 52·A 44=240种,故选C .易错警示 本题容易出现将5人分为4组,共有分法C 52·C 31·C 21=60种的错误结果.4.(2016四川理,4,5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24B.48C.60D.72答案 D 奇数的个数为C 31A 44=72.5.(2015四川理,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案B数字0,1,2,3,4,5中仅有0,2,4三个偶数,比40 000大的偶数为以4开头与以5开头的数.其中以4开头的偶数又分以0结尾与以2结尾,有2A43=48个;同理,以5开头的有3A43=72个.于是共有48+72=120个,故选B.评析本题考查了分类与分步计数原理、排列数的知识.考查学生分析问题、解决问题的能力.6.(2014大纲全国理,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有()A.60种B.70种C.75种D.150种答案C从6名男医生中选出2名有C62种选法,从5名女医生中选出1名有C51种选法,由分步乘法计数原理得不同的选法共有C62·C51=75种.故选C.7.(2014辽宁理,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24答案D先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A43=24种放法,故选D.8.(2014四川理,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种答案B若最左端排甲,其他位置共有A55=120种排法;若最左端排乙,最右端共有4种排法,其余4个位置有A44=24种排法,所以共有120+4×24=216种排法.9.(2014重庆理,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168答案B先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A33·A43=144种,再剔除小品类节目相邻的情况,共有A33·A22·A22=24种,于是符合题意的排法共有144-24=120种.10.(2013山东理,10,5分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279答案B由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252,故选B.评析本题考查分步乘法计数原理,考查学生的推理运算能力.11.(2012课标理,2,5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种答案A2名教师各在1个小组,给其中1名教师选2名学生,有C42种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C42A22=12种,选A.评析本题考查了排列组合的实际应用,考查了先分组再分配的方法.12.(2012辽宁理,5,5分)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!答案C第1步:3个家庭的全排列,方法数为3!;第2步:家庭内部3个人全排列,方法数为3!,共3个家庭,方法数为(3!)3,∴总数为(3!)×(3!)3=(3!)4,故选C.评析本题主要考查计数原理的基础知识,考查学生分析、解决问题的能力.13.(2012安徽理,10,5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3B.1或4C.2或3D.2或4答案D由题意及C62=15知只需少交换2次.记6位同学为A1、A2、A3、A4、A5、A6,不妨讨论①A1少交换2次,如A1未与A2、A3交换,则收到4份纪念品的同学仅为A2、A3 2人;②A1、A2各少交换1次,如A1与A3未交换,A2与A4未交换,则收到4份纪念品的同学有4人,为A1、A2、A3、A4.故选D.14.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.思路分析小明到老年公寓,需分两步进行,先从E到F,再从F到G,分别求各步的最短路径条数,再利用分步乘法计数原理即可得结果.15.(2016课标Ⅲ,12,5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C41=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C31=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任一个为0均可,有C21=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C31=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C21=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.思路分析根据题意可知a1=0,a8=1,进而对a2,a3,a4取不同值进行分类讨论(分类要做到不重不漏),从而利用分类加法计数原理求出不同的“规范01数列”的个数.16.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案 1 260解析本小题考查排列、组合及其运用,考查分类讨论思想.含有数字0的没有重复数字的四位数共有C52C31A31A33=540个,不含有数字0的没有重复数字的四位数共有C52C32A44=720个,故一共可以组成540+720=1 260个没有重复数字的四位数.易错警示数字排成数时,容易出错的地方:(1)数字是否可以重复;(2)数字0不能排首位.17.(2015广东理,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560解析∵同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,∴全班共写了40×39=1 560条毕业留言.18.(2013北京理,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.答案96解析5张参观券分成4份,1份2张,另外3份各1张,且2张参观券连号,则有4种分法,把这4份参观券分给4人,则不同的分法种数是4A44=96.19.(2013大纲全国理,14,5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)答案480解析先将除甲、乙两人以外的4人排成一行,有A44=24种排法,再将甲、乙插入有A52=20种,所以6人排成一行,甲、乙不相邻的排法共有24×20=480种.20.(2013浙江理,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案480解析从左往右看,若C排在第1位,共有排法A55=120种;若C排在第2位,共有排法A42·A33=72种;若C排在第3位,则A、B可排C的左侧或右侧,共有排法A22·A33+A32·A33=48种;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有排法2×(120+72+48)=480种.21.(2011北京理,12,5分)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)答案14解析解法一:数字2只出现一次的四位数有C41=4个;数字2出现两次的四位数有C42C22=6个;数字2出现三次的四位数有C43=4个.故总共有4+6+4=14个.解法二:由数字2,3组成的四位数共有24=16个,其中没有数字2的四位数只有1个,没有数字3的四位数也只有1个,故符合条件的四位数共有16-2=14个.评析本题考查排列组合的基础知识,考查分类讨论思想,解题关键是准确分类,并注意相同元素的排列数等于不同元素的组合数.属于中等难度题.。
2024年高考数学总复习第十章《计数原理》分类加法计数原理与分步乘法计数原理
2024年高考数学总复习第十章《计数原理》§10.1分类加法计数原理与分步乘法计数原理最新考纲通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.概念方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?提示①分清要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4答案C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16B.13C.12D.10答案C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).题组三易错自纠4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6答案B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.5.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案D解析需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有4×3×2×2=48(种)着色方法.6.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.题型一分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10答案B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12个实数对,故a≠0时满足条件的实数对有12-3=9个,所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920答案A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.(2016·全国Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.题型二分步乘法计数原理例1(1)(2016·全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.跟踪训练1一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有___种.(用数字作答)答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.