解析几何-三角形面积相关最值问题

合集下载

28.三角形中的最值(或范围)问题

28.三角形中的最值(或范围)问题

三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。

其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。

类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中 ,,a b c 分别是内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++. (1) 求角A 的大小;(2)求sin sin B C +的最大值. 解:已知2sin (2)sin (2)sin a A b c B c b C =+++,根据正弦定理,得22(2)(2)a b c b c b c =+++,即222a b c bc =++又2222cos a b c bc A =+-,∴1cos 2A =-,在△ABC 中可求得120A =故sin sin sin sin(60)B C B B +=+-=1sin sin(60)22B B B +=+ 故当30B =时,sin sin BC +的最大值为1变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边.(1) 求角C 的大小;(2)求sin sin A B +的最大值.解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)OA B A A +=+-+A)所以当A=30时,sin sin A B +变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。

浅谈解析几何中最值和参数范围问题的求解策略

浅谈解析几何中最值和参数范围问题的求解策略

浅谈解析几何中最值和参数范围问题的求解策略作者:陆爱莲来源:《教育教学科研》2013年第03期作者简介:陆爱莲,2002年毕业于广西师范大学数学教育专业,大学本科学历,理学学士,同年9月至今任教于马山中学,2008年12月获得中学一级教师资格。

积极参加教研教改活动,所撰写的论文多次在省、国家级论文评选中获二、三等奖。

【摘要】:解析几何中的最值和参数范围问题是高中数学的重要内容.其主要特点是综合性强,在解题中几乎处处涉及函数与方程、不等式、三角等内容.因此,在教学中应重视对数学思想、方法进行归纳提炼,如方程思想、函数思想、参数思想、数形结合的思想、对称思想、整体思想等思想方法,达到优化解题思维、简化解题过程的目的.本文通过对一些典型例题的分析和解答,归纳了解析几何中常见的解决最值和参数范围问题的思想方法,总结了解答典型例题的具体规律,并提供了一些常用的解题方法、技能与技巧。

【关键词】:解析几何最值问题参数范围求解策略解析几何中涉及最值和参数范围问题常有求面积、距离最值、参数范围问或与之相关的一些问题;求直线与圆锥曲线中几何元素的最值或与之相关的一些问题。

我们可以从两个方面来研究圆锥曲线的最值和参数范围问题,一方面用代数的方法研究几何,题中涉及较多数字计算与字母运算,对运算及变形的能力要求较高,用代数的方法解决几何;另一方面要善于从曲线的定义、性质等几何的角度思考,利用数形结合的思想解决问题。

一、代数法:借助代数函数求最值和参数取值范围的方法。

运用代数法时,先要建立“目标函数”,然后根据“目标函数”的特点灵活运用求最值。

常用的方法有: 1.配方法。

由于二次曲线的特点,所求“目标函数”的表达式常常和二次函数在某一个闭区间上的最值联系紧密,这时可对二次函数进行配方,并根据顶点的横坐标结合区间的端点确定所求函数的最值。

1、已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1。

《周长固定三角形面积的最大值》

《周长固定三角形面积的最大值》

《周长固定三角形面积的最大值》——数学建模一例谈到,周长固定围成面积的问题,许多人会想到正方形和二次函数。

好吧,就从矩形开始吧!问题是这样的,说有一根长度固定为L的绳子,现在要围成一个矩形,问:什么样的矩形面积才是最大的?首先,我们要建立数学模型!那么什么是矩形呢?它有些什么性质呢?初等几何说:有一个角位直角(90°或者π/2)的平行四边形,叫做矩形。

那么什么是平行四边形呢?它有些什么性质呢?几何又说:两组对边分别平行的四边形,叫做平行四边形。

其中,平行四边形有一条重要的性质:平行四边形的对边相等。

好了,现在我们对矩形也有一个印象了。

简单来说是一个,四条互相垂直的线段组成的东西。

而且我们知道它的面积公式:s=a*b,由平行四边形的性质:平行四边形的对边相等。

可知它的周长公式:L=2*(a + b)。

有了这些,就可以建模分析了:首先,我们分析L=2*(a + b),经过简单的变形处理(+、-、*、/)有:b=L/2-a 要注意条件,a是不为0的,即(a>0)。

现在,把b=L/2-a 代入s=a*b 就有:s=a*( L/2-a)= -a^2+ (L/2) *a (a>0);这是关于a的一个二次函数,并且A=-1<0,函数s有最大值。

微积分的解法:因为:s= -a^2+ (L/2) *a (a>0),所以s`=-2a+L/2 (a>0)令s`=0有:2a= L/2 所以a= L/4。

所以Smax = L/4(L/2- L/4)= L^2/16 max:最大值 b=a= L/4 (此时,矩形为正方形) 也可以用不等式:因为 (a - b)^2≥0,又因(a - b)^2=(a + b)^2-4ab,所以有:(a + b)^2-4ab≥0 即a*b≤(a + b)^2/4 当a=b,去“=”,s有最大值因为: a + b= L/2,s=a*b 所以:s≤(L/2)^2/4= L^2/16 。

过定点与坐标轴围成的三角形面积最小问题

过定点与坐标轴围成的三角形面积最小问题

过定点与坐标轴围成的三角形面积最小问题1.引言在平面解析几何中,经常会遇到求解围成的三角形面积的问题。

本文将围绕着过定点与坐标轴围成的三角形面积最小问题展开讨论。

我们将从基本原理开始,逐步推导出解决该问题的方法。

2.问题描述给定一个坐标轴上的一点P(x,y),以及坐标轴上的两个端点A(0,0)和B(a,0),其中a为正实数。

我们的目标是找到通过点P的直线与坐标轴围成的三角形A BC,使得该三角形的面积最小。

3.解决方法为了解决这个问题,我们可以按照以下步骤进行推导。

3.1建立坐标轴表示首先,我们可以将问题抽象为在坐标系中求解面积最小的三角形。

我们以P点在坐标系的位置为起点,建立坐标轴表示。

3.2确定点B的坐标由于点B在坐标轴上,且横坐标为a,纵坐标为0,我们可以确定B的坐标为B(a,0)。

3.3确定点C的坐标为了求得面积最小的三角形A BC,我们需要确定点C在坐标系中的位置。

由于P点在过点C的直线上,我们可以假设点C的坐标为C(c,0),其中c为正实数。

3.4确定三角形面积根据解析几何的面积公式,我们可以计算出三角形AB C的面积S为:S=0.5*|x*0-0*c+a*c-x*0|经过计算化简,可以得到:S=0.5*a*c3.5最小化面积为了使三角形AB C的面积最小,我们需要找到使S最小的c值。

由于c为正实数,所以我们可以对S进行求导,然后令导数为0,解得最小值。

3.6求解最小面积对S=0.5*a*c求导,并令导数为0,我们可以得到c的值:0.5*a*c'=0解得c'=0,即c为任意的正实数。

这说明无论c取多少,都不会改变S的最小值。

3.7结论根据上述推导,我们可以得出结论:过定点与坐标轴围成的三角形面积最小的条件是无论c取多少,c为任意的正实数。

4.总结通过以上推导,我们解决了过定点与坐标轴围成的三角形面积最小问题。

我们发现,无论点C在坐标系中的位置如何,三角形A BC的面积都不会改变。

解析几何法巧解三角形的范围问题

解析几何法巧解三角形的范围问题

b
n+1+c
n+1=
b
n+c 2
n
+a1,
所以b n+1+c n+1-2a1=
1(b 2
n+c
n-2a1)=…=
21n(b 1+c 1-2a1)=0援
所以bn+cn=2a1援 淤
因为bn+1-cn+1=- 12(bn-cn),所以{bn-cn}是以b1-c1为首
蓸 蔀 项,-
1 2
为公比的等比数列,bn-cn=(b1-c1) -
2
2
姨3 援 解法2院如图1,以A B的中点为
原点O,直线A B为x轴建立平面直 角 坐 标 系 ,则 A(-1,0),B(1,0).
y C
A
B
-2 -1 O 1 x
设C(x,y)(y屹0),据题意,a=姨 3 b,
求 得 点 C 的 轨 迹 方 程 为(x +2)2+
图1
y2=3,S=
1 2
|A B||y|=|y|,易知x=-2时S取到最大值 姨
a1|yn|,故{Sn}为递增数列援
例4 (2016年咸阳市二模·理
16)如图5,在 吟A BC中,O是外 接 圆
的圆心,若OB·OC=- 1 ,A = 仔 ,则
2
3
B
吟A BC周长的最大值为_____援
解法1院设吟A BC外接圆的半径
A 仔 O3
a= 姨 3 C 图5
为R.由OB·OC=R2cos
b1>c
1,b 1+c 1=2a1,an+1=an,b n+1=
an+c n 2

怎样解答三角形中的最值问题

怎样解答三角形中的最值问题

思路探寻解三角形中的最值问题一般与三角形的边、角、面积有关.要想顺利解答此类问题,同学们需首先根据题意,灵活运用正余弦定理、三角恒等变换的技巧求出并化简目标式,然后通过边角互化、构造几何图形、坐标运算等来求得最值.一、通过边角互化求最值通过边角互化,可将解三角形中的最值问题转化为三角函数最值问题,灵活运用三角恒等变换的技巧和三角函数的性质便可求得最值.例1.已知三角形ABC 的面积为S ,角A ,B ,C 所对的边分别为a ,b ,c .若10c 2+5a 2=4b 2,则20S15a 2+6b 2的最大值是.解:根据题意将10c 2+5a 2=4b 2进行变形可得15a 2+6b 2=10a 2+10b 2-10c 2,由余弦定理得10a 2+10b 2-10c 2=10(a 2+b 2-c 2)=20ab cos C ,所以20S 15a 2+6b 2=10ab sin C 20ab cos C =12tan C,而cos C =a 2+b 2-c 22ab =32a 2+35b 22ab ,所以cos C ≥310,当且仅当5a 2=2b 2时,“=”成立,所以tan C ≤13,故20S 15a 2+6b 2=12tan C ≤16,即20S 15a 2+6b2的最大值是16.在解答本题时,我们需将已知关系式与目标式关联起来,根据余弦定理将边化为角.在得到角C 的表达式后,根据基本不等式求得cos C 的最值,进而求得目标式的最值.二、通过构造几何图形求最值.在解答解三角形最值问题时,我们可以根据题意,构造出合适的几何图形,通过解直角三角形来求得问题的答案.很多解三角形问题都可通过作高构造直角三角形来求解,这样能使问题得以简化.例2.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C 的最小值为.解析:我们可以根据题意画出三角形,作出高线,将斜三角形化为直角三角形,根据三角函数的定义把对应的正弦、正切值表示出来,利用两角和的正切公式和基本不等式求得最值.解:由正弦定理得2a 2+b 2=2c 2.如图,作BD ⊥AC 于D ,设AD =x ,CD =y ,BD =h .因为2a 2+b 2=2c 2,所以2()y 2+h 2+()x +y 2=2()x 2+h 2,化简得x =3y .又1-tan A tan C tan A -tan C =-1tan B ,则1tan A +1tan B +1tan C=1tan A +1tan C +tan A tan C -1tan A +tan C=x h+y h +h 2xy -1h x +h y=13y 4h +h 4y ≥当且仅当13y 2=h 2时等号成立.三、通过坐标运算求最值.通过坐标运算求解三角形中最值问题的关键是根据题意建立合适的直角坐标系.一般需结合三角形的特点,如等边、等腰三角形的对称性、直角三角形的两条直角边垂直等来建立坐标系.通过坐标运算,可将问题转化为解析几何问题.例3.在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2+2c 2=8,则ΔABC 的面积的最大值为.解:以AB 的中点为原点,AB 所在直线为x 轴,建立平面直角坐标系.设A æèöø-c 2,0,B æèöøc2,0,C ()x ,y ,由a 2+b 2+2c 2=8,得æèöøx -c 22+y 2+æèöøx +c 22+y 2+2c 2=8,即x 22=4-54c 2,所以点C 在以原点()0,0为圆心为半径的圆上,所以S ≤=ùûúæèöø4-54c 2+54c 2≤.我们通过坐标运算求得A 点的轨迹,然后根据圆的性质和基本不等式即可求得ΔABC 的面积的最大值.我们可以通过边角互化、构造几何图形、坐标运算来将问题转化为三角函数、平面几何、解析几何问题,借助三角函数的性质、平面几何和解析几何知识来求得最值.(作者单位:福建师范大学第二附属中学)D x y54 Copyright©博看网 . All Rights Reserved.。

