立体几何基础题题库一A

合集下载

立体几何专题专练100题(含详解)

立体几何专题专练100题(含详解)

1.(本题满分15分)如图,在三棱锥D -ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值.答案及解析:1.(Ⅰ)如图,由题意知⊥DE 平面ABC所以DE AB ⊥,又DFAB ⊥所以⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知ECEB EA ==所以E 是ABC ∆的外心又BC AB ⊥所以E 为AC 的中点…………………………………9分过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC , 60=∠BAC 得2=DE ,3=EF 所以7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B 所以)2,2,0(--=DA ,)2,1,3(--=DB ……………………………………9分设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00DB n DA n 得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=n ………………12分设EB 与n 的夹角为θ所以7213722||||cos ==⋅=n EB nEB θ所以BE 与平面DAB 所成的角的正弦值为721………………………………15分2.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AC=2AB=2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.7.如图所示,四棱锥P ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点,二面角PADB为60°.(1)证明:平面PBC⊥平面ABCD;(2)求直线EF与平面PBC所成角的正弦值.答案及解析:7.证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.考点:直线与平面所成的角;平面与平面垂直的判定.专题:证明题;转化思想;综合法;空间位置关系与距离;空间角.分析:(1)连接PE,BE,由已知推导出∠PEB为二面角P﹣AD﹣B的平面角,推导出BE⊥PB,BE⊥BC,由此能证明平面PBC⊥平面ABCD.(2)连接BF,由BE⊥平面PBC,得∠EFB为直线EF与平面PBC所成的角,由此能求出直线EF与平面PBC所成角的正弦值.解答:证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养8.(15分)(2010秋•杭州校级期末)如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成角的正弦值.答案及解析:8.【考点】平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)通过证明CD⊥平面ABC,CD∥EF,说明EF⊂平面BEF,即可证明平面BEF⊥平面ABC;(2)过A作AH⊥BE于H,连接HF,可得AH⊥平面BEF,推出∠AFH为直线AD与平面BEF所成角.在Rt△AFH中,求直线AD与平面BEF所成角的正弦值.【解答】解:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.又∵CD⊥BC,∴CD⊥平面ABC.∵E、F分别为AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC,∵EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)过A作AH⊥BE于H,连接HF,由(1)可得AH⊥平面BEF,∴∠AFH为直线AD与平面BEF所成角.在Rt△ABC中,为AC中点,∴∠ABE=30°,∴.在Rt△BCD中,BC=CD=1,∴.∴在Rt△ABD中,∴.∴在Rt△AFH中,,∴AD与平面BEF所成角的正弦值为.【点评】证明两个平面垂直,关键在一个面内找到一条直线和另一个平面垂直;利用三垂线定理找出二面角的平面角,解三角形求出此角,是常用方法.9.答案及解析:9.10.(12分)(2015秋•拉萨校级期末)如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF(2)当BE=BF=BC时,求三棱锥A′﹣EFD的体积.答案及解析:10.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.结合EF⊂平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF为斜边的直角三角形,而A'D是三棱锥D﹣A'EF的高线,可以算出三棱锥D﹣A'EF的体积,即为三棱锥A'﹣DEF的体积.【解答】解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A'D⊥A'F,A'D⊥A'E,∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.∴A'D⊥平面A'EF.又∵EF⊂平面A'EF,∴A'D⊥EF.(2)由四边形ABCD为边长为2的正方形故折叠后A′D=2,A′E=A′F=,EF=则cos∠EA′F==则sin∠EA′F==•A′E•A′F•sin∠EA′F=故△EA′F的面积S△EA′F由(1)中A′D⊥平面A′EF可得三棱锥A'﹣EFD的体积V=××2=.【点评】本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等知识,属于中档题.11.(12分)(2015秋•沧州月考)如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO 沿OA折起,使二面角B﹣OA﹣C为直二面角.(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;(Ⅱ)求二面角A﹣GH﹣D的余弦值.答案及解析:11.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【专题】数形结合;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(Ⅰ)根据条件便知H,G分别为△AOB,△AOC的重心,从而有GH∥EF∥BC,并可说明∠BOC为直角,过O作OP⊥BC,从而有OP⊥GH,而根据摄影定理便有,这样即可求出BP的长度;(Ⅱ)根据上面知OB,OC,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,从而可以根据条件求出图形上一些点的坐标,从而可以得到向量的坐标,可设平面AGH的法向量为,而根据即可求出,同样的方法可以求出平面DGH的一个法向量,根据cos=即可得出二面角A﹣GH﹣D的余弦值.