题型三两个计数原理的综合应用例2(1)(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)答案1080解析①当组成四位数的数字中有一个偶数时,四位数的个数为C35·C14·A44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A45=120.故符合题意的四位数一共有960+120=1080(个).(2)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260答案D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,最后涂C处,若C处与A 处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60B.48C.36D.24答案B解析长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2(1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有() A.144个B.120个C.96个D.72个答案B解析由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40000大的偶数共有72+48=120(个).故选B.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是____.答案36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.答案96解析按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3同色时,共有4A33=24(种)方法.②区域1与3不同色:第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法.∴共有A24×2×1×3=72(种)方法.故由分类加法计数原理可知,不同的涂色种数为24+72=96.1.(2018·贵州省凯里市第一中学月考)集合A={1,2,3,4,5},B={3,4,5,6,7,8,9},从集合A,B 中各取一个数,能组成的没有重复数字的两位数的个数为()A.52B.58C.64D.70答案B解析根据分步乘法计数原理得(C12·C13+C14·C13+C12·C14+C23)·A22=58.2.(2018·保定质检)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种答案B解析分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有()A.24种B.16种C.12种D.10种答案C解析根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.(2018·玉林联考)若自然数n使得作竖式加法n+(n+1)+(n+2)各位数均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因为32+33+34不产生进位现象;23不是“开心数”,因为23+24+25产生进位现象,那么,小于100的“开心数”的个数为() A.9B.10C.11D.12答案D解析根据题意个位数n需要满足n+(n+1)+(n+2)<10,即n<2.3,∴个位数可取0,1,2三个数,∵十位数k需要满足3k<10,∴k<3.3,∴十位数可以取0,1,2,3四个数,故小于100的“开心数”共有3×4=12(个).故选D.5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种答案D解析由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420.故选D.6.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24B.48C.96D.120答案C解析若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有1种涂法,共有4×3×2=24(种);若A,D颜色不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有2种涂法,当B和D不同时,C只有1种涂法,共有4×3×2×(2+1)=72(种),根据分类加法计数原理可得,共有24+72=96(种),故选C.7.(2018·湖北省黄冈中学月考)对33000分解质因数得33000=23×3×53×11,则33000的正偶数因数的个数是()A.48B.72C.64D.96答案A解析33000的因数由若干个2(共有23,22,21,20四种情况),若干个3(共有3,30两种情况),若干个5(共有53,52,51,50四种情况),若干个11(共有111,110两种情况),由分步乘法计数原理可得33000的因数共有4×2×4×2=64(个),不含2的共有2×4×2=16(个),∴正偶数因数的个数为64-16=48,即33000的正偶数因数的个数是48,故选A.8.从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为________.答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数中不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93.综上可知,共有20+1-4=17(个)不同的对数值.9.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.答案27解析先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.10.(2018·天津河东区模拟)一共有5名同学参加《我的中国梦》演讲比赛,3名女生和2名男生,如果男生不排第一个演讲,同时两名男生不能相邻演讲,则排序方式有________种.(用数字作答)答案36解析根据题意,分2步完成:①将三名女生全排列,有A33=6种顺序,②排好后,有4个空位,男生不排第一个演讲,除去第一个空位,有3个空位可用,在这三个空位中任选2个,安排2名男生,有A23=6种情况,则有6×6=36种符合题意的排序方式.11.(2018·金华模拟)联合国国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有________种.答案25解析根据题意,可分为:三个国家粮食和药品都有,有1种方法;一个国家粮食,两个国家药品,有3种方法;一个国家药品,两个国家粮食,有3种方法;两个国家粮食,三个国家药品,有3种方法;两个国家药品,三个国家粮食,有3种方法;两个国家粮食,两个国家药品,有3×2=6种方法;三个国家粮食,一个国家药品,有3种方法;三个国家药品,一个国家粮食,有3种方法,故方法总数是25.12.将数字“124467”重新排列后得到不同的偶数的个数为________.答案240解析将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,①若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;②若末位数字为6,同理有5×4×3×2×12=60(种)情况;③若末位数字为4,因为有2个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.13.(2018·杭州第二中学模拟)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.答案60解析根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,当第一个选1号螺栓的时候,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60种方法,故答案是60.14.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有________种.答案12解析由DA →+DC →=λDB →(λ∈R ),说明△ABC 是等腰三角形,且|BA |=|BC |,必有f (1)=f (3),f (1)≠f (2).当f (1)=f (3)=1时,f (2)=2,3,4,有三种情况;f (1)=f (3)=2,f (2)=1,3,4,有三种情况;f (1)=f (3)=3,f (2)=2,1,4,有三种情况;f (1)=f (3)=4,f (2)=2,3,1,有三种情况.因而满足条件的函数f (x )有12种.15.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n (n ∈N *)位回文数有________个.答案(1)900(2)9×10n -1解析(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n -1种填法.16.用6种不同的颜色给三棱柱ABC -DEF 六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有________种.(用数字作答)答案8520解析分两步来进行,先涂A,B,C,再涂D,E,F.第一类:若6种颜色都用上,此时方法共有A66=720种;第二类:若6种颜色只用5种,首先选出5种颜色,方法有C56种;先涂A,B,C,方法有A35种,再涂D,E,F中的两个点,方法有A23种,最后剩余的一个点只有2种涂法,故此时方法共有C56·A35·A23·2=4320种;第三类:若6种颜色只用4种,首先选出4种颜色,方法有C46种;先涂A,B,C,方法有A34种,再涂D,E,F中的一个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有C46·A34·3·3=3240种;第四类:若6种颜色只用3种,首先选出3种颜色,方法有C36种;先涂A,B,C,方法有A33种,再涂D,E,F,方法有2种,故此时方法共有C36·A33×2=240种.综上可得,不同涂色方案共有720+4320+3240+240=8520种.。
高考数学 计数原理、排列与组合(分层集训)
2.(2022福州一模,6)从集合{1,2,3}的非空子集中任取两个不同的集合A和 B,若A∩B≠⌀,则不同的取法共有 ( ) A.42种 B.36种 C.30种 D.15种 答案 C
3.(2022重庆南开中学月考,6)某校开设A类选修课4门,B类选修课3门,每位 同学从中选3门.若要求两类课程中都至少选一门,则不同的选法共有 () A.18种 B.24种 C.30种 D.36种 答案 C
B.若甲学校至少安排两位志愿者,则有60种安排方法
C.小晗被安排到甲学校的概率为 1
3
D.在小晗被安排到甲学校的前提下,甲学校安排两人的概率为 5
8
答案 AC
8.(2023届重庆南开中学月考,15)将6名同学分成两个学习小组,每组至少
两人,则不同的分组方法共有
种.