圆助攻,巧解三角形最值问题

圆助攻,巧解三角形最值问题

2021345圆助攻,巧解三角形最值问题广东省佛山市第四中学(528000)黄仪解三角形中的最值问题,一般是利用正余弦定理,结合基本不等式,或三角函数的有界性,二次函数的最值等方法求解,但通常会推导过程繁冗,计算量大,容易出错,尤其是选择填空题,做题耗时过多,得不偿失.三角形中角度和边长的变化,其实就是平面几何中点和线的变化,能否跳出知识的局限,利用平面几何辅助解题?平面几何中的圆,由于其半径和圆心角,圆周角的特性,往往成为一个很好的解题助力工具.一、角的转化三角形中,当点动而角不变时,如果定角所对的边也是定值,求最值问题时,可将角转化为同圆中同弧所对的圆周角或圆心角,利用同弧所对的圆周角或圆心角不变的性质,化动为静.例1(2014高考新课标Ⅰ卷理科)已知a,b,c 分别为∆ABC 的三个内角A,B,C 的对边,a =2且(2+b )(sin A −sin B )=(c −b )sin C ,则∆ABC 的面积的最大值为.解由正弦定理,(2+b )(sin A −sin B )=(c −b )sin C 即(2+b )(a −b )=c (c −b ),将a =2代入整理得b 2+c 2−a 2=bc ,所以cos A =b 2+c 2−a 22bc =12,A =π3.边a 为定长2,角A 为π3定值,构造∆ABC 外接圆O ,则点A 可看作圆O中所对的圆周图1角∠BAC 的顶点,由垂径定理易知当AO ⊥BC 时,∆ABC的面积最大,为√3.评析这是一道求面积最值的经典题目,方法多样.构造圆,利用几何辅助解题是最灵活,计算量最少的解法.通过角度不变,点A 可看作在圆周上运动,角A 两边长的变化转化为三角形高的变化,求面积的最值即求高的最值.例2∆ABC 中,∠ABC =90◦,AC =2BC =2√3,P 是∆ABC 内一动点,∠BP C =120◦,则AP 的最小值为.解以BC 为x 轴,BA 为y 轴建立平面直角坐标系,构造圆O ,使BC 为圆O 的弦,∠BP C 为优弧BC 所对的圆周角恒为120◦,则点P 的运动轨迹为弧BC .线段AP 的最小值就转化为点A 到弧BC 的距离的图2最小值.由BC =√3,圆心角∠BOC =120◦易知O点坐标为(√32,−12),圆O 半径为2,则AP 的最小值=|OA |−|OP |=√13−1.评析此处巧妙地用了平面几何与解析几何中圆的性质.首先由动点P 形成的角为定值,将点动转化为角动,根据角度不变构造出同弧所对的圆周角,再将AP 的值转化为点到圆的位置关系求解,利用坐标系大大简化了计算量.垂足为A ,则tan (α+β)=AC OA.因此,只需要利用α,β的正切线表示ACOA即可.过点C 作CD 垂直于BT ,并交BT 的延长线于点D ,则AB =CD ,AC =BD .注意到∠CT D =α,故在Rt ∆T DC中,由sin α=CD T C 知CD =tan αtan β;由cos α=T DT C知T D =tan β.在Rt ∆OAC 中,根据正切的定义及三角函数线可知tan (α+β)=AC OA =BT +T D OB −CD =tan α+tan β1−tan αtan β,即tan (α+β)=tan α+tan β1−tan αtan β.本文通过三角函数线推导三角公式,从而实现复杂、抽象的三角公式可视化.这种直观呈现的方式,能够激发学生的学习兴趣、培养学生的创造性思维,使得数学知识的学习变得简单、自然、易于理解.参考文献[1]王位高.透析常见误区优化公式教学[J].中学数学研究(华南师范大学版),2013(15):22-24.[2]李小华,邵琼.“教学关键点”视角下培养学生数学核心素养的实践与思考—–以“任意角的三角函数”为例[J].中学数学研究(华南师范大学版),2020(18):14-16+44.4620213二、边的转化三角形中,点动,角变,而边不变,结合圆中的定长为半径或直径,可将三角形中的一条动边构造为圆的半径或直径,将点动转化为圆中半径位置的转动,进而引起其他顶点或角度的变化,再结合圆的性质,求出相应的取值范围.例3在∆ABC 中,AB =1,BC =2,求角C 的取值范围.解以B 为圆心,AB =1为半径构造半圆,当顶点A 从点M 沿着半圆弧运动到点N 的过程中,角C 从零开始,先逐渐图3增大,当CA 与半圆B 相切时,角C 最大,为30◦,然后又逐渐减小至零,得出角C 的取值范围是(0,30◦].评析本题中角C 的对边为定值,以定长为半径构造圆,当角C 变化时,点A 在半圆周上运动,角C 的值随着角A 的变化而变化,由角A 的取值范围得出角C 的取值范围.这一招可谓“动中求变化,变中有方法”!三、三角形的转化平面四边形中,某动点在变化,带动其它的点也在对应变化(这两个称之为对应点),相当于整个图形在变化,其中蕴含着变化的三角形与不变的对应关系,将其中变化的三角形构造圆,对应点利用其对应关系也构造出相应的圆,两圆相结合辅助解题,事半功倍.例4在平面四边形ABCD 中,AD =2,CD =4,∆ABC 为正三角形,则∆BCD 面积的最大值为.图4解以点C 为原点,CD 为x 轴建立平面直角坐标系,则D (4,0),由AD =2,CD =4可知点A 在圆D :(x −4)2+y 2=4上,因为是点A 绕原点C 旋转60◦得到点B ,所以点A 的轨迹圆D 绕原点C 逆时针旋转60◦所得点B 的轨迹圆E ,可求得E (2,2√3),所以点B (x,y )在圆E :(x −2)2+(y −2√3)2=4上,易知|y | 2√3+2,所以有y max =2√3+2,所以∆BCD 面积的最大值为S max =12|CD |·y max =4√3+4|.评析本题中点A,C 在变化,带动点B 也在动,其不变关系是等边∆ABC .构造出动点A 作圆周运动的圆D ,再根据等边三角形中的定角∠ACB 及等边,得出动点B 的运动轨迹圆E ,相当于把∆ACD 旋转到∆BCE ,动点B 的的运动过程,就是∆BCD 高的变化过程,从而确定面积的变化.本题是“点(A )动—–点(B )动—–线(高)动”的变化过程,构思巧妙,技巧性强.例5如图5在凸四边形ABCD 中,AB =1,BC =√3,AC ⊥CD ,AC =CD ,当∠ABC 变化时,对角线BD 的最大值为.解以B 为圆心,AB 半径构造圆B ,以C 为圆心,将圆B 旋转90◦得到圆E ,则∠BCE =90◦,BC =CE =√3,BE =√6,当点A 在圆B 上运动时,点D 在以E 为圆心,1为半径的半圆上运动,由图得BD 的最大值即BE 的长加圆E 的半径,即√6+1.图5评析本题与例4异曲同工,也是构造双圆辅助解题.将∆ABC 旋转变换到∆DEC ,即圆B 变换到圆E ,即利用点A 的运动轨迹求出点D 的运动轨迹,此时,即可眼前一亮,豁然开朗,进而结合圆的性质解出此题.三角形的转化,其实就是边和角的转化,归根到底还是根据点的运动、点和线的变化,把点、线的运动与圆相结合,构造圆解题.借助圆这个工具,解题跳出知识的局限,回归平面几何与解析几何的本质时,则可以从几何要素点、线、角、三角形等角度,将问题转化为观察变化规律的几何问题,避免大量的三角运算,缩短解题时间,化繁为简.在教学中,要求学生有较强的抽象思维能力以及平面几何,空间几何的想象能力,平时多观察,多思,多练,多画(图),跳出思维的框架,发挥想象的空间;还要善于将知识点融会贯通,综合运用,将三角函数与平面几何、解析几何综合运用,灵活转换,学生要有扎实的数学基础和培养良好的数学素养;最后要有模型意识,善于建立数学模型.与圆相结合的解三角形问题具有较高的特定性和技巧性,需要在实际解题过程中多体会模型的特征,提高解三角形问题的几何意识.参考文献[1]于涛.平面几何视角下解三角形问题的四大类型[J].中学数学研究,2017(9):40-42.。

一题多解求三角形面积的最大值

一题多解求三角形面积的最大值
B→C+B→A=2B→D,两 边 平 方 后 代 入 数 据 化 简
得 :y2=12-2x2,所 以 S△ABC = 21BC·AE=
槡 槡 x ·

y2
-x42

1 2
x2(12-2x2)-x42 ,
槡 化
简 得 :S△ABC

1 2

9 4
(x2-
8 3
)2+16,当
x2

8 3


角形面积最大为2,此时 AB=2 3槡15,BC=23槡6。
角A 表示,从而求出其最大值。
解法 二:设 AD =DC=m,则 AB=2 m,由 余 弦 定 可 得 理:
cos A=5 m4 m2 -2 3,则
m2
=5-43cos A,S△ABC

1 2
AB
·ACsinA

2 m2sinA=5-6s4icnoAs A,设 f(A)=5-6s4icnoAs A,A∈ (0,π);可 利 用 导
的长度,可以建立适当的直角坐标系,设出各点坐标,并 将 三 角 形
面积和腰上的中点用坐标表示,并根据中线长度写出坐 标 之 间 的
解后反思:三角问题 和 向 量 问 题 之 间 可 以 互 相 转 化,很 多 三 角问题可以从向量的角度去思考,很多时候利用向量问 题 有 助 于 优化计算过 程。 解 法 五 与 解 法 一、二 比 较 起 计 算 过 程 明 显 得 到 优化。
策 略 三 :坐 标 法 分析 四:根 据 题 意 △ABC 面 积 是 △ABD 面 积 的 两 倍,而
出不同的解题方法,教师应引导学生善于观察,善于思考,拓宽思 路,培 养 学 生 分 析 问 题 和 解 决 问 题 的 能 力 。 在 高 三 复 习 中,笔 者 曾 遇

焦点三角形问题(解析版)

焦点三角形问题(解析版)

第一篇圆锥曲线专题01焦点三角形问题焦点三角形的边角关系如下:三条边:122F F c =122PF PF a+==22a c +三角形周长ce a=222a b c =+三个角:随着动点P 的移动,三个角都在变化,可能为锐角,直角和钝角,这里我们只研究顶角P ∠,利用余弦定理,P ∠又和三边a,b,c 的大小有关系三角形的面积:12S ah =底为定值,面积最大时高最大1sin 2S ab c =面积和三边长有关系一、与焦点三角形边长有关的问题焦点三角形中三边长涉及a,c ,因此最直观的是可以根据三边关系求出离心率的值或取值范围,前提是三边之间存在可以转化的关系。

若单独分析三角形的两个腰长,则若能够构成三角形,则需满足1a c PF a c-≤≤+例1椭圆22221x y a b+=的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在一点P ,满足线段AP 的垂直平分线过点F ,则椭圆的离心率的取值范围是________.例2.已知12,F F 是椭圆22221x y a b+=的左右焦点,若在其右准线上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.【解析】求离心率的范围问题,需要根据条件列出不等式,在含有动点的题目中,需要找出动态的量和常量之间的大小关系。

题目中:2122PF F F c==因为点P 在右准线上下移动,2PF 虽然是常量,但由于不知道a,b,c 的关系,因此还是相对的变量。

本题的定值为22a F H c c=-在2RT PHF 中,222,2a PF F H c c c >≥-解得:313e ≤<例3.设12,F F 是双曲线2214x y -=的左右焦点,点P 在双曲线上,且满足1290F PF ︒∠=,则12PF F ∆的面积是________.方法一:方法二:此题目有更简单的做法,方法一只是为了巩固焦半径的知识,设12,PF x PF y ==则有:4x y -=,又因为2220x y +=解得:2xy =,因此面积等于1.上面两题都是关于焦点三角形中两条腰长的问题,在焦点三角形中两腰长之和为2a ,底边为2c ,因此三边之间暗含离心率的关系,因此在一些出现焦点三角形求离心率的问题中一般腰长和底边之间都存在一个可以互相转化的关系,通过这个关系可以求出离心率。