【解答】解:(Ⅰ)H,G分别为△AOB和△AOC的重心;∴;连接EF,则GH∥EF;由已知,EF∥BC,∴GH∥BC;∵OA⊥OB,OA⊥OC,二面角B﹣OA﹣C为直二面角;∴∠BOC为直角;∴在Rt△BOC中,过O作BC的垂线,垂足为P,OP⊥BC,又BC∥GH;∴OP⊥GH,则由摄影定理得:OB2=BP•BC;∴;(Ⅱ)分别以OB,OC,OA为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,2),D(0,0,1),B(4,0,0),C(0,2,0),H(),;∴,;设为平面AGH的法向量,则:;取x1=1,则y1=2,z1=1,∴;设为平面DGH的法向量,则:;取x2=1,则;∴;∴由图可知二面角A﹣GH﹣D为锐角,∴该二面角的余弦值为.【点评】考查三角形重心的概念及其性质,平行线分线段成比例,三角形中位线的性质,以及二面角的平面角的定义,直角三角形的摄影定理的内容,建立空间直角坐标系,利用空间向量解决二面角问题的方法,平面的法向量的概念及求法,能求空间点的坐标,根据点的坐标求向量的坐标,向量垂直的充要条件,以及向量夹角的余弦公式,清楚两平面所成二面角的大小和两平面的法向量夹角的关系.12.(12分)(2014•芜湖模拟)如图,E是以AB为直径的半圆上异于A、B的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F.①试证:EF∥AB;②若EF=1,求三棱锥E﹣ADF的体积.答案及解析:12.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的性质.【专题】空间位置关系与距离.【分析】(1)利用面面垂直的性质,可得BC⊥平面ABE,再利用线面垂直的判定证明AE⊥面BCE,即可证得结论;(2)①先证明AB∥面CED,再利用线面平行的性质,即可证得结论;②取AB中点O,EF的中点O′,证明AD⊥平面ABE,利用等体积,即可得到结论.【解答】(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩BC=B,BC,BE⊂面BCE∴AE⊥面BCE∵CE⊂面BCE,∴EA⊥EC;(2)①证明:设面ABE∩面CED=EF∵AB∥CD,AB⊄面CED,CD⊂面CED,∴AB∥面CED,∵AB⊂面ABE,面ABE∩面CED=EF∴AB∥EF;②取AB中点O,EF的中点O′,在Rt△OO′F中,OF=1,O′F=,∴OO′=∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E﹣ADF =V D﹣AEF===【点评】本题考查面面垂直的性质,线面垂直的判定与性质,考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.13.(12分)(2014•浙江模拟)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:13.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.14.如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC=,D、E 分别是SA、SC的中点.(I)求证:平面ACD⊥平面BCD;(II)求二面角S﹣BD﹣E的平面角的大小.答案及解析:14.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据面面垂直的判定定理证明AD⊥平面BCD即可证明平面ACD⊥平面BCD.(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角S﹣BD﹣E的余弦值.【解答】证明:(I)∵∠ABC=,∴BA⊥BC,建立如图所示的坐标系,则C(0,,0),A(2,0,0),D(1,0,1),E(0,,1),S(0,0,2),则=(﹣1,0,1),=(0,,0),=(1,0,1),则•=(﹣1,0,1)•(0,,0)=0,•=(﹣1,0,1)•(1,0,1)=﹣1+1=0,则⊥,⊥,即AD⊥BC,AD⊥BD,∵BC∩BD=B,∴AD⊥平面BCD;∵AD⊂平面BCD;∴平面ACD⊥平面BCD;(II)=(0,,1),则设平面BDE的法向量=(x,y,1),则,即,解得x=﹣1,y=,即=(﹣1,,1),又平面SBD的法向量=(0,,0),∴cos<,>==,则<,>=,即二面角S﹣BD﹣E的平面角的大小为.【点评】本题主要考查空间面面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.15.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.答案及解析:15.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED⊂平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC ﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.16.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.答案及解析:16.(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.考点:直线与平面垂直的性质;用空间向量求平面间的夹角.专题:计算题;证明题;综合题;数形结合;转化思想.分析:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.解答:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.点评:此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.17.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.答案及解析:17.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】证明:(1)∵E,F分别为PB,PC的中点.∴EF∥BC,又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC;(2)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵∠ABC=90°,∴AB⊥BC,又∵PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,由(1)中EF∥BC,∴EF⊥平面PAB,又∵EF⊂平面AEF,∴平面AEF⊥平面PAB.【点评】本题考查的知识点是线面平行的判定定理,线面垂直的判定定理,面面垂直的判定定理,是空间线面关系的简单综合应用,难度中档.18.