答案 25
9.(2020课标Ⅱ理,14,5分)4名同学到3个小区参加垃圾分类宣传活动,每名 同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有
一项数学竞赛,则4人中既有男生又有女生,且女生中的甲必须在内,那么
不同的选法共有
种.(用数字作答)
答案 55
7.(2017天津理,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多
有一个数字是偶数的四位数,这样的四位数一共有
个.(用数字作
答)
答案 1 080
考法二 分组与分配问题的解题方法
5.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同 学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 的安排方法共有 ( ) A.120种 B.90种 C.60种 D.30种 答案 C
6.(2022山东临沂期末,4)为了支援山区教育,现在安排5名大学生到3个学 校进行支教活动,每个学校至少安排1人,其中甲校至少要安排2名大学生, 则不同的安排方法共有 ( ) A.50种 B.60种 C.80种 D.100种 答案 C
专题13 计数原理(原卷版)-三年(2022–2024)高考数学真题分类汇编(全国通用)
专题13计数原理(理)考点三年考情(2022-2024)命题趋势考点1:利用二项式定理求项的系数2024年北京高考数学真题2022年新高考全国I卷数学真题2022年新高考天津数学高考真题2023年天津高考数学真题2024年天津高考数学真题2024年高考全国甲卷数学(理)真题2024年上海夏季高考数学真题今后在本节的考查形式依然以选择或者填空为主,以考查基本概念和基本方法为主,难度中等偏下,与教材相当.考点2:利用二项式定理求系数和问题2022年新高考浙江数学高考真题2022年新高考北京数学高考真题考点3:排列组合综合运用2024年上海夏季高考数学真题2023年新课标全国Ⅰ卷数学真题2023年新课标全国Ⅱ卷数学真题2022年新高考全国II卷数学真题2023年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(理)真题考点1:利用二项式定理求项的系数1.(2024年北京高考数学真题)在(4x x 的展开式中,3x 的系数为()A .6B .6-C .12D .12-2.(2022年新高考全国I 卷数学真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为(用数字作答).3.(2022年新高考天津数学高考真题)523x x ⎫+⎪⎭的展开式中的常数项为.4.(2023年天津高考数学真题)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为.5.(2024年天津高考数学真题)在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为.6.(2024年高考全国甲卷数学(理)真题)1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数中的最大值为.7.(2024年上海夏季高考数学真题)在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为.考点2:利用二项式定理求系数和问题8.(2022年新高考浙江数学高考真题)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.9.(2022年新高考北京数学高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-考点3:排列组合综合运用10.(2024年上海夏季高考数学真题)设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值.11.(2023年新课标全国Ⅰ卷数学真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).12.(2023年新课标全国Ⅱ卷数学真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种13.(2022年新高考全国II 卷数学真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A .12种B .24种C .36种D .48种14.(2023年高考全国甲卷数学(理)真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有()A .120B .60C .30D .2015.(2023年高考全国乙卷数学(理)真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种。
(学生版)2024年高考数学真题分类汇编08:计数原理与概率统计
计数原理与概率统计一、单选题1.(2024·全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg)并部分整理下表据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间2.(2024·全国)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.233.(2024·北京)(4x的二项展开式中3x的系数为()A.15B.6C.4-D.13-4.(2024·天津)下列图中,相关性系数最大的是()A.B.C.D.二、多选题5.(2024·全国)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u s ,()0.8413P Z u s <+»)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><三、填空题6.(2024·全国)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.7.(2024·全国)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.8.(2024·全国)1013x æö+ç÷èø的展开式中,各项系数的最大值是.9.(2024·全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.10.(2024·天津),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.11.(2024·上海)在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为.12.(2024·上海)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.13.(2024·上海)设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值.四、解答题14.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j £<£,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ³时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.15.(2024·全国)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?16.(2024·全国)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247»)附:22()()()()()n ad bcKa b c d a c b d-=++++17.(2024·北京)已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i )毛利润是保费与赔偿金额之差.设毛利润为X ,估计X 的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.18.(2024·上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d -=++++c 其中n a b c d =+++,()2 3.8410.05P c ³».)。
2020年山东省高考数学一轮冲刺复习汇编:分类加法计数原理与分步乘法计数原理(含解析)
2020年山东省高考数学一轮冲刺复习汇编:分类加法计数原理与分步乘法计数原理(含解析)一、【知识精讲】1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.【注意点】分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立,分步完成”.二、【典例精练】考点一分类加法计数原理的应用【例1】 (1)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.【答案】(1)12 (2)13【解析】(1)分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法.(2)当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.【解法小结】分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a=0这一类. 考点二分步乘法计数原理的应用【例2】 (1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.(2)(2018·合肥质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.【答案】(1)100 (2)4554【解析】(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为5×5×4=100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性. 【解法小结】 1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,。
高考数学复习总结专题18 计数原理 (解析版)