2024高考数学解三角形“热考”十点【学生版】

2024高考数学解三角形“热考”十点【学生版】

解三角形“热考”十点热点题型速览热点一 三角形中边角计算热点二 判断三角形的形状热点三 三角形解的个数问题热点四 解三角形与平面向量的交汇热点五 解三角形与解析几何交汇问题热点六 解三角形与立体几何交汇问题热点七 正弦定理、余弦定理应用于平面几何问题热点八 三角形周长问题热点九 三角形面积问题热点十 三角形范围(最值)问题三角形边(关系式)的问题三角形角(函数值)问题三角形周长问题三角形面积问题热点一三角形中边角计算1(2023·北京·统考高考真题)在△ABC中,(a+c)(sin A-sin C)=b(sin A-sin B),则∠C=()A.π6B.π3C.2π3D.5π62(2020·全国·统考高考真题)在△ABC中,cos C=23,AC=4,BC=3,则cos B=()A.19B.13C.12D.233(2021·全国·高考真题)在△ABC中,已知B=120°,AC=19,AB=2,则BC=()A.1B.2C.5D.34(2020·山东·统考高考真题)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2+b2=c2+ab sin C,且a sin B cos C+c sin B cos A=22b,则tan A等于()A.3B.-13C.3或-13D.-3或135(2021·浙江·统考高考真题)在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=23,则AC=,cos∠MAC=.【规律方法】1.已知任意两角和一边,解三角形的步骤:①求角:根据三角形内角和定理求出第三个角;②求边:根据正弦定理,求另外的两边.(1)已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.(2)已知三边解三角形的方法(1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.(2)利用余弦定理求三角的余弦,进而求得三个角.热点二判断三角形的形状6在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.7(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.【规律方法】利用正弦定理判断三角形形状的方法:(1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.(2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.2.判断三角形的形状时,经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2.②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2.③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2.3.常见误区:易忽略三角形中的隐含条件.热点三三角形解的个数问题8(2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=5,c=2,cos A= 23,则b=()A.2B.3C.2D.39在△ABC中,已知sin C=12,a=23,b=2,求边c.10(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B=3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【方法技巧】三角形解的个数的判断在△ABC中,已知a,b和A,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解上表中若A为锐角,则当a<b sin A时无解;若A为钝角或直角,则当a≤b时无解.热点四解三角形与平面向量的交汇11(2023·全国·统考高考真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ⋅ED=()A.5B.3C.25D.512(2023·贵州毕节·统考模拟预测)已知点G 为三角形ABC 的重心,且GA +GB =GA -GB,当∠C 取最大值时,cos C =()A.45B.35 C.25D.1513【多选题】(2023·浙江·二模)在△ABC 中,AB 2+AC 2=2BC 2,CD =BC ,则()A.AD >CDB.AD <52CD C.∠ADC >π6D.∠ADC <π4【点评】1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.热点五解三角形与解析几何交汇问题14(2021·全国·统考高考真题)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,PF 1 =3PF 2 ,则C 的离心率为()A.72B.132C.7D.1315(2023·全国·高三专题练习)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=()A.25B.302C.35D.35216(2023·湖北武汉·统考模拟预测)已知抛物线y 2=8x 的焦点为F ,准线与x 轴的交点为C ,过点C 的直线l 与抛物线交于A ,B 两点,若∠AFB =∠CFB ,则|AF |=.【点评】1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.热点六解三角形与立体几何交汇问题17(2023·全国·统考高考真题)已知四棱锥P-ABCD的底面是边长为4的正方形,PC=PD=3,∠PCA=45°,则△PBC的面积为()A.22B.32C.42D.6218(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C-AB-D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.25C.35D.2519(2023·河南·校联考模拟预测)点P是圆柱上底面圆周上一动点,△ABC是圆柱下底面圆的内接三角形,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若c=2,C=60°,三棱锥P-ABC的体积最大值为233,则该三棱锥外接球的表面积为()A.193π B.283π C.539π D.433π【点评】与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.热点七正弦定理、余弦定理应用于平面几何问题20(2023·全国·统考高考真题)在△ABC中,∠BAC=60°,AB=2,BC=6,∠BAC的角平分线交BC于D,则AD=.21(2020·江苏·统考高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=2,B= 45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【点评】解三角形应用于平面几何问题的基本思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.(3)特别提醒:做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.热点八三角形周长问题22(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A-B)= sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.23(2022·北京·统考高考真题)在△ABC中,sin2C=3sin C.(1)求∠C;(2)若b=6,且△ABC的面积为63,求△ABC的周长.热点九三角形面积问题24(2023·全国·统考高考真题)在△ABC中,已知∠BAC=120°,AB=2,AC=1.(1)求sin∠ABC;(2)若D为BC上一点,且∠BAD=90°,求△ADC的面积.25(2022·浙江·统考高考真题)在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=5c, cos C=35.(1)求sin A的值;(2)若b=11,求△ABC的面积.【点评】三角形面积有关的问题解答步骤:(1)化简转化:根据条件,利用三角恒等变换公式,化简已知条件等式,再利用正弦定理、余弦定理化边、化角;(2)选择公式:多选择S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)求值(最值).热点十三角形范围(最值)问题26(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.27(2020·浙江·统考高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a =0.(I)求角B的大小;(II)求cos A+cos B+cos C的取值范围.28(2020·全国·统考高考真题)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.【思路引导】(1)第一步,应用正弦定理角化边;第二步,应用余弦定理求cos A,进而求得A;(2)重点分析方法一:由于BC已知,因此,主要任务是确定AC+AB的最值.第一步,应用余弦定理并化简可得AC+AB2-AC⋅AB=9;第二步,利用基本不等式求得AC+AB的最大值,进而得到结果.29(2022秋·河南郑州·高三郑州外国语学校校考阶段练习)在①a+csin A-sin C=b sin A-sin B;②2b-ac-cos Acos C=0;③向量m =c,3b与n=cos C,sin B平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知△ABC内角A,B,C的对边分别为a,b,c,且满足.(1)求角C;(2)若△ABC为锐角三角形,且a=4,求△ABC面积的取值范围.【点评】1.边角、周长问题:利用正弦定理余弦定理灵活的进行边角转化,如果转化成 “边”的表达式,应用基本不等式求最值(范围);如果转化成三角函数表达式,应用二次函数的性质或应用三角函数的性质求解.2.面积问题求解基本步骤:一是应用正弦定理、余弦定理实施边角转化;二是确定三角形面积的表达式;三是应用均值不等式或三角函数性质求其最值(范围).。

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

1/ 5试题出处:2020届湖北省“荆、荆、襄、宜”四地七校联考(改编)抛物线与圆,求三角形面积最值若点P 是抛物线22x y =上的动点,点,M N 在x 轴上,圆22(1)1x y +−=内切于,PMN ∆求PMN ∆面积的最小值. 答案:8解法一:动点设一个参数,利用勾股定理列等式如图,不妨设点2(2,2)P t t (1)t >,圆心为C ,两切点为,D E .分别过点P 作PH x ⊥,作PG x 轴,过点M 作x 轴垂线与PG 交于点G ,且,OM m ON n ==. 在Rt PCE ∆中,由勾股定理得,22222244(21)14PE PC CE t t t =−=+−−=,即22PE t =.在Rt PNH ∆中,由勾股定理得222,PN PH NH =+ 即()224224(2)t n t t n +=+−,可得1t n t =+. 在Rt PMG ∆中,由勾股定理得222,PM PG GM =+ 即()224224(2)t m t t m +=++,可得1t m t =−. 42224122()21121PMNt S m n t t t t ∆∴=⋅+⋅==−− 又2242111111()244t t t −=−−+≥ ∴当22t =时,PMN S ∆有最小值8.2 / 5解法二:动点设两个参数,利用直线与圆相切列等式 设00(,),(,0),(,0)P x y M a N b ,其中02y >且a b <.∴直线PN 的方程为:00()y y x b x b=−−, 直线PN 与圆相切,∴圆心(0,1)到直线PN 的距离为1, ∴1=∴()2000220y b x b y −+−= 同理可得,()2000220y a x a y −+−=.∴实数,a b 是关于x 的一元二次方程()2000220y x x x y −+−=的两根, ∴0000222x a b y y a b y −⎧+=⎪−⎪⎨−⎪⋅=⎪−⎩, ∴()()()22220002044842x y y a b a b ab y +−−=+−=−,2002x y =∴()()2202042y a b y −=−,0022y a b y −=− 20000014()248222PMNy S b a y y y y ∆∴=⋅−⋅==−++≥−− ∴当04y =时,PMN S ∆有最小值8.解法三:动点设两个参数,利用内切圆性质列等式 设点00(,),(,0),(,0)P x y M a N b −圆心为(0,1)C ,两切点为,D E . 在Rt PCD ∆中,PD =2002x y =,∴0PD y = PM PD DM PD MO =+=+3 / 5∴0y a =+,化简得20000002()x y MO a y x y x ===−−同理,可得20000002()x y NO b y x y x ===++0000000011()()22PMN y y S MO NO y y y x y x ∆∴=⋅+⋅=+⋅−+ 32000220000424822PMNy y S y y x y y ∆∴===−++≥−−− ∴当04y =时,PMN S ∆有最小值8.解法四:动点设一个参数、再设直线斜率,利用直线与圆相切列等式 设21(,)(2)2P m m m >,直线,PM PN 的斜率一定存在,分别设其为12,k k ,则直线PM 的方程为:211()2y m k x m −=−,1=,化简得:22342111(1)(2)04m k m m k m m −+−+−=……..① 同理可得:22342221(1)(2)04m k m m k m m −+−+−=……..②∴实数12,k k 是关于x 的一元二次方程223421(1)(2)04m x m m x m m −+−+−=的两根, ∴31224212221141m m k k m m m k k m ⎧−+=⎪−⎪⎨−⎪⋅=⎪−⎩, 分别令方程①,②中的0y =,得21,2M m x m k =−22,2N m x m k =−222112121122M N k k m m MN x x k k k k −=−=⋅−=2412121228PMNk k m m S MN k k ∆−∴=⋅⋅=⋅48m =4/ 5化简得4222116(48)82824PMNm S m m m ∆==−++≥−− ∴当28m =时,PMN S ∆有最小值8.解法五:动点设两个参数,利用内切圆性质列等式如图,设00(,),P x y 切点分别为,D E 且PMN ∆的内切圆半径1r = 则011()22PMN S MN y PM PN MN r ∆=⋅=++⋅1()2PM PN MN =++ 1()2PMN S OM PE ON PE MN MN PE ∆∴=++++=+MN MN ==0MN y MN =+≥012y MN ∴⋅≥ 016y MN ∴⋅≥0182PMN S y MN ∆∴=⋅≥ ∴PMN S ∆有最小值8.评论与赏析:圆锥曲线中求三角形面积的最值一直是考试的热点、难点问题.解法1跳出了解析几何的大量计算,两次用勾股定理将线段长用动点中的参数表示出.解法2利用直线与圆相切的性质及韦达定理找到线段整体与动点中的参数的关系.解法3利用三角形内切圆的性质和坐标运算将线段长用动点中的参数表示出来.解法4设切线斜率利用韦达定理找到线段与动点中的参数的关系.解法5巧妙利用三角形内切圆性质、这一题的数量特点及基本不等式直接得出面积的最值.5 / 5推广:过抛物线22(0)x py p =>上一点000(,)(2)P x y y p ≥作圆222:()C x y p p +−=的两条切线,分别与x 轴交于,M N 两点,则PMN ∆的最小值为28p .相似题:在平面直角坐标系xoy 中,过点2(2,21)P t t +作圆22:(1)(1)1E x y −+−=的两条切线,PM PN ,切点分别为,M N .当(1,)t ∈+∞时,设切线,PM PN 与y 轴分别交于点,,B C 求PBC ∆面积的最小值. 答案:8。

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

高考数学《与解三角形有关的最值问题》

高考数学《与解三角形有关的最值问题》

高考数学 与解三角形有关的最值问题
例 2 在△ABC 中,已知角 A,B,C 的对边分别为 a,b,c,tanC=csoinsAA+ +scionsBB. (1) 求角 C 的大小; (2) 若△ABC 的外接圆直径为 1,求 a2+b2+c2 的取值范围. 解析:(1) 因为 tanC=csoinsAA+ +scionsBB,即csoinsCC=csoinsAA++csionsBB, 所以 sinCcosA+sinCcosB=cosCsinA+cosCsinB, 即 sinCcosA-cosCsinA=cosCsinB-sinCcosB,所以 sin(C-A)=sin(B-C). 所以 C-A=B-C 或 C-A=π-(B-C)(不成立),即 2C=A+B,所以 C=π3.
tanAtanBtanC 将问题作进一步处理.
因为 2sin2A+sin2B=2sin2C,所以由正弦定理可得 2a2+b2=2c2.
由余弦定理及正弦定理可得 cosC=a2+2ba2b-c2=4ba2b=4ba=4ssiinnBA.
高考数学 与解三角形有关的最值问题
又因为 sinB=sin(A+C)=sinAcosC+cosAsinC, 所以 cosC=sinAcosC4s+incAosAsinC=co4sC+4stiannCA, 可得 tanC=3tanA,代入 tanA+tanB+tanC=tanAtanBtanC 得 tanB=3ta4nta2AnA-1, 所以ta1nA+ta1nB+ta1nC=ta1nA+3ta4nta2AnA-1+3ta1nA=3ta4nA+121ta3nA.
高考数学 与解三角形有关的最值问题
(2) 解法一:由 C=π3可得 c=2RsinC=1× 23= 23, 且 a=2RsinA=sinA,b=2RsinB=sinB. 设 A=π3+α,B=π3-α,0<A<23π,0<B<23π,知-π3<α<3π. 所以 a2+b2+c2=34+sin2A+sin2B=34+1-c2os2A+1-c2os2B =74-12cos23π+2α+cos23π-2α=74+12cos2α. 由-π3<α<π3知-23π<2α<23π,-12<cos2α≤1,故32<a2+b2+c2≤94.