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AC⊥平面BCE;(Ⅱ)求三棱锥A﹣CDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.答案及解析:18.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.=V三棱锥E﹣ACD=即可得出.(II)利用V三棱锥A﹣CDE(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.【解答】(I)证明:如图所示,取AB的中点N,连接CN,则四边形ADCN是正方形,可得NA=NB=NC,∴AC⊥CB,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.=V三棱锥E﹣ACD===.(II)解:V三棱锥A﹣CDE(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,∴BM⊥EN,∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴CN⊥平面ABEF,∴CN⊥BM,又CN∩EN=N,∴BM⊥平面CEN,∴BM⊥CE.【点评】本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.答案及解析:19.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC⊂平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD⊂平面BDD1B1,DD1⊂平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.20.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.答案及解析:20.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)要证BC1⊥面A1B1CD;应通过证明A1B1⊥BC1.BC1⊥B1C两个关系来实现,两关系容易证明.(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.在RT△A1BO中求解即可.【解答】解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.【点评】本题考查空间直线与平面垂直关系的判断,线面角大小求解,考查空间想象能力、推理论证、计算、转化能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:平面PAC⊥平面PDB.答案及解析:21.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)欲证PA∥平面EDB,根据直线与平面平行的判定定理可知只需证PA与平面EDB内一直线平行,连接AC,交BD于O,连接EO,根据中位线定理可知EO∥PA,PA⊄平面EDB,EO⊂平面EDB,满足定理所需条件;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PDB.【解答】证明:(1)设AC与BD相交于点O,则O为AC的中点.∵E是P的中点,∴EO∥PA又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB;(2)∵PO⊥平面ABCD,∴PD⊥AC又∵四边形ABCD为正方形,∴AC⊥BD从而AC⊥平面PBD,∴平面PAC⊥平面PBD.【点评】本题考查直线与平面平行的判定,以及平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题.22.如图,在直三棱柱ABC=A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P为AC的中点,求二面角P﹣A1B﹣C的平面角的余弦值.答案及解析:22.【考点】用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得A1A⊥平面ABC,A1A⊥BC,AD⊥BC.由此能证明BC⊥A1B.(Ⅱ)由(Ⅰ)知BC⊥平面A1AB,从而BC⊥AB,以B为原点建立空间直角坐标系B﹣xyz,利用向量法能求出二面角P﹣A1B﹣C的平面角的余弦值.【解答】(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴A1A⊥平面ABC,又BC⊂平面ABC,∴A1A⊥BC,∵AD⊥平面A1BC,且BC⊂平面A1BC,∴AD⊥BC.又AA1⊂平面A1AB,AD⊂平面A1AB,A1A∩AD=A,∴BC⊥平面A1AB,又A1B⊂平面A1BC,∴BC⊥A1B.(Ⅱ)解:由(Ⅰ)知BC⊥平面A1AB,AB⊂平面A1AB,从而BC⊥AB,如图,以B为原点建立空间直角坐标系B﹣xyz∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.在Rt△ABD中,AD=,AB=2,sin∠ABD==,∠ABD=60°,在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.在Rt△ABA1中,AA1=AB•tan60°=2,则B(0,0,0),A(0,2,0),C(2,0,0),P(1,1,0),A 1(0,2,2),,=(0,2,2),,设平面PA1B的一个法向量,则,即,得,设平面CA1B的一个法向量,则,即,得,,∴二面角P﹣A1B﹣C平面角的余弦值是.…【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.23.(16分)如图,在正方体ABCD﹣A1B1C1D1的棱长为a,E为棱AB上的一动点.(1)若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE(2)若BC1∥面B1DE,求证:E为棱AB的中点.答案及解析:23.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(1)①四棱锥B1﹣BCDE的底面为直角梯形BEDC,棱锥的高为B1B,代入体积公式即可;②面B1DC∩面B1DE=B1D,故只需在平面B1DE找到垂直于交线B1D的直线即可,由DE=B1E=a可易知所找直线为等腰△EB1D底边中线;(2)辅助线同上,由中位线定理可得OF∥DC,且OF=DC,从而得出OF∥EB,由BC1∥面B1DE可得EO∥B1C,故四边形OEBF是平行四边形,得出结论.【解答】证明:(1)①∵正方体ABCD﹣A1B1C1D1∴B1B平面BEDC,•B1B=•(a+)•a•a=.∴V=•S梯形BCDE②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,。