计数原理y2 1. 【2020 年高考全国Ⅰ卷理数】(x )(x y)5 的展开式中 x 3y3 的系数为()xA. 5B. 10 D. 20C. 15 【答案】C 【解析】 【分析】y 2求得 (x y) 5展开式的通项公式为 TC 5r x 5r y r( r N 且 r 5),即可求得 x 与 (x y) 展开式5r 1x的乘积为C r 5 x 6r y r 或C r 5x 4r y r 2形式,对 分别赋值为 3,1 即可求得 r x 3 y 3的系数,问题得解. 5展开式的通项公式为【详解】 (x y) TC r 1r 5x 5r y r ( rN 且 r 5)y 2x 5所以 的各项与 (x y) 展开式的通项的乘积可表示为:xy 2y 2 xTxC r 5x 5r y rC 5r x 6r yrT C 5 r x 5r y r C 5 r x 4r y r 2 和 r 1r 1xxxTC r 5 x 6r y r r 3,可得: xT C x 3 5 3 y 3 x 3 y 的系数为10, 3在 在 中,令 ,该项中 r 14 y 2y 2T C r x 4r yr 2中,令 r 1,可得: T C 1 5 x y 3 ,该项中 33x y 3 的系数为5 r 152xx3x y 3 的系数为10 5 15所以 故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属 于中档题.2. 【2019 年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4 的展开式中 x 3 的系数为 A .12 B .16C .20D .24【答案】A【解析】由题意得 x 3 的系数为 C 3 42C 4 1 4 8 12 ,故选 A . 【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.3. 【2018 年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23.在不超过 30 的素数中,随机选 取两个不同的数,其和等于 30 的概率是 11 1 1 A .B .C .D .12141518【答案】C【解析】不超过 30 的素数有 2,3,5,7,11,13,17,19,23,29,共 10 个,随机选取两个不同的数, 45种方法,其和等于 30 的有 3 种方法,分别是 7 和 23,11 和 19,13 和 17,所以随机选取 C 2 10 共有 3 1两个不同的数,其和等于 30 的概率为= ,选 C . 45 152 5x 2 的展开式中 x 4 的系数为 C .40 4. 【2018 年高考全国Ⅲ卷理数】x A .10 B .20 D .80【答案】C2 52 r 5r【解析】由题可得x 2 的展开式的通式为TC r 1r5x2Cr 5 2 x 103r ,令103r 4 ,rx x得 r 2,所以展开式中 x 4的系数为 C 5 2 2 40.故选 C .2 5. 【2017 年高考全国Ⅱ卷理数】安排3 名志愿者完成4 项工作,每人至少完成 1 项,每项工作由 1 人完成, 则不同的安排方式共有 A .12 种 B .18 种 C .24 种 D .36 种【答案】D【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三C 2 种方法,然后进行全排列,由乘法原理,不同的安排方式共有 C 42 4A 3336种.故选 D . 份:有 【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生 的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再 考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均 匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.16. 【2017 年高考全国Ⅰ卷理数】(1 )(1 x)6 展开式中 x 2 的系数为 x2 A .15 B .20C .30D .35【答案】C 1 1 (1 x)6 展开式中含 x 2 的项为 (1)(1 x) 6 1(1 x) 6(1 x)6 ,而 2 【解析】因为 x 2 x1 11C 62 x 215x 2 , (1 x)6 展开式中含 x 2 的项为 C 6 4 4 x 15x 2 ,故所求展开式中 x 2 的系数为x 2 1515 30,选 C .x 2 【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的 每项乘以第二个二项式的每项,分析含x 2的项共有几项,进行相加即可.这类问题的易 错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的 r 不同. 53 37. 【2017 年高考全国Ⅲ卷理数】 x y 2x y 的展开式中 x y 的系数为A . 80B . 40C .40D .80【答案】C 5 5 5 5【解析】x y2x y x 2x y y 2x y ,由2x y 展开式的通项公式5rr53 33TC r 1r5 2x y 可得:当 r 3时, x 2x y 展开式中 x y 的系数为 C 3 5 2 1 40;253 3 23 3当 r 2时,y 2x y 展开式中 x y 的系数为 C 2 52 1 80,则 x y 的系数为8040 40 .故3选 C .【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的 条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n ,r 均为非负整数,且 n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所 求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.8. 【2020 年高考全国 I I 卷理数】4 名同学到 3 个小区参加垃圾分类宣传活动,每名同学只去 1 个小区,每 个小区至少安排 1 名同学,则不同的安排方法共有__________种. 【答案】36 【解析】 【分析】根据题意,有且只有 2 名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解. 【详解】 4 名同学到 3 个小区参加垃圾分类宣传活动,每名同学只去 1 个小区,每个小区至少安排 1 名同学24 先取 2 名同学看作一组,选法有:C 6现在可看成是 3 组同学分配到 3 个小区,分法有: A633根据分步乘法原理,可得不同的安排方法 66 36种 故答案为:36.【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分 析能力和计算能力,属于中档题.2 2 6 9. 【2020 年高考全国Ⅲ理数】 (x ) 的展开式中常数项是__________(用数字作答).x【答案】 240 【解析】 【分析】62写出 x 2 二项式展开通项,即可求得常数项.x 2 6【详解】 2xx 其二项式展开通项:r26rTCr 1r6x2 xC 6 rx 122r (2) x r r C 6r(2) x 123rr 当123r 0 ,解得 r 46x2 2 的展开式中常数项是:C 6 42 4 C 616 1516 240.2 x 故答案为: 240 .【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握a b 的展开n通项公式 Tr 1C r na n rb r ,考查了分析能力和计算能力,属于基础题.10.【2018年高考全国Ⅰ卷理数】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字填写答案)【答案】16C34 4种选法,从6名学生中任意选3人有C 3620种选法,【解析】根据题意,没有女生入选有故至少有1位女生入选,则不同的选法共有20416种,故答案为:16.【名师点睛】该题是一道关于组合计数的题目,并且在涉及到至多、至少问题时多采用间接法,即利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有2名女生分别有多少种选法,之后用加法运算求解.。
2012年高考数学试题分类汇编--计数原理
2012年高考真题理科数学解析汇编:计数原理一、选择题1 .(2012年高考(天津理))在251(2)x x-的二项展开式中,x 的系数为 ( ) A .10 B .10- C .40 D .40-2 .(2012年高考(新课标理))将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种 D .8种3 .(2012年高考(浙江理))若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( ) A .60种 B .63种 C .65种 D .66种4 .(2012年高考(重庆理))8的展开式中常数项为( )A .1635B .835 C .435 D .1055 .(2012年高考(四川理))方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A .60条B .62条C .71条D .80条6 .(2012年高考(四川理))7(1)x +的展开式中2x 的系数是( )A .42B .35C .28D .217 .(2012年高考(陕西理))两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种 B .15种 C .20种 D .30种8 .(2012年高考(山东理))现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( ) A .232 B .252 C .472 D .4849 .(2012年高考(辽宁理))一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 ( )A .3×3!B .3×(3!)3C .(3!)4D .9!10.(2012年高考(湖北理))设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =( ) A .0 B .1 C .11 D .1211.(2012年高考(大纲理))将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( ) A .12种 B .18种 C . 24种 D .36种12.(2012年高考(北京理))从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24 B .18 C .12 D .613.(2012年高考(安徽理))6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ( ) A .1或3 B .1或4 C .2或3 D .2或414.(2012年高考(安徽理))2521(2)(1)x x+-的展开式的常数项是 ( )A .3-B .2-C .2D .3二、填空题15.