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题未命名一、解答题1.(2019·黑龙江哈尔滨市·哈师大附中高三开学考试(文))已知(0,2)A -,椭圆2222:1(0)x y E a b a b +=>>的离心率2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)22y x =-或22y x =--【解析】试题分析:(1)由离心率与斜率可求得a,b,c.(2) 设:2l y kx =-,与椭圆组方程组,由弦长公式,点到距离公式,求得三角形面积. 试题解析:(1)设(),0F c,由条件知,2c c =⇒=又22c a b a =⇒==, 故椭圆E 的方程为22182x y +=;(2)当l x ⊥轴时,不合题意,故可设:2l y kx =-,()22222,1416801,82y kx k x kx x y =-⎧⎪⇒+-+=⎨+=⎪⎩, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,241PQ k ==+又点O 到直线l 的距离d =∴△OPQ 的面积12OPQS PQ d ∆==,t =,则0t >, ∴2OPQ S t t∆==≤+,当且仅当2t t t =⇒=k =时等号成立,满足0∆>,∴当k =±时,△OPQ 的面积取得最大值2,此时直线l 的方程为2y x =-或2y x =-. 【点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-2.(2020·江苏高二单元测试)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.【答案】(Ⅰ)22143x y +=;(Ⅱ)6. 【分析】(Ⅰ)由离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为222,ce a b c a==+,列方程组求得,a b 的值,即可求出椭圆C 的方程;(Ⅱ)点()4,M t ,直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,利用韦达定理解出P 点坐标,同理可求得Q 点的坐标,利用三角形面积公式将四边形面积表示为t 的函数,利用换元法结合函数单调性求解即可. 【详解】(Ⅰ)由题设知,2,2a c ab ==又222a b c =+,解得2,1a b c ===,故椭圆C 的方程为22143x y +=.(Ⅱ)由于对称性,可令点()4,M t ,其中0t >.将直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,由22410827A P t x x t -⋅=+,2A x =-得2225427Pt x t -=+,则21827P t y t =+. 再将直线BM 的方程()22t y x =-代入椭圆方程22143x y +=,得()2222344120t xt x t +---=,由224123B Q t x x t -⋅=+,2B x =得22263Q t x t-=+,则263Q t y t -=+. 故四边形APBQ 的面积为122P Q P Q S AB y y y y =⋅-=-= 221862273t t t t ⎛⎫+ ⎪++⎝⎭()()()()()22222222248948948912273912)9t t t t t t t tt t t t ++===+++++++.由于296t tλ+=≥,且12λλ+在[)6,+∞上单调递增,故128λλ+≥,从而,有48612S λλ=≤+. 当且仅当6λ=,即3t =,也就是点M 的坐标为()4,3时,四边形APBQ 的面积取最大值6.注:本题也可先证明”动直线PQ 恒过椭圆的右焦点()0,1F ”,再将直线PQ 的方程1x ty =+ (这里t R ∈)代入椭圆方程22143x y +=,整理得()2234690t y ty ++-=,然后给出面积表达式2P Q S y y =-==令211m t =+≥,则S =当且仅当6λ=即3t =时, max 6S =. 3.(2020·宁夏银川一中高二期中(理))已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点⎭.(1)求椭圆M 的标准方程;(2)直线l :x ky n =+与椭圆M 相交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【分析】(1)首先根据题意得到2b a =,再根据椭圆经过点⎭,即可得到答案.(2)首先设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,得到()2224240ky kny n +++-=,根据0CA CB ⋅=得到所以直线l 恒过点6,05D ⎛⎫⎪⎝⎭,再计算ABC 面积的最大值即可. 【详解】(1)设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -, 则12B B F △是正三角形,所以2b a ==,则椭圆方程为222214x y b b+=.将⎭代入椭圆方程,可得2221142b b +=, 解得2a =,1b =,故椭圆的方程为2214x y +=.(2)由题意,设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240k y kny n +++-=. 设()11,A x y ,()22,B x y ,则有12224kn y y k -+=+,212244n y y k -=+,因为以线段AB 为直径的圆过椭圆的右顶点()2,0C ,所以0CA CB ⋅=, 由()112,CA x y =-,()222,CB x y =-,则()()1212220x x y y --+=, 将11x ky n =+,22x ky n =+代入上式,并整理得()()()()2212121220k y y k n y y n ++-++-=,则()()()()22222214222044kn k n n n k k +---++-=++, 化简得()()5620n n --=,解得65n =或2n =,因为直线x ky n =+不过点()2,0C , 所以2n ≠,故65n =.所以直线l 恒过点6,05D ⎛⎫ ⎪⎝⎭. 故121||||2ABC S DC y y =⋅-△16225⎛=⨯-= ⎝=, 设211044t t k ⎛⎫=<≤ ⎪+⎝⎭,则ABCS=10,4t ⎛⎤∈ ⎥⎝⎦上单调递增, 当14t=时,1625ABCS ==, 所以ABC 面积的最大值为1625. 【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于难题.本题中直线方程代入椭圆方程整理后应用韦达定理求出12y y +,12y y ⋅,然后利用0CA CB ⋅=得到直线l 恒过点6,05D ⎛⎫⎪⎝⎭为解题的关键,考查了学生的运算求解能力,逻辑推理能力. 4.(2021·安庆市第十中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的短轴长为12e =. (1)求椭圆C 的标准方程;(2)若12F F 、分别是椭圆C 的左、右焦点,过2F 的直线l 与椭圆C 交于不同的两点A B 、,求1F AB 的面积的最大值. 【答案】(1)22143x y +=;(2)3.【分析】(1)由题意,列出方程组,求得2,a b ==,即可得到椭圆的标准方程; (2)设()()1122,,,A x y B x y ,设直线l 的方程为1x my =+,根据根与系数的关系,求得1212,y y y y +,结合三角形的面积公式,得到1121212F ABSF F y y =⋅-=,利用换元法,结合函数的单调性,即可求解. 【详解】(1)由题意, 椭圆()2222:10x y C a b a b+=>>的短轴长为12e =.可得222212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2,a b ==,故椭圆的标准方程为22143x y +=.(2)设()()1122,,,A x y B x y ,因为直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=,所以12122269,3434m y y y y m m --+==++, 又因直线l 与椭圆C 交于不同的两点,故0∆>,即()22(6)36340,m m m R ++>∈,则112121221234F ABSF F y y y y m =⋅-=-==+,令t =,则1t ≥,则12124113132F ABt St t t ===++.令13()f t t t=+,由函数的性质可知,函数()ft 在⎫+∞⎪⎪⎣⎭上是单调递增函数, 即当1t ≥时,()f t 在[1,)+∞上单调递增,因此有4()(1)3f t f ≥=,所以13F AB S ≤△,即当1,0t m ==时,1F ABS最大,故当直线l 的方程为1x =时,1F AB 面积的最大值为3. 【点睛】求解圆锥曲线的最值问题的解答策略:1、若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.5.(2021·全国高二课时练习)已知点A (0,-2),椭圆E :22221x y a b+= (a >b >0)的离心F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)22y x =±-【解析】试题分析:设出F ,由直线AF c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF ,()0,2A -所以2c =c =又222c b a c a ==-解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l 的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t=2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.6.(2020·黑龙江建三江分局第一中学高二期中(文))已知椭圆C :22221(0)x y a b a b+=>>倍,且经过点).(1)求C 的标准方程;(2)C 的右顶点为A ,过C 右焦点的直线l 与C 交于不同的两点M ,N ,求AMN ∆面积的最大值.【答案】(1)22142x y +=;(2)2- 【分析】(1)利用已知条件,结合椭圆方程求出,a b ,即可得到椭圆方程.(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可. 【详解】(1)解:由题意22,211,a a b⎧=⎪⎨+=⎪⎩解得2a =,b = 所以椭圆的标准方程为22142x y +=.(2)点(2,0)A,右焦点)F,由题意知直线l 的斜率不为0,故设l的方程为x my =+()11,M x y ,()22,N x y ,联立方程得22142x y x my ⎧+=⎪⎨⎪=+⎩,消去x,整理得22(2)20m y ++-=,∴216(1)0m ∆=+>,12y y +=,12222y y m =-+,()()()21212122222222)224281m y y y y y y m m m ⎛⎫∴--=+ ⎪ ⎪+=+=++⎝+⎭16(1222y y m ∴-=+(12122AMNS y y ∆∴=⨯⨯-(22=(()122221=-,当且仅当0m =时等号成立,此时l :x = 所以AMN 面积的最大值为2- 【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题.7.(2021·浙江高三专题练习)平面直角坐标系xOy 中,过椭圆M :22221x y a b+=(0a b >>)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】(Ι) 22163x y +=(Ⅱ)12AB CD ⋅=【分析】(1)把右焦点()c,0代入直线方程可求出c ,设()11,,A x y ()22,B x y ,线段AB 的中点()00,P x y ,利用“点差法”即可得出a,b 的关系式,再与222a b c =+联立即可求出a,b ,进而可得椭圆方程;(2)由CDAB ⊥,可设直线CD 方程为y x m =+,与椭圆方程联立可得根与系数关系,即可得到弦长CD ,把直线0x y AB +=与椭圆的方程联立得到根与系数关系,即可得到弦长,利用ABCD 1S 2AB CD =⋅四边形即可得到关于m 的表达式,利用二次函数的单调性即可求出其最大值. 【详解】(Ι)设()11,,A x y ()22,,B x y 则()22112211x y a b +=,()22222212x y a b+=,(1)-(2)得:()()()()12121212220x x x x y y y y ab-+-++=,因为12121y y x x -=--,设()00,P x y ,因为P 为AB 的中点,且OP 的斜率为12,所以0012y x =,即()121212y y x x +=+,所以可以解得222a b =,即()2222a a c=-,即222ac =,又因为c =,所以26a =,所以M 的方程为22163x y +=.(Ⅱ)因为CD AB ⊥,直线AB 方程为0x y +=,所以设直线CD 方程为y x m =+,将0x y +=代入22163x y +=得:230x -=,即(A 、B ⎝⎭,所以可得AB =;将y x m =+代入22163x y +=得:2234260x mx m ++-=,设()33,,C x y ()44,,D x y 则CD =()221612260m m ∆=-->,即33m -<<,所以当0m =时,|CD|取得最大值4,所以四边形ACBD 面积的最大值为12AB CD ⋅= . 【点睛】本小题考查椭圆的方程的求解、直线与椭圆的位置关系,考查数学中的待定系数法、设而不求思想 ,考查同学们的计算能力以及分析问题、解决问题的能力.圆锥曲线是高考的热点问题,年年必考,熟练本部分的基础知识是解答好本类问题的关键.8.(2021·长春市第二十九中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为()1F,)2F,且经过点)M.(1)求椭圆C 的标准方程;(2)若斜率为2的直线与椭圆C 交于,A B 两点,求AOB 面积的最大值(O 为坐标原点).【答案】(1)22142x y +=;(2. 【分析】(1)根据椭圆的定义求得a ,由此求得b ,从而求得椭圆C 的标准方程;(2)设出直线AB 的方程2y x m =+,联立直线AB 的方程和椭圆方程,化简后写出根与系数关系,求出弦长AB ,表示出AOB 的面积,利用不等式求出最值即可. 【详解】(1)由椭圆的定义,可知12214a MF MF =+==.解得2a =.又2222b a =-=.所以椭圆C 的标准方程为22142x y +=.(2)设直线l 的方程为2y x m =+, 联立椭圆方程,得2298240x mx m ++-=,2264721440m m ∆=-+>,得m -<<设()11,A x y ,()22,B x y ,1289m x x ∴+=-,212249m x x -=,12AB x x ∴=-=== 点()0,0O 到直线:20l x y m -+=的距离d=11||22AOBS AB d ∴=⋅⋅=⋅△=≤=当2218m m-=即29m=,3m=±时取等;所以AOB.【点睛】方法点睛:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生逻辑思维能力和计算能力,直线y kx b=+上两点()()1122,,,A x yB x y间的距离公式为:1.12AB x x=-;2.12A yB y=-;3.若AB过焦点,也可以使用焦半径公式.9.(2019·广东中山市·中山纪念中学高三月考(文))已知椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为1F,2F1F的直线l与C交于A,B两点,2ABF的周长为()1求椭圆C的方程;()2当2ABF的面积最大时,求l的方程.【答案】(1)2212xy+=;(2)1x=-.【解析】试题分析:()1根据椭圆定义及2ABF∆的周长为得出a=cea=知1c ea==,求出21b=,进而得到椭圆C的方程;()2将三角形分割,以12F F为底,A B、两点的纵坐标差的绝对值为高表示三角形面积,运用基本不等式求得结果解析:(1)由椭圆的定义知4a=,a=由cea=知1c ea==2221b a c =-=所以椭圆C 的方程为2212x y +=(2)由(1)知()()121,0,1,0F F -,122F F = 设()()1122,,,A x y B x y ,:1l x my =-联立1x my =-与2212x y +=得到()222210m y my +--=,12y y -=2ABF S ==当211,0m m +==时,2ABF S ∆,:1l x =-点睛:在求过焦点的弦与另一个焦点构成的三角形面积时可以对其分割,转化为两点纵坐标差的绝对值,为简化计算,由于直线过横坐标上一定点,故设直线方程1x my =- 10.(2016·云南昆明市·高三一模(理))已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.【答案】(1)x 22+y 2=1,(2)√22【解析】试题分析:(Ⅰ)由椭圆的离心率为√22,可得c a=√2,可设椭圆方程为x 22n 2+y 2n 2=1,再代入点A 的坐标得代入设出的椭圆的方程,即可得椭圆E 的方程(Ⅱ)先设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),将直线方程与椭圆的方程联立:消去一个元,得到一个一元二次方程.再求解判别式:写出根与系数的关系.计算点A 到直线l 的距离,得到用m 表示ΔABC 的面积,利用基本不等式求出ΔABC 面积的最大值. 试题解析:(Ⅰ)因为ca =√2,所以设a =√2n ,c =n ,则b =n ,椭圆E 的方程为x 22n 2+y 2n 2=1. 代入点A 的坐标得12n 2+12n 2=1,n 2=1,所以椭圆E 的方程为x 22+y 2=1.(Ⅱ)设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),由{y =√22x +m x 2+2y 2=2得x 2+2(12x 2+√2mx +m 2)=2,即x 2+√2mx +m 2−1=0, x 1+x 2=−√2m ,x 1⋅x 2=m 2−1 Δ=2m 2−4(m 2−1)>0,m 2<2.|BC|=√(1+k 2)[(x 1+x 2)2−4x 1x 2] =√32[2m 2−4(m 2−1)] =√32(4−2m 2),点A 到直线l 的距离d =√32,ΔABC 的面积S =12|BC|⋅d =12√32(4−2m 2)√32=√22√m 2(2−m 2)≤√22⋅m 2+2−m 22=√22,当且仅当m 2=2−m 2,即m 2=1时等号成立.所以当m =±1时,ΔABC 面积的最大值为√22.考点:(1)椭圆的方程;(2)直线与椭圆的综合问题.【方法点睛】解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.。

微专题椭圆中三角形面积最值问题探究

微专题椭圆中三角形面积最值问题探究

9
-
8# / 16(显-1)
‘3
亍)-—9—
4丿3(9 _ "厂丄,$ =斗■仙■ 4 9
=y 7(9 - TH2)(771 + 3)2,令 f{m}
(m+3)2,f(m)二(m + 3 )2 (6 - 4m)
令=0
(0,三 3 )心)>0,
=I■时,
四、问题的一般形式
2
例4 已知椭圆E:〒+ y2 = 1,直线= kx +
中学数学研究
ቤተ መጻሕፍቲ ባይዱ
2019年第6期
此时"吐间的距离"芳,直线与椭圆联立
方程得
卩=尽 + "*22 lx2 + 4y2 = 4
+ %血皿 +4m*2 -4 = 0.
由 A = ( - 8Qm) - 36(4m2 -4) > OnO < m _ &匹m
< 3.由韦达定理知衍+ % = ―g ,光1%2 二
4(m2_~ ,AB = ^3 \ xx -x2
AB = a/1 + ni I Ji -y21 ,</ = 1* 1* ,S^Oab = V
71 + m2*
2
⑷.」心严)[联立 7f+ry,消去“,
2
■x + 4y = 4
得到(m2 + 4)y2 + 2mty + i2 - 4 = 0, A = 4m2f2 -
4)(i2 -4) >0 9 4 > f2,由韦达定理知
若 c <0,令 a = - ctan0,b = c2 sec20,由 abc