立体几何基础题题库1-50(有详细答案)

立体几何基础题题库1-50(有详细答案)

立体几何基础题题库一(有详细答案)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。

根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQ QRR RSS SPP PQQQ RRSSSPP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。

3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。

B 项:如正方体的一个角,三个平面互相垂直,却两两相交。

C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为11111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:P 点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。

5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第一章空间向量与立体几何(A卷基础卷)一.选择题(共8小题)1.(2020春•和平区期中)已知空间向量(3,1,3),(﹣1,λ,﹣1),且∥,则实数λ=()A.B.﹣3 C.D.6【解答】解:∵∥,∴可设k,∴,解得λ=k.故选:A.2.(2020春•点军区校级月考)在正四面体P﹣ABC中,棱长为2,且E是棱AB中点,则的值为()A.﹣1 B.1 C.D.【解答】解:如图,P﹣ABC为正四面体,则∠APC=∠BPC=∠APB=60°,E是棱AB中点,所以,,所以•()1﹣2=﹣1,故选:A.3.(2020春•点军区校级月考)设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,则||=()A.B.C.3 D.4【解答】解:设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,∴,解得x=1,y=﹣2,∴(1,1,1)+(1,﹣2,1)=(2,﹣1,2),∴||.故选:C.4.(2019秋•焦作期末)在△ABC中,D是线段AB上靠近B的三等分点,E是线段AC的中点,BE与CD 交于F点,若,则a,b的值分别为()A.B.C.D.【解答】解:取AD的中点为G,连接GE.由已知得GE∥CD,所以DF∥EG,又因为D是GB的中点,所以F是BE的中点,所以.∴a,b.故选:A.5.(2019秋•榆树市期末)若向量,且与的夹角余弦为,则λ等于()A.B.C.或D.2【解答】解:∵向量,与的夹角余弦为,∴cos,解得λ.故选:A.6.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A 处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,故选:B.7.(2019秋•龙岩期末)如图所示,在平行六面体ABCD﹣A1B1C1D1中,,,,M是D1D的中点,点N是AC1上的点,且,用表示向量的结果是()A.B.C.D.【解答】解:∵M是D1D的中点,∴.故选:D.8.(2020•茂名二模)已知六棱锥P﹣ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB.则下列命题中正确的有()①平面P AB⊥平面P AE;②PB⊥AD;③直线CD与PF所成角的余弦值为;④直线PD与平面ABC所成的角为45°;⑤CD∥平面P AE.A.①④B.①③④C.②③⑤D.①②④⑤【解答】解:∵P A⊥平面ABC,∴P A⊥AB,在正六边形ABCDEF中,AB⊥AE,P A∩AE=A,∴AB⊥平面P AE,且AB⊂面P AB,∴平面P AB⊥平面P AE,故①成立;∵AD与PB在平面的射影AB不垂直,∴②不成立;∵CD∥AF,直线CD与PF所成角为∠PF A,在Rt△P AF中,P A=2AF,∴cos∠PF A,∴③成立.