(2012年高考(浙江理))若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,,5a 为实数,则3a =______________.16.(2012年高考(重庆理))某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为_______(用数字作答).17.(2012年高考(上海理))在6)2(xx -的二项展开式中,常数项等于 _________ . 18.(2012年高考(上海春))若52345012345(21),x a a x a x a x a x a x -=+++++则012345a a a a a a +++++=___.19.(2012年高考(陕西理))5()a x +展开式中2x 的系数为10, 则实数a 的值为__________.20.(2012年高考(湖南理))()6的二项展开式中的常数项为_____.(用数字作答)21.(2012年高考(广东理))(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)22.(2012年高考(福建理))4()a x +的展开式中3x 的系数等于8,则实数a =_________. 23.(2012年高考(大纲理))若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为___________.2012年高考真题理科数学解析汇编:计数原理参考答案一、选择题 1. 【答案】D【命题意图】本试题主要考查了二项式定理中的通项公式的运用,并借助于通项公式分析项的系数.【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r rC x -,∴103=1r -,即=3r ,∴x 的系数为40-.2. 【解析】选A 甲地由1名教师和2名学生:122412C C =种3. 【答案】D【解析】1,2,2,,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种.∴不同的取法共有66种.4. 【答案】B【解析】841881()2r rr r r r r T C C x --+==,令404r r -=⇒=,故展开式中的常数项为4458135()28T C ==. 【考点定位】本题考查利用二项展开式的通项公式求展开公的常数项. 5. [答案]B[解析]方程22ay b x c =+变形得222bc y b a x -=,若表示抛物线,则0,0≠≠b a 所以,分b=-3,-2,1,2,3五种情况:(1)若b=-3,⎪⎪⎩⎪⎪⎨⎧-==-==-===-=2,1,0,233,1,0,2,23,2,0,2c ,13,2,1,0,2或或或,或或或或或或或或或c a c a a c a ; (2)若b=3,⎪⎪⎩⎪⎪⎨⎧-==-==-===-=2,1,0,233,1,0,2,23,2,0,2c ,13,2,1,0,2或或或,或或或或或或或或或c a c a a c a 以上两种情况下有9条重复,故共有16+7=23条;同理当b=-2,或2时,共有23条; 当b=1时,共有16条. 综上,共有23+23+16=62种[点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的18条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用. 6. [答案]D[解析]二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、=21C x 272=∴的系数为[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.7. 解析:先分类:3:0,3:1,3:2共计3类,当比分为3:0时,共有2种情形;当比分为3:1时,共有12428C A =种情形;当比分为3:2时,共有225220C A =种情形;总共有282030++=种,选D.8. 【解析】若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有64141414=⨯⨯C C C 种,若2色相同,则有14414241223=C C C C ;若红色卡片有1张,则剩余2张若不同色,有19214142314=⨯⨯⨯C C C C 种,如同色则有72242314=C C C ,所以共有4727219214464=+++,故选C.9. 【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有3!种排法,三个家庭共有33!3!3!(3!)⨯⨯=种排法;再把三个家庭进行全排列有3!种排法.因此不同的坐法种数为4(3!),答案为C【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题. 10.考点分析:本题考察二项展开式的系数.解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D. 11.答案A【命题意图】本试题考查了排列组合的用用.【解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有32212⨯⨯=. 12. 【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B. 【考点定位】 本题是排列组合问题,属于传统的奇偶数排列的问题,解法不唯一,需先进行良好的分类之后再分步计算,该问题即可迎刃而解.13. 【解析】选D261315132C -=-=①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人 14. 【解析】选D第一个因式取2x ,第二个因式取21x得:1451(1)5C ⨯-= 第一个因式取2,第二个因式取5(1)-得:52(1)2⨯-=- 展开式的常数项是5(2)3+-=二、填空题 15. 【答案】10【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++ 两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.16. 【答案】53 【解析】语文、数学、英语三门文化课间隔一节艺术课,排列有种排法,语文、数学、英语三门文化课相邻有3344A A 种排法,语文、数学、英语三门文化课两门相邻有3312122223A C C A C 种排法.故所有的排法种数有在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为3322113343222366235A A C A C C A p A +==. 【考点定位】本题在计数时根据具体情况运用了插空法,做题时要注意体会这些方法的原理及其实际意义.17. [解析] 展开式通项rr r r r r r r r r xC x x C T 2666612)1(2)1(---+-=-=,令6-2r =0,得r =3, 故常数项为1602336-=⨯-C .18. 119.解析:5()a x +展开式中第k 项为555kk k kT C a x -=,令2k =,2x 的系数为23510C a =,解得1a =.20. 【答案】-160【解析】(-)6的展开式项公式是663166C (C 2(1)rr r r rr r r T x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法.21.解析:20.621x x ⎛⎫+ ⎪⎝⎭的展开式通项为()621231661kk k k kk T C x C x x --+⎛⎫== ⎪⎝⎭,令1233k -=,解得3k =,所以621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为3620C =.22. 【答案】2【解析】r 414,3r r T C a x r -+==∵∴时,34348,=2C a a -=∴【考点定位】该题主要考查二项式定理、二项式定理的项与系数的关系,考查计算求解能力. 23.答案56【命题意图】本试题主要考查了二项式定理中通项公式的运用.利用二项式系数相等,确定了n 的值,然后进一步借助于通项公式,分析项的系数.【解析】根据已知条件可知26268n n C C n =⇔=+=,所以81()x x+的展开式的通项为818r r r T C x -+=,令8225r r -=-⇔=所以所求系数为5856C =.。
高考数学专题《两个计数原理》习题含答案解析
专题11.1 两个计数原理1.(2021·全国·高二单元测试)青铜神树是四川省广汉市三星堆遗址出土的文物,共有八棵,其中一号神树有三层枝叶,每层有三根树枝,树枝上分别有两条果枝,一条上翘、一条下垂,每层上翘的果枝上都站立着一只鸟,鸟共九只(即太阳神鸟).现从中任选三只神鸟,则三只神鸟来自不同层枝叶的选法种数为( )A .6B .18C .27D .36【答案】C【分析】按照分步乘法计数原理从每层枝叶各选一只神鸟即可得到答案.【详解】每只神鸟有3种选法,三只神鸟来自不同层枝叶的选法种数有33327⨯⨯=(种).故选:C.2.(2021·全国·高二课时练习)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,三位同学按甲、乙、丙的顺序依次选一个作为礼物,如果让三位同学选取的礼物都满意,那么不同的选法有()A .360种B .50种C .60种D .90种【答案】B【分析】首先根据题意分成第一类甲同学选择牛和第二类甲同学选择马,分别计算各类的选法,再相练基础加即可.【详解】第一类:甲同学选择牛,乙有2种选法,丙有10种选法,选法有1×2×10=20(种),第二类:甲同学选择马,乙有3种选法,丙有10种选法,选法有1×3×10=30(种),所以共有20+30=50(种)选法.故选:B.3.(2021·全国·高二课时练习)如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,则不同的涂色方法共有________种.(用数字作答)【答案】750【分析】由分步计数原理即得.【详解】首先给最左边的一个格子涂色,有6种选择,左边第二个格子有5种选择,第三个格子有5种选择,第四个格子也有5种选择,根据分步乘法计数原理得,共有6×5×5×5=750(种)涂色方法.故答案为:7504.(2021·全国·高二课时练习)如图所示,由连接正八边形的三个顶点而组成的三角形中与正八边形有公共边的三角形有________个.【答案】40【分析】根据分类加法计数原理即可求解.【详解】满足条件的有两类:第一类:与正八边形有两条公共边的三角形有m1=8个;第二类:与正八边形有一条公共边的三角形有m2=8×4=32个,所以满足条件的三角形共有8+32=40个.故答案为:405.(2021·全国·高二课时练习)1.计算:(1)将2封信投入4个邮箱,每个邮箱最多投一封,共有多少种不同的投法?(2)将2封信随意投入4个邮箱,共有多少种不同的投法?