2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题

2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题

2020江苏高考数学二轮热点难点微专题突破-微专题01 与解三角形有关的最值问题与三角形有关的最值问题主要涉及求三角函数值最值,边长的最值,面积、向量的最值.解决这类的问题方法有:一、 将所给条件转化为三角函数,利用三角函数求解最值;二、 将所给条件转化为边,利用基本不等式或者函数求解最值;三、 建立坐标系,求出动点的轨迹方程,利用几何意义求解最值;四、 多元问题可消元后再用上述方法求解.如2018年T14就是与解三角形有关的最值问题.【例1】在△ABC 中,已知A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2+2c 2=8,则△ABC 面积的最大值为________. 答案:255解析:(解法1)因为cos C =a 2+b 2-c 22ab =a 2+b 2-8-a 2-b 222ab =3(a 2+b 2)-84ab ≥3ab -42ab,所以ab ≤43-2cos C ,从而S =12ab sin C ≤2sin C 3-2cos C .设t =2sin C3-2cos C,则3t =2sin C +2t cos C =2t 2+1·sin(C +φ),其中tan φ=t ,故3t ≤2t 2+1,解得t ≤255,所以S max =255,当且仅当a =b =2155且tan C =52时,等号成立.(解法2)以AB 所在的直线为x 轴,它的垂直平分线为y 轴,建立如图所示的直角坐标系,则A ⎝⎛⎭⎫-c 2,0,B ⎝⎛⎭⎫c 2,0,C (x ,y ),则由a 2+b 2+2c 2=8得⎝⎛⎭⎫x -c 22+y 2+⎝⎛⎭⎫x +c22+y 2+2c 2=8,即x 2+y 2=4-5c 24,即点C 在圆x 2+y 2=4-5c 24上,所以S ≤c 2r =c 24-54c 2=12·-54⎝⎛⎭⎫c 2-852+165≤255,当且仅当c 2=85时取等号,故S max =255.【方法规律】1. 注意到a 2+b 2+2c 2=8中a ,b 是对称的,因此将三角形的面积表示为S =12ab sin C ,利用余弦定理将ab 表示为C 的形式,进而转化为三角函数来求它的最值.2. 将c 看作定值,这样满足条件的三角形就有无数个,从而来研究点C 所满足的条件,为此建立直角坐标系,从而根据条件a 2+b 2+2c 2=8得到点C 的轨迹方程,进而来求出边AB 上的高所满足的条件.3. 解法1是从将面积表示为角C 的形式来加以思考的,而解法2则是将面积表示为边c 的形式来加以思考的.这两种解法都基于一点,即等式a 2+b 2+2c 2=8中的a ,b 是对称关系.解法2则是从运动变化的角度来加以思考的,这体现了三角函数与解析几何之间的千丝万缕的关系.解法1是一种常规的想法,是必须要认真体会的,而解法2就需要学生能充分地认识知识与知识之间的联系.本题对学生的知识的应用要求、思考问题、分析问题、解决问题的能力要求都比较高.【例2】在△ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B.(1) 求角C 的大小;(2) 若△ABC 的外接圆直径为1,求a 2+b 2+c 2的取值范围. 解析:(1) 因为tan C =sin A +sin B cos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B ,所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,所以sin(C -A )=sin(B -C ). 所以C -A =B -C 或C -A =π-(B -C )(不成立),即2C =A +B ,所以C =π3.(2) (解法1)由C =π3可得c =2R sin C =1×32=32,且a =2R sin A =sin A ,b =2R sin B =sin B .设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.所以a 2+b 2+c 2=34+sin 2A +sin 2B =34+1-cos2A 2+1-cos2B 2=74-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α=74+12cos2α. 由-π3<α<π3知-2π3<2α<2π3,-12<cos2α≤1,故32<a 2+b 2+c 2≤94.(解法2)因为C =π3,所以c =2R sin C =1×32=32.又因为c 2=a 2+b 2-2ab cos C ,所以34=a 2+b 2-ab ≥a 2+b 22,故a 2+b 2≤32.又a 2+b 2=34+ab >34,故a 2+b 2+c 2∈⎝⎛⎦⎤32,94.【方法规律】点评:本题的第(2)问是一种典型问题即三角形中有一个边以及对角为定值,求与两个边或两个角有关系的最值问题.如本题中C =π3,c =32,可以求a 2+b 2,a +b ,ab ,sin A +sin B ,sin A sin B ,cos A +cos B ,cos A cos B 的取值范围.方法有二:一是利用A +B =2π3,进行消元(代入消元或中值换元(如本题解法一)),转化为三角函数值域求解;二是利用基本不等式,但基本不等式比较适合求一种最值,求范围有时不适合.本题如果加大难度,可以将三角形改成锐角三角形,这时基本不等式就不太适合了.(通过本课题的学习,你学到了什么?你还有其它疑惑吗?)A 组1.在△ABC 中,已知2cos 2A 2=33sin A ,若a =23,则△ABC 周长的取值范围为________.答案:(43,4+23]解析:由2cos 2A 2=33sin A ,可得cos A +1=33sin A ,则233sin ⎝⎛⎭⎫A -π3=1,即sin ⎝⎛⎭⎫A -π3=32,又0<A <π,可解得A =2π3.所以b sin B =c sin C =asin A =4,即b =4sin B ,c =4sin C ,从而a +b+c =23+4sin B +4sin C =23+4sin B +4sin ⎝⎛⎭⎫π3-B =23+4sin ⎝⎛⎭⎫B +π3.又0<B <π3,所以π3<B +π3<2π3,可得43<23+4sin ⎝⎛⎭⎫π3+B ≤4+23,即a +b +c ∈(43,4+23].2.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 答案:2+12解析:(解法1)因为sin C =2cos A cos B ,所以sin(A +B )=2cos A cos B ,化简得tan A +tan B =2, cos 2A +cos 2B =cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B=1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1 =6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B =t (t >0),则cos 2A +cos 2B =4tt 2-8t +32=4t +32t-8≤4232-8=2+12(当且仅当t =42时取等号). (解法2)由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A +cos 2B =2dd 2-4d +8=2d +8d-4≤228-4=2+12,当且仅当d =22时等号成立. (解法3)因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B 2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin ⎝⎛⎭⎫2C +π4≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号.3.在锐角三角形 ABC 中,已知2sin 2 A + sin 2B = 2sin 2C ,则1tan A +1tan B +1tan C的最小值为________. 答案:132解析:因为 2sin 2A +sin 2B =2sin 2C ,所以由正弦定理可得2a 2+b 2=2c 2. 由余弦定理及正弦定理可得cos C =a 2+b 2-c 22ab =b 24ab =b 4a =sin B4sin A .又因为sin B =sin(A +C )=sin A cos C +cos A sin C , 所以cos C =sin A cos C +cos A sin C 4sin A =cos C 4+sin C4tan A,可得tan C =3tan A ,代入tan A +tan B +tan C =tan A tan B tan C 得tan B =4tan A3tan 2A -1,所以1tan A +1tan B +1tan C =1tan A +3tan 2A -14tan A +13tan A =3tan A 4+1312tan A .因为A ∈⎝⎛⎭⎫0,π2,所以tan A >0,所以3tan A 4+1312tan A≥23tan A 4×1312tan A =132,当且仅当3tan A 4=1312tan A ,即tan A =133时取“=”.所以1tan A +1tan B +1tan C 的最小值为132.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,b ),n =(cos A ,cos B ),p =⎝⎛⎭⎫22sinB +C2,2sin A ,若m ∥n ,|p |=3. (1) 求角A ,B ,C 的值;(2) 若x ∈⎣⎡⎦⎤0,π2,求函数f (x )=sin A sin x +cos B cos x 的最大值与最小值. 解析:(1) 因为m ∥n ,所以a cos B =b cos A .由正弦定理,得sin A cos B =sin B cos A ,所以sin(A -B )=0. 又-π<A -B <π,所以A =B . 而p 2=|p |2=8sin 2B +C2+4sin 2A =9, 所以8cos 2A 2+4sin 2A =9,所以4cos 2A -4cos A +1=0,所以(2cos A -1)2=0,所以cos A =12.又0<A <π,所以A =π3,所以A =B =C =π3.(2) f (x )=sin x cos π6+cos x sin π6=sin ⎝⎛⎭⎫x +π6. 因为x ∈⎣⎡⎦⎤0,π2,所以x +π6∈⎣⎡⎦⎤π6,2π3. 所以x =0时,f (x )min =f (0)=12,x =π3时,f (x )max =f ⎝⎛⎭⎫π3=1.B 组1.已知△ABC 中,B =45°,AC =4,则△ABC 面积的最大值为________. 答案:4+42解析:(解法1)如图,设△ABC 的外接圆为圆O ,其直径2R =AC sin ∠ABC =4sin45°=4 2.取AC的中点M ,则OM =Rcos45°=2.过点B 作BH ⊥AC 于点H ,要使△ABC 的面积最大,当且仅当BH 最大.而BH ≤BO +OM ,所以BH ≤R +22R =22+2,所以(S △ABC )max =⎝⎛⎭⎫12AC ·BH max=12×4×(2+22)=4+42,当且仅当BA =BC 时取等号.(解法2)如图,同上易知,△ABC 的外接圆的直径2R =4 2.S △ABC =12AB ·BC ·sin B =2R 2sin A sin B sin C =82sin A sin C =42⎣⎡⎦⎤cos ⎝⎛⎭⎫3π4-2C +22,当A =C =3π8时,(S △ABC )max =4+4 2. 2.已知a ,b ,c 分别为△ABC 的三内角A ,B ,C 的对边,且a cos C +c cos A =2b cos B ,则sin A +sin C 的最大值为________. 答案:3解析:因为a cos C +c cos A =2b cos B ,所以sin A cos C +sin C cos A =sin(A +C )=2sin B cos B ,即sin B =2sin B cos B . 又sin B ≠0,故cos B =12.又B ∈(0,π),故B =π3,即A +C =23π.设A =π3+α,C =π3-α,0<A <2π3,0<C <2π3,知-π3<α<π3.故sin A +sin C =sin ⎝⎛⎭⎫π3+α+sin ⎝⎛⎭⎫π3-α=2sin π3cos α≤3(当α=0即A =C 时取得). 3.已知△ABC 的内角A, B, C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin Bc ,若a +b =4,则c 的取值范围为________. 答案:[2,4)解析:因为sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin B c ,由正弦定理,得a 2+b 2-c 2sin C =absin A cos B +sin B cos A=ab sin (A +B )=ab sin C ,所以a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,所以C =π3,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =16-3ab ≥16-3×⎝⎛⎭⎫a +b 22=4,所以c ≥2.又三角形的两边之和大于第三边,所以2≤c <4.4.在△ABC 中,三边长分别是a ,b ,c ,面积S =a 2-(b -c )2,b +c =8,则S 的最大值是________. 答案:6417解析:因为S =a 2-(b -c )2,所以12bc sin A =-(b 2+c 2-a 2)+2bc =2bc -2bc cos A ,所以sin A=4(1-cos A ).又sin 2A +cos 2A =1,解得sin A =817,所以S =12bc sin A =417bc ≤417⎝⎛⎭⎫b +c 22=6417.5.在锐角三角形ABC 中,BC =2,sin B +sin C =2sin A ,则中线AD 长的取值范围是________. 答案:⎣⎡⎭⎫3,132 解析:设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,由a =2,sin B +sin C =2sin A ,得b +c =4.因为△ABC 为锐角三角形,所以有⎩⎪⎨⎪⎧b 2+c 2>a 2,a 2+c 2>b 2,a 2+b 2>c 2,即⎩⎪⎨⎪⎧b 2+(4-b )2>4,4+(4-b )2>b 2,b 2+4>(4-b )2,解得32<b<52,则bc =b (4-b )∈⎝⎛⎦⎤154,4.因为|AD →|2=⎣⎢⎡⎦⎥⎤12(AB →+AC →)2=14⎝⎛⎭⎫b 2+c 2+2bc ·b 2+c 2-42bc =14(28-4bc )=7-bc ∈⎣⎡⎭⎫3,134,即AD ∈⎣⎡⎭⎫3,132. 6.在斜三角形ABC 中,1tan A +1tan B +2tan C =0,则tan C 的最大值是__________.答案:-3解析:因为A +B +C =π,所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B.又1tan A +1tan B +2tan C =0,有tan A +tan B tan A tan B -2(tan A +tan B )1-tan A tan B=0. 若tan A +tan B =0,则tan C =0,不符合题意, 所以tan A +tan B ≠0,因此1tan A tan B -21-tan A tan B=0,解得tan A tan B =13,因为A ,B ,C 中至多有一个钝角,所以tan A >0,tan B >0,tan C =-tan A +tan B 1-tan A tan B=-tan A +tan B 1-13=-32(tan A +tan B )≤-32×2tan A tan B =- 3.当且仅当tan A =tan B =33时,上式取等号.7.在△ABC 中,已知角A ,B ,C 的对边分别是a ,b ,c ,且A ,B ,C 成等差数列. (1) 若BA →·BC →=32,b =3,求a +c 的值;(2) 求2sin A -sin C 的取值范围.解析:(1) 因为A ,B ,C 成等差数列,所以B =π3.因为BA →·BC →=32,所以ac cos B =32,所以12ac =32,即ac =3.因为b =3,b 2=a 2+c 2-2ac cos B , 所以a 2+c 2-ac =3,即(a +c )2-3ac =3, 所以(a +c )2=12,所以a +c =23 (2) 2sin A -sin C =2sin ⎝⎛⎭⎫2π3-C -sin C =2⎝⎛⎭⎫32cos C +12sin C -sin C =3cos C . 因为0<C <2π3,所以3cos C ∈⎝⎛⎭⎫-32,3.所以2sin A -sin C 的取值范围是⎝⎛⎭⎫-32,3.8.设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(2a +c )BC →·BA →+cCA →·CB →=0.(1) 求角B 的大小; (2) 若b =23,试求AB →·CB →的最小值.解析:(1) 因为(2a +c )BC →·BA →+cCA →·CB →=0, 所以(2a +c )ac cos B +cab cos C =0,即(2a +c )cos B +b cos C =0,则(2sin A +sin C )cos B +sin B cos C =0, 所以2sin A cos B +sin(C +B )=0,即cos B =-12,所以B =2π3.(2) 因为b 2=a 2+c 2-2ac cos 2π3,所以12=a 2+c 2+ac ≥3ac ,即ac ≤4.所以AB →·CB →=ac cos 2π3=-12ac ≥-2,即AB →·CB →的最小值为-2.。