在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,故④成立.∵CD∥AF∥平面P AF,平面P AF∩平面P AE=P A,∴直线CD∥平面P AE也不成立,即⑤不成立.故选:B.二.多选题(共4小题)9.(2019秋•连云港期末)已知点P是△ABC所在的平面外一点,若(﹣2,1,4),(1,﹣2,1),(4,2,0),则()A.AP⊥AB B.AP⊥BP C.BC D.AP∥BC【解答】解;A.•2﹣2+4=0,∴⊥.因此正确.B.(2,﹣1,﹣4)+(1,﹣2,1)=(3,﹣3,﹣3),•3+6﹣3=6≠0,∴AP与BP不垂直,因此不正确.C.(4,2,0)﹣(﹣2,1,4)=(6,1,﹣4),∴||,因此正确.D.假设k,则,无解,因此假设不正确,因此AP与BC不可能平行,因此不正确.故选:AC.10.(2019秋•南通期末)设,,是空间一个基底()A.若⊥,⊥,则⊥B.则,,两两共面,但,,不可能共面C.对空间任一向量,总存在有序实数组(x,y,z),使D.则,,一定能构成空间的一个基底【解答】解:由,,是空间一个基底,知:在A中,若⊥,⊥,则与相交或平行,故A错误;在B中,,,两两共面,但,,不可能共面,故B正确;在C中,对空间任一向量,总存在有序实数组(x,y,z),使,故C正确;在D中,,,一定能构成空间的一个基底,故D正确.故选:BCD.11.(2019秋•建邺区校级期中)已知点P是平行四边形ABCD所在的平面外一点,如果(2,﹣1,﹣4),(4,2,0),(﹣1,2,﹣1).下列结论正确的有()A.AP⊥ABB.AP⊥ADC.是平面ABCD的一个法向量D.∥【解答】解:对于A,•2×(﹣1)+(﹣1)×2+(﹣4)×(﹣1)=0,∴⊥,即AP⊥AB,A正确;对于B,•(﹣1)×4+2×2+(﹣1)×0=0,∴⊥,即AP⊥AD,B正确;对于C,由⊥,且⊥,得出是平面ABCD的一个法向量,C正确;对于D,由是平面ABCD的法向量,得出⊥,则D错误.故选:ABC.12.(2019秋•菏泽期末)如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.则()A.CD⊥ANB.BD⊥PCC.PB⊥平面ANMDD.BD与平面ANMD所在的角为30°【解答】解:A显然错误;若BD⊥PC,由BD⊥P A,则BD⊥平面P AC,则BD⊥AC,显然不成立;C、PB⊥AN,又PB⊥NM,可得到C成立;D、连接DN,因为PB⊥平面ADMN,所以∠BDN是BD与平面ADMN所成的角在Rt△BDN中,,所以BD与平面ADMN所成的角为30°成立;故选:CD.三.填空题(共4小题)13.(2019秋•房山区期末)设θ是直线与平面所成的角,则角θ的取值范围是[0,].【解答】解:θ是直线与平面所成的角,当直线在平面内或直线平行于平面时,θ取最小值0,当直线与平面垂直时,θ取最大值,∴角θ的取值范围是[0,].故答案为:[0,].14.(2019秋•温州期末)在平面直角坐标系中,点A(﹣1,2)关于x轴的对称点为A'(﹣1,﹣2),那么,在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C (1,﹣1,2)关于xOy平面的对称点为点C',则|B'C'|=.【解答】解:在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C(1,﹣1,2)关于xOy平面的对称点为点C',则C′(1,﹣1,﹣2),∴|B'C'|.故答案为:(﹣1,﹣2,﹣3),.15.(2020•杨浦区一模)已知圆锥的底面半径为lcm,侧面积为2πcm2,则母线与底面所成角的大小为.【解答】解:由圆锥侧面积公式S=πrl=π•1•l=2π,解得l=2,设母线与底面所成角为θ,则cosθ,∴θ,故答案为:.16.(2020春•和平区校级月考)如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.四.解答题(共5小题)17.(2020•长春四模)如图,四棱锥P﹣ABCD中,底面ABCD为梯形,AB∥DC,∠BAD=90°,点E为PB的中点,且CD=2AD=2AB=4,点F在CD上,且.