【答案】(1)12;(2)16【分析】(1)(2)用分步乘法原理求解.【详解】(1)将2封信投入4个邮箱,每个邮箱最多投一封,第一封信有4种选择,第二封有3种⨯=(种);选择,答案为4312⨯=(种).(2)将2封信随意投入4个邮箱,则每封信都有4种选择,所以共有44166.(2021·全国·高二课时练习)如图,把硬币有币值的一面称为正面,有花的一面称为反面.拋一次硬币,得到正面记为1,得到反面记为0.现抛一枚硬币5次,按照每次的结果,可得到由5个数组成的数组(例如若第一、二、四次得到的是正面,第三、五次得到的是反面,1,1,0,1,0,则可得不同的数组共有多少个?则结果可记为()【答案】32【分析】利用分步乘法计数原理求得正确答案.【详解】依题意可知不同的数组共有5⨯⨯⨯⨯==个.222222327.(2021·全国·高二课时练习)有不同的红球8个,不同的白球7个.(1)从中取出一个球,共有多少种不同的取法?(2)从中取出两个颜色不同的球,共有多少种不同的取法?【答案】(1)15(2)56【分析】(1)分别计算出取出一个红球、取出一个白球的方法种数,利用分类加法计数原理可得结果;(2)利用分步乘法计数原理可求得结果.(1)解:从中取出一个红球,有8种取法,从中取出一个白球,有7种取法,+=种不同的取法.由分类加法计数原理可知,从中取出一个球,共有7815(2)解:从中取出一个红球,有8种取法,从中取出一个白球,有7种取法,由分布乘法计数原理可知,从中取出两个颜色不同的球,共有7856⨯=种不同的取法. 8.(2021·全国·高二课时练习)有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,则有多少种不同的选法?(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?【答案】(1)16(种);(2)120(种).【分析】(1)利用分类加法原理求解(1)利用分步乘法原理求解【详解】(1)选1人,可分三类:第1类,从教师中选1人,有3种不同的选法;第2类,从男同学中选1人,有8种不同的选法;第3类,从女同学中选1人,有5种不同的选法.共有3+8+5=16(种)不同的选法.(2)选教师、男同学、女同学各1人,分三步进行:第1步,选教师,有3种不同的选法;第2步,选男同学,有8种不同的选法;第3步,选女同学,有5种不同的选法.共有3×8×5=120(种)不同的选法.9.(2021·全国·高二课时练习)若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?【答案】14条【分析】分类讨论A或B中有一个为0时和都不取0时的情况,根据计数原理即可求解.【详解】分两类完成:第一类:当A 或B 中有一个为0时,表示直线为x =0或y =0,共有2条;第二类:当A ,B 都不取0时,直线Ax +By =0被确定需分两步完成:第一步,确定A 的值,从1,2,3,5中选一个,共有4种不同的方法;第二步,确定B 的值,共有3种不同的方法.由分步乘法计数原理,共确定4×3=12(条)直线.由分类加法计数原理,方程所表示的不同直线有2+12=14(条).10.(2021·全国·高二课时练习)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.【答案】18种【分析】方法一:(直接法)分别考虑黄瓜种在第一块、第二块、第三块土地上的不同的种植方法,再运用加法原理可求得所有的不同种植方法.方法二:(间接法)先求得从4种蔬菜中选出3种,种在三块地上的不同的种植方法,再减去不种黄瓜的不同的种植方法,由此可求得答案.【详解】解:方法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同的种植方法.故不同的种植方法共有6×3=18(种).方法二:(间接法)从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有不同的种植方法24-6=18(种).1.(2020·江苏扬州中学高一月考)已知集合,若A ,B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数为( )A .49B .48C .47D .46【答案】A【解析】集合知:1、若A 中的最大数为1时,B 中只要不含1即可:的集合为,而有 种集合,集合对(A ,B )的个数为15;2、若A 中的最大数为2时,B 中只要不含1、2即可:{}1,2,3,4,5P ={}1,2,3,4,5P =A {1}B 42115-=练提升的集合为,而B 有种,集合对(A ,B )的个数为;3、若A 中的最大数为3时,B 中只要不含1、2、3即可:的集合为,而B 有种,集合对(A ,B )的个数为;4、若A 中的最大数为4时,B 中只要不含1、2、3、4即可:的集合为,而B 有种,集合对(A ,B )的个数为;∴一共有个,故选:A2.(2021·全国·高二课时练习)一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n (n ≥3,n ∈N *)等份,种植红、黄、蓝三种颜色不同的花,要求相邻两部分种植不同颜色的花.(1)如图①,圆环分成3等份,分别为a 1,a 2,a 3,则有多少种不同的种植方法?(2)如图②,圆环分成4等份,分别为a 1,a 2,a 3,a 4,则有多少种不同的种植方法?【答案】(1)6种;(2)18种.【分析】(1)利用分步计数原理求解即可.(2)首先根据题意分成两类:第一类a 1,a 3不同色和第二类a 1,a 3同色,分别计算各类的得数再相加即可.【详解】(1)先种植a 1部分,有3种不同的种植方法,再种植a 2,a 3部分.因为a 2,a 3与a 1的颜色不同,a 2,a 3的颜色也不同,所以由分步乘法计数原理,不同的种植方法有3×2×1=6(种).(2)当a 1,a 3不同色时,有3×2×1×1=6(种)种植方法,A {2},{1,2}3217-=2714⨯=A {3},{1,3},{2,3},{1,2,3}2213-=4312⨯=A {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}1211-=818⨯=151412849+++=当a 1,a 3同色时,有3×2×1×2=12(种)种植方法,由分类加法计数原理得,共有6+12=18(种)种植方法.3.(2021·全国·高二单元测试)已知集合{}3,2,1,0,1,2M =---,()(),,P a b a b M ∈表示平面上的点,问:(1)P 可表示平面上多少个第二象限的点?(2)P 可表示多少个不在直线y x =上的点?【答案】(1)6(个);(2)30(个).【分析】(1)由分步乘法原理求第二象限的点的个数,(2)依次确定横坐标和纵坐标的可能取法,由分步乘法原理求不在直线y x =上的点的个数.【详解】(1)因为P 表示平面上第二象限的点,故可分两步:第一步,确定a ,a 必须小于0,则有3种不同的情况;第二步,确定b ,b 必须大于0,则有2种不同的情况;根据分步乘法计数原理,第二象限的点共有326⨯=(个).(2)因为P 表示不在直线y x =上的点,故可分两步:第一步,确定a ,有6种不同的情况;第二步,确定b ,有5种不同的情况.根据分步乘法计数原理,不在直线y x =上的点共有6530⨯=(个).4.(2021·全国·高二单元测试)某同学计划用不超过30元的现金购买笔与笔记本.已知笔的单价为4元,笔记本的单价为5元,且笔至少要买2支,笔记本至少要买2本,问不同的购买方案有多少种?【答案】7【分析】根据分类加法计数原理求解即可.【详解】设购买笔x 支,笔记本y 本,则453022x y x y +≤⎧⎪≥⎨⎪≥⎩,得305242y x y -⎧≤≤⎪⎨⎪≥⎩,将y 的取值分为三类:①当2y =时,25x ≤≤,因为x 为整数,所以x 可取2,3,4,5,共4种方案.②当3y =时,1524x ≤≤,因为x 为整数,所以x 可取2,3,共2种方案;③当4y =时,522x ≤≤,因为x 为整数,所以x 只能取2,只有1种方案.由分类加法计数原理得不同的购买方案有4217++=(种).5.(2021·全国·高二课时练习)如图所示,有些共享单车的密码锁是由4个数字组成的,你认为共享单车的密码锁能设置成由3个数字组成吗?5个数字呢?为什么?【答案】3个数字的不合适,5个数字的合适;【分析】根据分步乘法计数原理求出所有的密码组合数,再根据概率分析可行性;【详解】解:如设成3个数字,则一共有1010101000⨯⨯=种组合,组合数不是很大,随便尝试一次开锁,打开锁的概率11000P =,打开锁的概率比较大,不合适;如设成5个数字,则一共有1010101010100000⨯⨯⨯⨯=种组合,组合数比较大,随便尝试一次开锁,打开锁的概率1100000P =,打开锁的概率比较小,合适;6.(2021·全国·高二课时练习)过三棱柱任意两个顶点的直线共15条,其中异面直线有多少对?【答案】36【分析】如图,分四类进行计数,求出对应的数目,加起来即可.【详解】如图,在三棱柱111ABC A B C -中,分四类进行计数:与上底面111111A B A C B C ,,异面的直线有35=15⨯对;与下底面的AB AC BC ,,异面的直线有9对(除去与上底面的);与侧棱111AA BB CC ,,异面的直线有6对(除去与下底面的);侧面对角线之间成异面直线的有6对.由分类加法计数原理,知共有异面直线共有15966=36+++对.7.(2021·全国·高二课时练习)计算(1)用1,2,3,4,5,6可以排成多少个数字不重复的两位数?(2)用1,2,3,4,5,6可以排成多少个数字可以重复的两位数?【答案】(1)30(2)36【分析】(1)用数字1,2,3,4,5,6可组成没有重复数字的两位数,用两步完成,第一步十位数字有6种选择,然后第二步个位数字在剩下的5个数字中选择有5种方法,运用乘法原理,即可得解,(2)按照分步乘法计数原理计算可得;(1)解:第一步十位数字有6种选择,然后第二步个位数字在剩下的5个数字中选择有5种方法,运用乘法原理得6530⨯=.所以可以排成30个不重复的两位数;(2)解:第一步十位数字有6种选择,然后第二步个位数字有6种选择,运用乘法原理得6636⨯=.所以可以排成36个可以重复的两位数;8.(2021·全国·高二课时练习)已知n 是一个小于10的正整数,且由集合{},A x x x n =∈≤N 中的元素可以排成数字不重复的两位数共25个,求n 的值.【答案】5【分析】用列举法表示集合A ,再按照分步乘法计数原理得到方程,解得即可;【详解】解:因为n 是一个小于10的正整数,且{},A x x x n =∈≤N ,所以{}0,1,2,,A n = ,所以从集合A 中的元素选出两个数组成两位数,则十位有n 种选法,个位有11n +-种选法,按照分步乘法计数原理可得一共有()11n n +-个,所以()1125n n +-=,解得5n =或5n =-(舍去)9.(2021·全国·高二课时练习)(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有多少种报名方法?