三角形中的最值问题

三角形中的最值问题

钟国城(广东省梅县东山中学514017)钟国城中学一级教师,梅州市骨干教师。

主要从事高中数学教学研究。

在解三角形中,最值问题主要有三类:一是与面积(边长乘积类型)有关的最值问题;二是与周长(边长线性表示类型)有关的最值问题;三是与角度有关的最值问题.这三类解三角形中的最值问题在高考中频繁出现,技巧性强、难度较大且灵活多变,蕴含着丰富的数学思想和方法,有利于培养学生联想、化归的能力,其处理方法多样,主要解决思路是综合运用正余弦定理、函数(以三角函数与二次函数为主)的性质、基本不等式等重要知识进行求解.下面举例说明.1.与面积(边长乘积类型)有关的最值例1已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.(2014年全国Ⅰ卷)解由a=2,(2+b)(sinA-sinB)=(c-b)sinC,得(a+b)(sinA-sinB)=(c-b)sinC.由正弦定理,得(a+b)(a-b)=(c-b)c,即b2+c2-a2=bc.由余弦定理,得cos A=b2+c2-a22bc=bc2bc=12,所以A=π3.解法1 b2+c2-a2=bc,即b2+c2-bc=4.由基本不等式,得4=b2+c2-bc≥2bc-bc=bc,当且仅当b=c=2时取等号,所以S△ABC=12bcsinA≤槡3,故△ABC面积的最大值为槡3.解法2由正弦定理,得bsinB=csinC=2sinπ3,即b=4槡3sinB,c=4槡3sinC,所以S△ABC=12bcsinA=4槡3sinBsinC.又B+C=π-A=2π3,所以C=2π3-B,B∈0,2π3(),于是S△ABC=槡4 33sinBsin2π3-B()=sin2B+槡2 33sin2 B=槡2 33sin 2B-π6()+槡33,故当B=π3时,S△ABC有最大值槡3,即△ABC面积的最大值为槡3.解法3由正弦定理,得asinA=2槡32=2R,·3·即R=2槡3,所以△ABC的外接圆的半径为2槡3,图1由图1可知,当△ABC为等边三角形时,点A到边BC的距离最大,即面积最大,此时S△ABC=12×2×2sinπ3=槡3,故△ABC面积的最大值为槡3.例2若AB=2,AC=槡2 BC,则△ABC面积的最大值为.(2008年江苏卷)解法1设BC=x,则AC=槡2 x,所以S△ABC=12AB·BCsinB=x 1-cos2槡B.由余弦定理,得cosB=AB2+BC2-AC22AB·BC=4+x2-2x24x=4-x24x,所以S△ABC=x 1-4-x24x()槡2=128-(x2-12)216槡,由三角形三边关系,得槡2 x+x>2,x+2>槡2 x,烅烄烆即槡2 2-2<x<槡2 2+2.所以当x =槡2 3时,S△ABC取得最大值槡2 2,即△ABC面积的最大值为槡2 2.解法2以AB所在直线为x轴,边AB的垂直平分线所在直线为y轴,建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=槡2 BC,得(x+1)2+y槡2 =槡2(x-1)2+y槡2,整理,得(x-3)2+y2=8(y≠0),图2所以点C的轨迹是以(3,0)为圆心,槡2 2为半径的圆(除去x轴上的点),由图2可知,点C到AB的距离的最大值为槡2 2,所以△ABC面积的最大值为12×2 ×槡2 2 =槡2 2.通过上述两个例题可知,求解与面积(边长乘积类型)有关的最值,主要可以从三个方面进行思考:一是根据条件结合余弦定理转化出边的关系,然后利用关系和面积公式把三角形的面积表示成多元的式子或一元的函数,再使用基本不等式或函数的单调性进行解决;二是根据条件结合正弦定理转化出角的关系,利用关系和面积公式把三角形面积表示成三角函数,利用三角函数的性质进行解决;三是根据条件,找出与三角形相关的圆,利用数形结合和几何性质,求得三角形面积的最值.2.与周长(边长线性表示类型)有关的最值例3在△ABC中,B=60°,AC=槡3,则AB+2BC的最大值为.(2011年全国Ⅰ卷)解由正弦定理,得ABsinC=BCsinA=ACsinB=槡3sin60°=2,所以AB+2BC=2(sinC+2sinA).又A=120°-C,则AB+2BC=2[sinC+2sin(120°-C)]=2(2sinC+槡3cosC)·4·=槡2 7sin(C+φ),其中tanφ=槡32,所以AB+2BC的最大值为槡2 7.图3例4如图3,在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.(2018年江苏卷)解法1如图3,由题意,得S△ABC=S△ABD+S△BCD,即12acsin120°=12a×1×sin60°+12c×1×sin60°,化简得ac=a+c,即1a+1c=1.由基本不等式,得4a+c=(4a+c)1a+1c()=5+ca+4ac≥5+2ca·4ac槡=9,当且仅当c=2a=3时取等号,所以4a+c的最小值为9.解法2如图4,过点D分别作DF∥AB,DH∥BC,交BC,AB于点F,H,图4则DF=DH=1.由平行线分线段成比例,得CFFB=CDDA=HBAH,则a-11=1c-1,即(a-1)(c-1)=1,所以4a+c=4(a-1)+(c-1)+5≥2 4(a-1)(c-1槡)+5=9,当且仅当a=32,c=3时取等号,所以4a+c的最小值为9.解法3如图3,在△ABD中,由正弦定理,得ADsin60°=1sinA.同理,在△BCD中,有DCsin60°=1sinC,所以bsin60°=AD+DCsin60°=1sinA+1sinC.又asinA=csinC=bsin120°=4a+c4sinA+sinC,所以4a+c=1sinA+1sinC()(4sinA+sinC)=5+4sinAsinC+sinCsinA≥5+4=9,当且仅当sinC=2sinA,即c=2a=3时取等号,所以4a+c的最小值为9.从以上两个例子可以看出,求解与周长(边长线性表示类型)有关的最值,主要方法是利用正余弦定理,把边转化为角的函数或者根据题设条件找出边的等量关系,再借助函数的性质或者基本不等式的知识进行解决.当然,在求解过程中要注意角的取值范围,以及基本不等式取等号的条件.3.与角度有关的最值例5在△ABC中,a2+c2=b2+槡2 ac.(1)求B的大小;(2)求槡2cos A+cosC的最大值.(2016年北京卷)解(1)由余弦定理及题意,得cosB=a2+c2-b22ac=槡2 ac2ac=槡22,·5·所以B=π4.(2)由(1),得A+C=3π4,即C=3π4-A,所以槡2cos A+cosC=槡2cos A+cos3π4-A()=sin A+π4().又A∈0,3π4(),当A=π4时,槡2cos A+cosC取得最大值1.例6若△ABC的内角满足sinA +槡2sinB=2sinC,则cosC的最小值是.(2014年江苏卷)解由正弦定理,得a+槡2b=2c.由余弦定理,得cosC=a2+b2-c22ab=a2+b2-a+槡2b2()22ab=3a2+2b2-槡2 2 ab8ab.由基本不等式,得3a2+2b2 -槡2 2 ab8ab≥槡2 6 ab -槡2 2 ab8ab=槡6 -槡24,当且仅当3a2=2b2,即ab=槡2槡3时取等号,即cosC≥槡6 -槡24,所以cosC的最小值是槡6 -槡24.从上述两个例子可以看出,求解与角度有关的最值,一是根据条件得到某个角的值或者是角之间的等量关系,然后利用三角形内角和定理消元,把所要求的最值转化为函数的最值问题,使用函数的性质进行解决;二是利用正余弦定理把角转化为边,把所要求的最值转化为一个多元的最值问题,使用基本不等式的知识解决.(上接第2页)由y=kx+m,3y2+x2-槡2 2 x=0,烅烄烆消去x,得(3k2+1)x2+(6km-槡2 2)x+3m2=0,所以x1+x2=-6km-槡2 23k2+1,x1x2=3m23k2+1,代入(*)化简,得m=-32槡2,所以直线MN恒过定点槡3 22,0().(2)直线MN斜率不存在,计算可得直线MN:x=槡3 22.综上知,直线MN恒过定点槡3 22,0().从以上分析可知,虽然新高考降低了对求轨迹的技巧要求,但是动点轨迹的基本特征以及基本求法依然是解析几何的基本问题,这样学生才能在一个貌似非位置关系的问题中,准确分析出其实质是考察曲线的位置关系,从而得出巧妙而不失自然的解法.·6·。

高考数学常见解析几何中的一些最值问题

高考数学常见解析几何中的一些最值问题

关于最值——常见解析几何中的一些最值问题摘要:有关解析几何中的最值问题,在中学数学中较为常见,相对高中数学的其他分科如代数、立体几何、三角中的最值问题,它亦占据了相当的比重,以下将从具体的实例出发,分析并介绍几种比较典型的解题方法,找出一般的解题程序与技巧。

关键词:最值;函数解析式;二次函数;自变量;已知量引言:中学数学的最值问题遍及代数、三角、立体几何及解析几何各学科中,在生产实践当中也有广泛的应用,也是历届各类考试的热点。

学习如何利用一定的数学方法来解决这类问题,能够提高分析问题和解决问题的能力,也是进一步为学习高等数学中的最值问题打下基础。

下面将针对解析几何中的最值问题,作出几种具体分类讨论:一、利用二次函数的知识求最值关于二次函数: y=ax 2+bx+c (a≠0),x ∈R当x=-ab 2时,y=a b ac 442-为最值。

当a>0时,有y min当a<0时,有y max但通常二次函数有相应的定义域,自变量x 的具体取值X 围有所不同,讨论最值的方式也有所不同。

主要有两种情况:1、x ∈R ,当a>0,则有y min =ab ac 442- 当a<0,则有y max =ab ac 442- 2、当x 定义在闭区间,即x ∈[a ,b](a,b 为常数),则应当看对称轴x=-ab 2 是否在此区间,如果x 在此区间,则函数同时有最大值与最小值,如果x 不在此区间,则函数的最大值与最小值必定分别取在该区间两个端点上(具体由函数单调性决定)。