(3)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?【答案】(1)81(种);(2)24(种);(3)64(种).【分析】由分步乘法计数原理即得.【详解】(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,4人都报完才算完成,所以按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有3×3×3×3=81(种)报名方法.(2)每项限报一人,且每人至多报一项,因此跑步项目有4种选法,跳高项目有3种选法,跳远项目只有2种选法.根据分步乘法计数原理,可得不同的报名方法有4×3×2=24(种).(3)要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,所以应以“确定三项冠军得主”为线索进行分步,而每项冠军的得主有4种可能结果,所以共有4×4×4=64(种)可能的结果.10.(2021·全国·高二课时练习)“回文数”是指从左到右读与从右到左读都一样的正整数.如22,121,343,94249等.显然,2位数的回文数有9个,即11,22,33,…,99;3位数的回文数有90个:101,111,121,…,191,202,…,999.求:(1)4位数的回文数个数;(2)21n +位数的回文数个数.【答案】(1)90(2)910n⨯【分析】(1)对于4位数的回文数,只需排好前2位即可确定回文数,首先列举出第一项为1的四位回文数的个数,即可知所有4位数的回文数个数;(2)根据题设,对于奇数个数的回文数,先排好中间的数字,再在两侧对其中一侧排数即可得所有回文数的个数.(1)由题设,四位数回文:1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,...∴共有90个.(2)n+位数,则中间的数字有10种选法,而两侧的数字只需排好一侧,则另一侧确定,21n-都有10种选法,不妨排前n位数字,显然第一位数字有9种选法,其余1∴共有910n⨯个回文数.练真题1.(山东省2018年普通高校招生(春季))景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走法的种数是()A. 6 B. 10 C. 12 D. 20【答案】C【解析】先确定从那一面上,有两种选择,再选择上山与下山道路,可得不同走法的种数是2×2×3 =12.因此选C.2.(2013·山东高考真题(理))用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.279【答案】B【解析】由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=252.3.(2012·北京高考真题(理))从0,2中选一个数字.从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A.24 B.18 C.12 D.6【答案】B【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况.4.(2016全国甲理5)如图所示,小明从街道的处出发,先到处与小红会合,再一起到位于处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【答案】B 【解析】从的最短路径有种走法,从的最短路径有种走法,由乘法原理知,共种走法.故选B .5.(2012·四川高考真题(文))方程ay =b 2x 2+c 中的a,b,c ∈{−2,0,1,2,3},且a,b,c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A .28条B .32条C .36条D .48条【答案】B【解析】方程ay =b 2x 2+c 变形得,若表示抛物线,则所以,分b=-2,1,2,3四种情况:(1)若b=-2,; (2)若b="2,"以上两种情况下有4条重复,故共有9+5=14条;同理 若b=1,共有9条; 若b=3时,共有9条.综上,共有14+9+9=32种6.(2011·安徽高考真题(理))设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且S B ≠∅ 的集合S 的个数为( )A .57B .56C .49D .8【答案】B【解析】E FG E F →6F G →36318⨯=由题意可知集合S 可以表示为S M N = 的形式,其中M 为集合{}1,2,3的非空子集,N 为集合{}4,5,6的非空子集,由子集个数公式可得,集合M 的个数为7个,集合N 的个数为7个,则集合S 的个数为7856⨯=个.故选:B .。
高考数学复习 专题14 计数原理(解析版)
专题14计数原理考纲解读三年高考分析1.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.3.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.排列组合的运用和二项式定理是考查的重点,解题时常用到二项式展开式的通项公式,排列数和组合数的计算,考查学生的数学逻辑推理能力、数学运算能力,题型以选择填空题为主,中等难度.以理解和应用排列、组合的概念为主,常常以实际问题为载体,考查分类讨论思想,考查分析、解决问题的能力,题型以选择、填空为主,难度为中档.1.【2019年新课标3理科04】(1+2x2)(1+x )4的展开式中x3的系数为()A.12 B.16 C .20 D .24 【解答】解:(1+2x2)(1+x)4的展开式中x3的系数为:1212.故选:A.2.【2018年新课标3理科05】(x2)5的展开式中x4的系数为()A.10 B.20 C.40 D.80 【解答】解:由二项式定理得(x2)5的展开式的通项为:T r+1(x2)5﹣r()r,由10﹣3r=4,解得r=2,∴(x2)5的展开式中x4的系数为40.故选:C.3.【2017年新课标1理科06】(1)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1)(1+x)6展开式中:若(1)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1)(1+x)6展开式中x2的系数为:15+15=30.故选:C.4.【2017年新课标2理科06】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:636种.故选:D.5.【2017年新课标3理科04】(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80【解答】解:(2x﹣y)5的展开式的通项公式:T r+1(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.∴(x+y)(2x﹣y)5的展开式中的x3y3系数=22×(﹣1)32340.故选:C.6.【2019年天津理科10】(2x)8的展开式中的常数项为.【解答】解:由题意,可知:此二项式的展开式的通项为:T r+1(2x)8﹣r•28﹣r•()r•x8﹣r•()r•(﹣1)r28﹣4r•x8﹣4r.∴当8﹣4r=0,即r=2时,T r+1为常数项.此时T2+1•(﹣1)228﹣4×2=28.故答案为:28.7.【2019年浙江13】在二项式(x)9展开式中,常数项是,系数为有理数的项的个数是.【解答】解:二项式的展开式的通项为.由r=0,得常数项是;当r=1,3,5,7,9时,系数为有理数,∴系数为有理数的项的个数是5个.故答案为:,5.8.【2018年江苏06】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P0.3,故答案为:0.39.【2018年新课标1理科15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:1610.【2018年浙江14】二项式()8的展开式的常数项是.【解答】解:由.令0,得r=2.∴二项式()8的展开式的常数项是.故答案为:7.11.【2018年浙江16】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.12.【2018年上海03】在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).【解答】解:二项式(1+x)7展开式的通项公式为T r+1•x r,令r=2,得展开式中x2的系数为21.故答案为:21.13.【2018年天津理科10】在(x)5的展开式中,x2的系数为.【解答】解:(x)5的二项展开式的通项为.由,得r=2.∴x2的系数为.故答案为:.14.【2017年浙江13】已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.15.【2017年浙江16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:66016.【2017年上海02】若排列数6×5×4,则m=.【解答】解:∵排列数6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.17.【2017年天津理科14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)【解答】解:根据题意,分2种情况讨论:①、四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,组成一共四位数即可,有A54=120种情况,即有120个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有C53•C41=40种取法,将取出的4个数字全排列,有A44=24种顺序,则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个;故答案为:1080.18.【2019年江苏24】设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1)n=a+b,其中a,b∈N*,求a2﹣3b2的值.【解答】解:(1)由(1+x)n=C C x+C x2+…+C x n,n≥4,可得a2=C,a3=C,a4=C,a 32=2a 2a 4,可得()2=2••,解得n =5;(2)方法由于a ,b ∈N *,可得a =C 3C 9C 1+30+45=76,b =C 3C 9C 44,可得a 2﹣3b 2=762﹣3×442=﹣32; 方法(1)5=CC ()+C ()2+C()3+C()4+C()5=CCC()2﹣C()3+C ()4﹣C()5,由于a ,b ∈N *,可得(1)5=a ﹣b,可得a 2﹣3b 2=(1)5•(1)5=(1﹣3)5=﹣32.1.【安徽省蚌埠市2019届高三年级第三次教学质量检查】若二项式61nx x x ⎛⎫- ⎪⎝⎭的展开式中含有常数项,则n 的值可以是( ) A .8 B .9 C .10 D .11【答案】C 【解析】二项式61nx x x ⎛⎫- ⎪⎝⎭的第1r +项为:33(45)6221()(1)()(1)n r r n r r r r r r n n T C x x C x ---+=⋅-⋅=⋅-⋅,由题意可知含有常数项,所以只需450n r -=,对照选项当10n =时,8r =,故本题选C. 2.【四川省内江市2019届高三第三次模拟考试】已知的展开式的各项系数和为32,则展开式中的系数为( ) A .20 B .15C .10D .5【答案】D 【解析】由题意知的展开式的各项系数和为32,即,解得,则二项式的展开式中的项为,所以的系数为5,故选D 。