当x 定义在一个含参数的闭区间即∈x [t, t+a](t 为参数,a 为常数)时,需要对参数进行讨论。

例1.1 已知二次函数y=x 2-x 2sec α+αα2cos 22sin 2+(α为参数,cos α≠0) ①求证此抛物线系的顶点轨迹为双曲线。

②求抛物线y=x 2+2x+6到上述双曲线的渐近线的最短距离。

分析:由于该二次函数y 的定义域为R ,所以这道题应归结于上述类别1。

2023_年全国甲卷解析几何大题的解法探究

2023_年全国甲卷解析几何大题的解法探究

2023年全国甲卷解析几何大题的解法探究何㊀勇(白云兴农中学ꎬ贵州贵阳550000)摘㊀要:2023年全国甲卷解析几何压轴大题是以直线和抛物线为载体ꎬ考查直角三角形面积的最小值ꎬ经过探究发现该题存在多种解法ꎬ利用学生熟知的联立普通方程㊁参数方程㊁极坐标等方法都可以处理该题ꎬ考查学生思维的多向型.关键词:解析几何ꎻ最值问题ꎻ参数方程ꎻ极坐标方程中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0098-03收稿日期:2023-07-05作者简介:何勇ꎬ从事高中数学教学研究.㊀㊀2023年全国甲卷理科数学的解析几何大题是非常不错的一道题目ꎬ该题解法多样ꎬ可用高中的多个知识点进行解答.1高考真题题目㊀已知直线x-2y+1=0与抛物线C:y2=2px(p>0)交于AꎬB两点ꎬ且|AB|=415.(1)求pꎻ(2)设C的焦点为FꎬMꎬN为C上两点ꎬMFңNFң=0ꎬ求әMNF面积的最小值.2解法探究2.1第(1)问解析解法1㊀设A(xAꎬyA)ꎬB(xBꎬyB)ꎬ由x-2y+1=0ꎬy2=2pxꎬ{得y2-4py+2p=0.所以yA+yB=4pꎬyAyB=2p.所以AB=1+1k2(yA+yB)2-4yAyB=5ˑ(4p)2-4ˑ2p=415.即2p2-p-6=0.因为p>0ꎬ解得p=2.解法2㊀设A(xAꎬyA)ꎬB(xBꎬyB)ꎬ由x-2y+1=0ꎬy2=2pxꎬ{得x2+(2-8p)x+1=0.所以xA+xB=8p-2ꎬxAxB=1.所以AB=1+k2(xA+xB)2-4xAxB=52ˑ(8p-2)2-4ˑ1=415ꎬ即2p2-p-6=0.因为p>0ꎬ解得p=2.解法3㊀因为直线x-2y+1=0的一个参数方程为x=-1+255tꎬy=55tìîíïïïï(t为参数)ꎬ把直线的参数方程89代入抛物线的普通方程即(55t)2=2p(-1+255t).化简ꎬ得t2-45pt+10p=0.设A(-1+255tAꎬ55tA)ꎬB(-1+255tBꎬ55tB)ꎬ则tA+tB=45pꎬtAtB=10p.则|AB|=|tA-tB|=(tA+tB)2-4tAtB=(45p)2-40p=415.即2p2-p-6=0.因为p>0ꎬ解得p=2.说明㊀直线x-2y+1=0的参数方程有无数个[1]ꎬ与所取直线上的点有关.2.2第(2)问解析解法1㊀因为F(1ꎬ0)ꎬ显然直线MN的斜率不可能为零ꎬ设直线MN:x=my+nꎬM(x1ꎬy1)ꎬN(x2ꎬy2)ꎬ由y2=4xꎬx=my+nꎬ{可得y2-4my-4n=0.所以y1+y2=4mꎬy1y2=-4nꎬә=16m2+16n>0ꎬ得m2+n>0.因为MFң NFң=0ꎬ所以(x1-1)(x2-1)+y1y2=0.即(my1+n-1)(my2+n-1)+y1y2=0.即(m2+1)y1y2+m(n-1)(y1+y2)+(n-1)2=0.将y1+y2=4mꎬy1y2=-4n代入ꎬ得4m2=n2-6n+1ꎬ即4(m2+n)=(n-1)2>0.所以nʂ1ꎬ且n2-6n+1ȡ0.解得nȡ3+22或nɤ3-22.设点F到直线MN的距离为dꎬ所以d=n-11+m2ꎬMN=(x1-x2)2+(y1-y2)2=1+m2y1-y2=1+m2 16m2+16n=21+m2n-1.所以әMNF的面积S=12ˑMNˑd=12ˑn-11+m2ˑ21+m2n-1=(n-1)2.而nȡ3+22或nɤ3-22ꎬ所以ꎬ当n=3-22时ꎬәMNF的面积Smin=(2-22)2=12-82.解法2㊀当直线MN的斜率存在时ꎬ设直线MN的方程为y=kx+bꎬ且kʂ0ꎬ设M(x1ꎬy1)ꎬN(x2ꎬy2)ꎬF(1ꎬ0)ꎬ由y2=4xꎬy=kx+bꎬ{可得k2x2+(2kb-4)x+b2=0.所以x1+x2=4-2kbk2ꎬx1x2=b2k2.所以FMң=(x1-1ꎬy1)ꎬFNң=(x2-1ꎬy2)且MFң FNң=0.即FMң FNң=(x1-1)(x2-1)+y1y2=(k2+1) x1x2+(kb-1)(x1+x2)+b2+1=0.所以k2+b2+6kb-4=0.即1-kb=12|k+b|.要使直线MN与抛物线有两个交点ꎬ则ә=16-16kb>0.即kb<1.所以|MN|=1+k2 (x1+x2)2-4x1x2=41+k2k21-kb.点F到直线MN的距离dF-MN=|k+b|1+k2ꎬ所以SәFMN=12|MN| dF-MN=12 41+k2k21-kb |k+b|1+k2=21-kb |k+b|k2=(k+b)2k2=(1+bk)2.由k2+b2+6kb-4=0可得(bk)2+6 bk+1=4k2>0.99解得bk<-3-22或bk>-3+22.所以SәFMN>12-82.当直线MN的斜率不存在时ꎬ可求得直线MN的方程为x=3-22或x=3+22ꎬ(1)当直线MN的方程为x=3-22时ꎬSәFMN=12-82ꎻ㊀(2)当直线MN的方程为x=3+22时ꎬSәFMN=12+82.㊀综上ꎬәMNF的面积Smin=(2-22)2=12-82.启示㊀解法1和解法2在设直线方程形式上是不同的ꎬ直线方程的不同导致计算量和思想方法不同ꎬ在教学中要重视y=kx+b与x=ky+b两种方程的应用ꎬ选择合适的方程会大大减少计算量或者避免分类讨论的出现ꎬ提高解题的效率.解法3㊀设øMFx=θꎬ由抛物线的焦半径可得|MF|=21-cosθꎬ|NF|=21-cos(π/2+θ)=21+sinθꎬSәFMN=12|MF| |NF|=2(1-cosθ)(1+sinθ)=21+cosθ+sinθ-cosθsinθ.令t=sinθ-cosθ=2sin(θ-π4)ꎬcosθsinθ=1-t22ꎬ所以SәFMN=21+t+(t2-1)/2=4(t+1)2ꎬtɪ[-2ꎬ2]ꎬtʂʃ1.所以当t=2时ꎬSәFMN的最小值为12-82.解法4㊀如图1所示ꎬ把抛物线向左平移一个单位长度ꎬ抛物线的焦点移动到坐标原点处ꎬ以x轴为极轴ꎬ点F为极点ꎬ建立极坐标系ꎬ此时抛物线的方程为y2=4(x+1)ꎬ极坐标方程为ρ2sin2θ=4(ρcosθ+1)ꎬθɪ(0ꎬ2π)ꎬρ>0ꎬ在极坐标系下设M(ρ1ꎬθ)ꎬN(ρ2ꎬπ2+θ)ꎻ图1㊀平移后抛物线示意图所以ρ21sin2θ=4(ρ1cosθ+1)ꎬρ22sin2(π2+θ)=4[ρ2cos(π2+θ)+1]=4(-ρ2sinθ+1)=ρ22cos2θꎬ解得ρ1=2(1+cosθ)sin2θ=2(1+cosθ)(1-cosθ)sin2θ(1-cosθ)=21-cosθꎬρ2=21+sinθ.所以SәNFM=12ρ1ρ2=2(1-cosθ)(1+sinθ)=21+sinθ-cosθ-sinθcosθ.令t=sinθ-cosθ=2sin(θ-π4)ꎬsinθcosθ=1-t22ꎬ所以SәFMN=21+t+(t2-1)/2=4(t+1)2ꎬtɪ[-2ꎬ2]且tʂʃ1.所以当t=2时ꎬSәFMN的最小值为12-82.参考文献:[1]人民教育出版社ꎬ课程教材研究所ꎬ中学数学课程教材研究开发中心.普通高中教科书数学(选修2-1):A版[M].北京:人民教育出版社ꎬ2019.[责任编辑:李㊀璟]001。

正余弦定理在解三角形中的高级应用与最值问题1

正余弦定理在解三角形中的高级应用与最值问题1

正余弦定理在解三角形中的高级应用与最值问题1方法技巧与总结1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin 222S ab C ac B bc A ===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.【核心考点】核心考点一:倍长定比分线模型【规律方法】如图,若P 在边BC 上,且满足PC BP λ= ,AP m =,则延长AP 至D ,使PD AP λ=,连接CD ,易知AB ∥DC ,且DC c λ=,(1)AD AP λ=+.180BAC ACD ∠+∠=︒.【典型例题】例1.(2022·福建·厦门双十中学高三期中)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若2AC = ,3AB = ,则||AP 的值为()A 13B .132C .133D .134【答案】B【解析】设CP CD λ=,则221()(1)332AP AC CP AC CD AC AB AC AB AC AB mAC λλλλ=+=+=+-=+-=+,∴21=32=1m λ-λ⎧⎪⎨⎪⎩,解得3=41=4m λ⎧⎪⎪⎨⎪⎪⎩.因为3AB = ,所以223AD AB ==,又2AC = ,π3BAC ∠=,所以ADC △为等边三角形,所以π3ACD ∠=,3342CP CD ==,由余弦定理22222331132cos 2222224AP A A C C CD C C D D A ⎛⎫=+-⋅+-⨯⨯⨯= ⎪⎝⎭∠=,所以132AP =;故选:B例2.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【解析】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b cR ABC C R==∠,因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222(3cos 23ba b b a C +-=⋅.②由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =,当22,33c c a b ac ===时,3c a b c +=<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽,故AD ABAB AC=,即23bc c b=,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b Ab=,化简得2sin sin 3C A =.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a cb ABC ac a +--⨯∠+==.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222(()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r .以向量,BA BC为基底,有2133BD BC BA =+ .所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b ac c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=,9=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||,||32a BC c BAb ====,由余弦定理得2227cos 212a cb ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.例3.(2022·湖南·宁乡一中高三期中)设a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,AD 为BC 边上的中线,c =1,23BAC π∠=,12sin cos sin sin sin 2c A B a A b B b C =-+.(1)求AD 的长度;(2)若E 为AB 上靠近B 的四等分点,G 为ABC 的重心,连接EG 并延长与AC 交于点F ,求AF 的长度.【解析】(1)依据题意,由12sin cos sin sin sin 2c A B a A b B b C =-+可得2212cos 2ac B a b bc =-+,则2222212cos 22a b bca cb B ac ac-++-==,212c bc ∴=,22b c ==,2222411cos 242b c a a BAC bc +-+-===-∠,解得a =72BD=2714cos AD B +-=AD为2(2)G 为ABC的重心,233AG AD ∴==,37144cos 0,2BAD BAD π+-==∴=∠∠,EG =cos cos AGF AGE =-=∠∠,sin AGF =∠231cos cos(),sin 3222DAC DAC ππ=-==∠∠,cos cos()AFE AGF DAC ∴=-+=∠∠∠,sin sin sin AG AF AFE AFE AGF==,∠∠∠,35AF ∴=例4.(2022·广西柳州·高三阶段练习(文))已知2()sin cos f x x x x =+-()f x 的图象向右平移π0<<2ϕϕ⎛⎫ ⎪⎝⎭单位后,得到()g x 的图象,且()g x 的图象关于,06π⎛⎫⎪⎝⎭对称.(1)求ϕ;(2)若ABC 的角,,A B C 所对的边依次为,,a b c ,且182A g ⎛⎫=- ⎪⎝⎭,=1,=2b c ,若点D 为BC边靠近C 的三等分点,试求AD 的长度.【解析】(1)21π()=sin cos =sin2+cos2=sin 2+2223f x x x x x x x -⎛⎫ ⎪⎝⎭,π()=()=sin 2()+3g x f x x -ϕ-ϕ⎡⎤⎢⎥⎣⎦,由()g x 的图象关于,06π⎛⎫⎪⎝⎭对称,得π=06g ⎛⎫⎪⎝⎭即2πsin 2=03-ϕ⎛⎫ ⎪⎝⎭,由π02ϕ<<得π2π2π<2<333--ϕ,所以2π2=03-ϕ,解得π3ϕ=;(2)由182A g ⎛⎫=- ⎪⎝⎭得π1sin =432A --⎛⎫ ⎪⎝⎭,由0πA <<得πππ<<34312A ---,所以ππ=436A --,解得2π3A =,在ABC 中由余弦定理得,222222π=+2cos =1+22×1×2×cos=73BC b c bc A --,所以BC =则BD =3CD =,设ADC θ∠=,在ADC △中由余弦定理得,222=+2cos b AD DC AD DC -⋅⋅⋅θ,所以221=+2cos 33AD AD -⋅⋅θ⎛ ⎝⎭①在ADB △中由余弦定理得,()222=+2cos πc AD BD AD BD -⋅⋅⋅-θ,所以2222=++2cos 33AD AD ⋅⋅θ⎛ ⎝⎭②联立①②消去cos θ得24=9AD ,所以23AD =.例5.(2022·全国·高三专题练习)在ABC 中,D 为BC 上靠近点C 的三等分点,且1AD CD ==.记ABC 的面积为S .(1)若sin 2sin C B =,求S ;(2)求S 的取值范围.【解析】(1)因为sin 2sin C B =,由正弦定理可得2c b =,因为D 为BC 上靠近点C 的三等分点,1AD CD ==,所以2BD =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB=+-⋅∠即22212212cos AB ADB =+-⨯⨯∠①,在ACD 中由余弦定理2222cos AC AD CD AD CD ADC =+-⋅∠即22211211cos AC ADC =+-⨯⨯∠②,又180ADB ADC ∠+∠=︒,所以()cos cos 180cos ADB ADC ADC ∠=︒-∠=-∠所以2b =,c 1cos 4ADB ∠=-,1cos 4ADC ∠=所以sin ADB ∠==sin ADC ∠所以1111sin sin 12112222S AD BD ADB CD ADC =⋅∠+⋅∠=⨯⨯⨯⨯⨯⨯(2)设ADC θ∠=,()0,θπ∈,则ADB πθ∠=-,所以11sin sin 22S AD BD ADB AD CD ADC =⋅∠+⋅∠()1112sin 11sin 22πθθ=⨯⨯⨯-+⨯⨯⨯3sin 2θ=显然0sin 1θ<≤,所以302S <≤,即30,2S ⎛⎤∈ ⎥⎝⎦例6.(2022·全国·高三专题练习)已知a ,b ,c 分别是ABC 内角A ,B ,C 所对的边,且满足1cos 2c A b a =-,若P 为边AB 上靠近A 的三等分点,1CP =,求:(1)求C 的值;(2)求2+a b 的最大值.【解析】(1)因为1cos 2c A b a =-,由正弦定理得11sin cos sin sin sin()sin 22C A B A A C A =-=+-,可得1sin cos sin cos cos sin sin 2C A A C A C A =+-,即1sin cos sin 2A C A =,由sin 0A ≠,可得1cos 2C =,由(0,)C π∈,可得3C π=.(2)由题意得2133CP CA CB =+ ,两边平方得22411211299332b a ab =++⨯⨯⨯⨯,整理得22429a b ab ++=,即222(2)929()2a b a b ab ++=++ ,解得2(2)12a b + ,2a b + 2a b ==所以2+a b的最大值是例7.(2022·全国·高三专题练习)在①ANBN=②AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,c =8,点M ,N 是BC 边上的两个三等分点,3BC BM =,___________,求AM 的长和ABC 外接圆半径.【解析】若选择条件①因为ANBN =AN BM=设BM t =,则AN =.又60,8B c ︒==,所以在ABN 中,2222cos AN AB BN AB BN B =+-⋅,即222)84282cos 60t t =+-⨯⨯︒,即2280t t +-=,解得2t =或4-(舍去).在ABM 中,22222cos 84282cos 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =,同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得2sin sin 6032b AC R B ==︒所以ABC外接圆的半径R =,若选择条件②因为点M ,N 是BC边上的三等分点,且AMN S =△ABC S = 因为60B =︒,所以113sin 608222ABC S AB BC BC ==⋅︒=⨯⨯⨯△,所以6BC =,所以2BM =.在ABM 中,22222cos 84282sin 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =.同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得4392sin sin 603b AC R B ===︒,所以ABC外接圆的半径3R =.若选择条件③设BM t =,则3BC t =.在ABM 中,22222222cos 828cos6088AM AB BM AB BM B t t t t =+-⋅=︒=+-⨯+-,同理在ABC 中,222222cos 89283cos60AC AB BC AB BC B t t =+-⋅⋅=+-⨯⨯︒264924t t =+-,因为AC AM =,所以2228864924t t t t +-=+-,所以2t =在ABM 中,22222cos 84282cos 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =.同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得2sin sin 60b AC R B ==︒所以ABC外接圆的半径R =.例8.(2022·湖北·高三期中)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()sin sin()a c A a B C -=-,b =(1)求角B ;(2)若AC 边上的点D 满足2CD DA = ,2213BD =,求ABC 的面积.【解析】(1)在ABC 中,由正弦定理可得:(sin sin )sin sin sin()A C A A B C -⋅=⋅-∵(0,π)A ∈,∴sin 0A ≠∴sin sin sin()A CBC -=-∵πA B C ++=,∴sin sin()A B C =+∴sin()sin sin()B C C B C +-=-,化简可得:∴sin 2cos sin C B C =,∵(0,π)C ∈,∴sin 0C ≠∴1cos 2B =,又∵(0,π)B ∈,∴π3B =.(2)∵2CD DA = ,∴()22123333BD BC CD BC CA BC BA BC BC BA =+=+=+-=+ 两边平方得:()2221449BD BC BA BC BA =++⋅ ,即2221π44cos 93BD BC BA BC BA ⎛⎫=++ ⎪⎝⎭ 则()2221284293BD a c ac =++=,∴224284a c ac ++=①在ABC 中,由余弦定理得:22232cos πb a c ac =+-⋅,化简得:2212a c ac =+-②由①②可得:22320c ac a -+=,即()()20c a c a --=,∴c a =或2c a=当c a =时,a c ==1πsi n 23ABC S =⨯=△;当2c a =时,2a =,4c =,∴1π24sin 23ABC S =⨯⨯⨯=△核心考点二:倍角定理【规律方法】例9.(2022·广西·灵山县新洲中学高三阶段练习(文))在锐角ABC 中,角A B C ,,所对的边为a b c ,,,且()cos 1cos a B b A ⋅=+.(1)证明:2A B=(2)若2b =,求a 的取值范围.【解析】(1)∵cos (1cos )a B b A ⋅=+,由正弦定理,得sin cos sin (1cos )A B B A ⋅=+,即sin cos cos sin sin A B A B B ⋅-⋅=,∴sinsin A B B -=(),∴A B B -=或A B B π-+=()(舍),即2A B =,(2)由锐角△ABC ,可得02B π<<,022A B π<=<,032C B ππ<=-<.即64B ππ<<,∴cos 22B <<.由正弦定理可得:sin sin 24sin cos 4cos sin sin sin sin sin a b b A b B B B a B A B B B B =⇒====,所以4cos B <<所以a 的取值范围为:(.例10.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin S B C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.【解析】(1)证明:由()222sin S B C a c +=-,即222sin S A a c =-,∴22sin sin bc A A a c=-,sin 0A ≠,∴22a c bc -=,∵2222cos a b c bc A =+-,∴2222cos a c b bc A -=-,∴22cos b bc A bc -=,∴2cos b c A c -=,∴sin 2sin cos sin B C A C -=,∴()sin 2sin cos sin A C C A C +-=,∴sin cos cos sin sin A C A C C -=,∴()sin sin A C C -=,∴A ,B ,C ∈(0,π),∴A C C -=即A =2C .(2)∵sin sin a c A C =,且a =2,∴1cos c C=∵A =2C ,∴B =π-3C ,∵ABC 为锐角三角形,所以02203202C C C ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,∴,64C ππ⎛⎫∈ ⎪⎝⎭,∴23cos ,22C ⎫∈⎪⎪⎝⎭,由a =2,22a c bc -=,所以4b c c =-,则42b c c c +=+,且123cos 3c C ⎛=∈ ⎝,设4y c c =+,c∈⎝,12c c <<<12120,40c c c c -<-<,∴121212121212()(4)440c c c c y y c c c c c c ---=+--=>,12y y >,所以4y c c =+,c∈⎝为减函数,∴2b c ⎛⎫+∈ ⎪⎝⎭.例11.(2022·福建龙岩·高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=.(1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围.【解析】(1)因为22sin sin sin sin B C A C -=,由正弦定理得22b c ac -=,由222cos 22a c b a c B ac c+--==,得2sin cos sin sin C B A C =-.所以()2sin cos sin sin C B B C C ⋅=+-,sin sin cos cos sin sin()C B C B C B C ∴=-=-,C B C ∴=-或()C B C π=--(舍去),2B C ∴=.(2)由条件得0202232C B C A C ππππ⎧<<⎪⎪⎪<=<⎨⎪⎪=->⎪⎩,解得06C π<<,sin sin a b A B= ,2B C =,2a =,2sin 2sin 22sin 2sin sin(3)sin 3B C C b A C Cπ∴===-.ABC ∴ 的面积in 12s S ab C =sin 2sin 2sin 3C CC ⋅=⋅=sin 2sin 2sin 2cos cos 2sin C CC C C C⋅⋅+=tan 2tan 2tan 2tan C C C C ⋅⋅+24tan 3tan C C=-43tan tan C C =-,06C π<<,0tan C ∴<又因为函数3y x x =-在⎛ ⎝⎭上单调递减,所以3tan tan C C ->所以103tan tan C C<<-403tan tan C C <<-0S ∴<<ABC面积的取值范围为⎛ ⎝⎭.例12.(2022·江苏·宝应中学高三阶段练习)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =;(2)求4cos a b b B+的最小值.【解析】(1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+,故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C=+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<,∵()πB C B C +-=<,∴B C B =-,故2C B =.(2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B +-+++===34cos 4cos B B =+≥当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立,所以当π6B =时,4cos a b b B+的最小值为例13.(2022·江苏连云港·高三期中)在ABC 中,AB =4,AC =3.(1)若1cos 4C =-,求ABC 的面积;(2)若A =2B ,求BC 的长.【解析】(1)在ABC 中,设角A 、B 、C 所对的边分别为a ,b ,c .由余弦定理得2222cos AB AC BC AB BC C =+-⋅⋅,即21169234a a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,得2a =或72a =-(舍),由1cos 4C =-,()0,C π∈,得sin C =所以ABC 的面积11sin 322244S ab C ==⨯⨯⨯=.(2)在ABC 中,由正弦定理得33sin sin sin 2sin 2sin cos sin a b a a A B B B B B B =⇒=⇒=⋅,所以6cos a B =.在ABC 中,再由余弦定理得2222169cos 224AB BC AC a B AB BC a+-+-==⋅⨯⨯,所以2169624a a a+-=⨯⨯,解得a =例14.(2022·浙江·绍兴鲁迅中学高三阶段练习)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =.(2)求bc 的取值范围.【解析】(1)由()22sin sin sin sin A B B A B -=⋅+得22sin sin sin sin A B B C -=,由正弦定理得22a b bc-=故2222sin sin cos 2222sin b c a c bc c b C B A bc bc b B+----====,可得()2sin cos sin sin B A A B B =+-即()sin sin cos sin cos sin B A B B A A B =-=-,因为0,022A B ππ<<<<,所以B A B =-,即2A B =;(2)()sin sin sin sin sin sin 3sin3sin2cos cos2sin b B B B B c C B B B B B B π====-+()222sin 14cos 12sin cos 2cos 1sin B B B B B B ==-+-,在锐角ABC中,0202,cos 264032B A B B B C B ππππππ⎧<<⎪⎪⎪<=<⇒<<<⎨⎪⎪<=-<⎪⎩所以211,14cos 12b c B ⎛⎫=∈ ⎪-⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

✧ 难度:★★
✧ 特点:已知高(作为一个限制弦的条件),求弦长的最大值
✧ 来源:07陕西高考
已知椭圆C :2222b
y a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2
3,求△AOB 面积的最大值.
解:(Ⅰ)设椭圆的半焦距为c ,
依题意c a a ⎧=⎪⎨⎪=⎩
1b ∴=,∴所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥
轴时,AB =.(2)当AB 与x 轴不垂直时,
设直线AB 的方程为y kx m =+.
=,得223(1)4
m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=, 122631
km x x k -∴+=+,21223(1)31m x x k -=+.2
2221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 222222222
12(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k
=+=+≠+=++⨯+++≤. 当且仅当2219k k
=,
即k =时等号成立.当0k =
时,AB =综上所述max 2AB =. ∴当AB 最大时,AOB △
面积取最大值max 12S AB =⨯=. ✧ 难度:★★
✧ 特点:椭圆已知,直线过定点(由椭圆定),求三角形面积的最大值
✧ 来源:
已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;(Ⅱ)直线l 过点P(0,2)且与椭圆相交于A 、B 两点,当ΔAOB 面积取得最大值时,求直线l 的方程.
解:设椭圆方程为).(0b a 1b y a x 2222>>=+(I )由已知得2222
c
b a 4
c 2a c
b +===⇒1
c 1b 2
a 222=== ∴所求椭圆方程为.1y 2
x 22
=+
(II )解法一:由题意知直线l 的斜率存在,设直线l 的方程为2kx y +=,),(),,(2211y x B y x A 由1y 2x 2
kx y 22
=++=消去y 得关于x 的方程:068kx x 2k 122=+++)(
由直线l 与椭圆相交A 、B 两点,∴△02k 12464k 022>+-⇒>)(,
解得23k 2>,又由韦达定理得2212212k 16x x 2k 18k
x x +=⋅+-
=+ 2
12212212x 4x x x k 1x x k 1AB -++=-+=∴)(2416k 2k 1k 122
2
-++=. 原点O 到直线l 的距离2
k 12
d +=2222ADB 2k
132k 222k 12416k d AB 21S +-=+-=⋅=∴∆ 所以,所求直线方程为:042y x 14=+-±.
解法2:令)(0m 32k m 2>-=,则3m 2k 22+=,222m
4m 224m m 22S 2≤+=+=
∴. 当且仅当m
4m =即2m =时,22S ma x =此时214k ±=.所以,所求直线方程为042y x 14=+-±.
解法二:由题意知直线l 的斜率存在且不为零.
设直线l 的方程为2kx y +=,)(11y ,x A ,)(22y ,x B
则直线l 与x 轴的交点),(0k
2D - 由解法一知:23k 2>且2212212k 16x x 2k 18k
x x +=⋅+-
=+
解法1:2kx 2kx k 221y y OD 21S 2121AOB --+⋅=-⋅=
∆ 解法2:POA POB AOB S S S ∆∆∆-=
✧ 难度:★★
✧ 特点:椭圆差一个条件,直线过定点(由椭圆定),已知三角形面积的最大值确定椭圆 ✧ 来源:
已知中心在原点,焦点在x 轴上的椭圆的离心率为
2
2,21,F F 为其焦点,一直线过点1F 与椭圆相交于B A ,两点,且AB F 2∆的最大面积为2,求椭圆的方程. 解:由e =2
2得1:1:2::=c b a ,所以椭圆方程设为22222c y x =+设直线c my x AB -=:,由⎩⎨⎧=+-=22222c
y x c my x 得:02)2(222=--+c mcy y m 0)1(8)22(4)2(4422222222>+=+=++=∆m c m c m c c m 设),(),,(2211y x B y x A ,则21,y y 是方程的两个根 由韦达定理得⎪⎪⎩
⎪⎪⎨⎧+-=+=+2222221221m c y y m mc y y 所以21224)(22212
2121++=-+=-m m c y y y y y y c c y y F F S ABF 222
121212∙=-=∆2122++m m =22222221221
1122c c m m c =∙≤+++ 当且仅当0=m 时,即x AB ⊥轴时取等号1,222==∴c c 所以,所求椭圆方程为12
22
=+y x ✧ 难度:★★

特点:椭圆方程已知,直线过定点,已知面积确定直线
✧ 来源:
已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为12,F F ,且12||F F =2点3(1,)2
在该椭圆上。

(I )
求椭圆C 的方程; (II ) 过1F 的直线l 与椭圆C 相交于A ,B 两点,若2AF B ∆,求以2F 为圆心且与直线l 相切的圆的方程。

✧ 难度:★★★
✧ 特点:将三角形面积表示为某个变量的函数
✧ 来源:石室高2015届周练2014-4-10 如图,椭圆Q :(a >b >0)的右焦点F (c ,0),过点F 的一动直线m 绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点
(1) 求点P 的轨迹H 的方程
(2) 在Q 的方程中,令a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x
动到什么位置时,三角形ABD
解:如图,(1)设椭圆Q :(a >b >0上的点A (x 1,y 1)、B (x 2,y 2),又设P (x ,y ),则
1︒当AB 不垂直x 轴时,x 1≠x 2,
由(1)-(2)得b 2(x 1-x 2)2x +a 2(y 1-y 2)2y =0
∴b 2x 2+a 2y 2-b 2cx =0 (3)
2︒当AB 垂直于x 轴时,点P 即为点F ,满足方程(3)故所求点P 的轨迹方程为:b 2x 2+a 2y 2-b 2cx =0
(2)因为,椭圆 Q 右准线l 方程是x =,原点距l 22
22x y 1a b
+=2
π22
22x y 1a b
+=2222221122222222b x a y a b 1b x a y a b 2⎧⎪⎨⎪⎩+=…………()+=…………()212212y y b x y x x a y x c ∴-=-=--2
a c
的距离为,由于c 2=a 2-b 2,a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤) 则
=2sin (+) 当θ=时,上式达到最大值。

此时a 2=2,b 2=1,c =1,D (2,0),|DF|=1 设椭圆Q :上的点 A (x 1,y 1)、B (x 2,y 2),三角形ABD 的面积 S =|y 1|+|y 2|=|y 1-y 2|设直线m 的方程为x =ky +1,代入中,得(2+k 2)y 2+2ky -1=0由韦达定理得y 1+y 2=,y 1y 2=, 4S 2=(y 1-y 2)2=(y 1+y 2)2
-4 y 1y 2= 令t =k 2+1≥1,得4S 2=,当t =1,k =0时取等号。

因此,当直线m 绕点F 转到垂直x 轴位置时,三角形ABD 的面积最大。

2
a c
2π2a c ++2θ4π2
π2
2x y 12
+=1212122
2x y 12
+=22k 2k -+212k
-+2228k 1k 2(+)(+)28t 8821t 14t 2t
≤==(+)++。

相关文档
最新文档