高考数学考点44 分类加法计数原理与分步乘法计数原理、排列与组合
温馨提示:考点44 分类加法计数原理与分步乘法计数原理、排列与组合一、填空题1.(2018·浙江高考T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答) 【命题意图】考查排列组合的简单应用.【解析】分类讨论:第一类:不含0的,按照分步乘法计数原理: =10×3×24=720;第二类:包含0的,按照分步乘法计数原理:=10×3×3×6=540,所以一共有1260个没有重复数字的四位数.答案:12602.(2018·全国卷I高考理科·T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【解题指南】本题是一道关于组合计数的题目,并且在涉及至多至少问题时多采用间接法,间接法是得出选3人的选法总数,利用总的减去没有女生入选的选法种数,该题还可以用直接法,分别求出有1位女生和有2位女生入选分别有多少种选法,之后相加求解.【解析】方法一:根据题意,没有女生入选有=4种选法,从6名学生中任意选3人有=20种选法,故至少有1位女生入选的选法共有20-4=16种.方法二:恰有1位女生,有=12种,恰有2位女生,有=4种,所以不同的选法共有12+4=16种.关闭Word 文档返回原板块高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一()()()()card A B card B C card C A card A B C ---+个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系互 否若非p则非q 互逆 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+0()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式 3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理 2sin sin sin a b cR A B C ===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈. 57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ). 65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大. 73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式 (1)()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>.(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行;(4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA y MB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉=.推论 222222*********3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量) 128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+. 特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+. 特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.146.球的半径是R ,则其体积343V R π=,其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为,外接球的半径为4a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++.150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=nC . 155.组合恒等式 (1)11m m n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .(6)n nn r n n n nC C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n nC C C C C C . (8)1321232-=++++n n n n n nn nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n nn p n p n n n m p m C C C N mm=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,mn 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+-.推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m pmm m m mmmp m n n n n n nC C C C C C n A A A A A A =-+-+-+-++-.160.不定方程2n x x x m =1+++的解的个数(1)方程2n x x x m =1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m =1+++(,n m N *∈)的非负整数解有 11n m n C +--个. (3) 方程2n x x x m =1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十四、计数原理
1.(重庆理4)
(13)(6)n x n N n +∈其中且≥的展开式中56x x 与的系数相等,则n= A .6
B .7
C .8
D .9 【★答案★】B 2.(天津理5)
在
62⎛⎫- ⎝的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .38
【★答案★】C
3.(四川理12)在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量
(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记
所有作成的平行四边形的个数为n ,其中面积不超过4的平行四边形的个数为m ,则m n =
A .415
B .13
C .25
D .2
3
【★答案★】D
基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3),3515n C ==⨯=由其中面积为1的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1)其中面积为2的平行四边形的个数为
(2,3)(2,5);(2,1)(2,3)其中面积为3的平行四边形的个数(2,3)(4,3);(2,1)(4,5)其中面积
为4的平行四边形的个数(2,1)(2,5);(4,1)(4,3);(4,3)(4,5)其中面积为5的平行四边形的
个数(2,3),(4,1);(2,5)(4,5);其中面积为7的平行四边形的个数(2,5),(4,3)
其中面积为8的平行四边形的个数(4,1)(4,5)其中面积为9的平行四边形的个数(2,5),(4,1) 4.(陕西理4)6(42)x x --(x ∈R )展开式中的常数项是
A .-20
B .-15
C .15
D .20
【★答案★】C 5.(全国新课标理8)
5
1()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为 (A )—40 (B )—20 (C )20 (D )40
【★答案★】D
6.(全国大纲理7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位
朋友每位朋友1本,则不同的赠送方法共有
A .4种
B .10种
C .18种
D .20种
【★答案★】B
7.(福建理6)(1+2x )3的展开式中,x 2的系数等于
A .80
B .40
C .20
D .10
【★答案★】B
8.(安徽理8)设集合
{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠I 的集合S 为
(A )57
(B )56 (C )49 (D )8
【★答案★】B
9.(安徽理12)设
21
21
2
2
1
21
)1
(x
a
x
a
x
a
a
x+
+
+
+
=
-Λ,则a a
1011
+=.
【★答案★】0
10.(北京理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有
__________个。
(用数字作答)
【★答案★】14
11.(浙江理13)设二项式(x-x)6(a>0)的展开式中X的系数为A,常数项为B,
若B=4A,则a的值是。
【★答案★】2
12.(山东理14)若
6
()
a
x-
展开式的常数项为60,则常数a的值为.
【★答案★】4
13.(广东理10)
7
2
x x
x
⎛⎫
-
⎪
⎝⎭的展开式中,4x的系数是(用数字作答)
【★答案★】84
14.(湖北理11)
18
3
x
x
⎛
-
⎪
⎝⎭的展开式中含15x的项的系数为(结果用数值表示)
【★答案★】17
15.(湖北理15)给n个自上而下相连的正方形着黑色或白色。
当4
n≤时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:
由此推断,当6
n=时,黑色正方形互不相邻的着色方案共有种,至少有两个黑色正方形相邻的着色方案共有种,(结果用数值表示)
【★答案★】21 ;43
16(全国大纲理13)(x20的二项展开式中,x的系数与x9的系数之差为: .【★答案★】0。