(Ⅰ)求证:EF∥平面P AD;(Ⅱ)若平面P AD⊥平面ABCD,P A=PD且P A⊥PD,求直线P A与平面PBF所成角的正弦值.【解答】解:(Ⅰ)证明:取P A的中点,连接DM,EM,在△P AB中,ME为一条中位线,则,又由题意有,,故,∴四边形DFEM为平行四边形,∴EF∥DM,又EF⊄平面P AD,DM⊂平面P AD,∴EF∥平面P AD;(Ⅱ)取AD中点N,BC中点H,连接PN,NH,由平面P AD⊥平面ABCD,且PN⊥AD,平面P AD∩平面ABCD=AD,可知PN⊥平面ABCD,又AD⊥NH,故以N为原点,NA,NH,NP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,设平面PBF的一个法向量为,则,可取,又,故,∴直线P A与平面PBF所成角的正弦值为.18.(2020•沙坪坝区校级模拟)如图,四棱台ABCD﹣A1B1C1D1的底面是矩形,平面ABCD⊥平面ABB1A1,AB=2A1B1=2,AA1=2,.(1)求证:DC⊥AA1;(2)若二面角B﹣CC1﹣D的二面角的余弦值为,求AD的长.【解答】解:(1)取AB中点E,连接B1EAE=A1B1,且AE∥A1B1,所以四边形AEB1A1为平行四边形,所以B1E=AA1=2,BE=1,所以,则BE⊥B1E,所以AA1⊥AB,又平面ABCD⊥平面ABB1A1,所以AA1⊥平面ABCD,所以DC⊥AA1;(2)由(1)知AA1⊥AD,设AD=2a(a>0),建系如图,则A(0,0,0),B(0,0,2),C(2a,0,2),D(2a,0,0),C1(a,2,1),故,设平面CC1D的法向量,则,可取,设平面BCC1的法向量,则,可取,所以,由二面角B﹣CC1﹣D的二面角的余弦值为,得,解得a=2,所以AD=4.19.(2019秋•清远期末)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB,(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.【解答】解:(1)证明:∵PD⊥平面ABCD,BC在平面ABCD内,BD在平面ABCD内,∴PD⊥BC,PD⊥BD,又AP⊥BD,AP∩PD=P,且AP,PD均在平面APD内,∴BD⊥平面APD,又AD在平面APD内,∴BD⊥AD,又底面ABCD为平行四边形,∴BC⊥BD,又PD∩BD=D,且都在平面PBD内,∴BC⊥平面PDB;(2)由(1)知,PB与平面APD所成角即为∠BPD,故∠BPD=45°,又AB,∠DAB=45°,∴,,∴AP2+PC2=AC2,即AP⊥CP,∴,,又V P﹣ABC =V B﹣P AC,∴,即,解得,即点B到平面APC的距离为.20.(2020•安徽模拟)如图1,四边形PBCD是等腰梯形,BC∥PD,PB=BC=CD=2,PD=4,A为PD 的中点,将△ABP沿AB折起,如图2,点M是棱PD上的点.(1)若M为PD的中点,证明:平面PCD⊥平面ABM;(2)若PC,试确定M的位置,使二面角M﹣AB﹣D的余弦值等于.【解答】解:(1)证明:由题意,AD=BC,且AD∥BC,故四边形ABCD是平行四边形,又PB=BC=CD=2,PD=4,∴△PBA是正三角形,四边形ABCD是菱形,取AB的中点E,连接PE,CE,易知△ABC是正三角形,则AB⊥PE,AB⊥EC,又PE∩EC=E,∴AB⊥平面PEC,∴AB⊥PC,取PC的中点N,连接MN,BN,则MN∥CD∥AB,即A,B,N,M四点共面,又PB=BC=2,则BN⊥PC,又AB∩BN=B,∴PC⊥平面ABM,又PC在平面PCD内,∴平面PCD⊥平面ABM;(2)∵,∴PE⊥EC,又AB⊥PE且AB⊥EC,则可以EB,EC,AB所在直线为x轴,y轴,z轴建立空间直角坐标系,则,设,则,易知平面ABD的一个法向量为,设平面MAB的一个法向量为,又,∴,则可取,由题意,,解得λ=2,故DM=2MP.21.(2019秋•扬州期末)如图,直三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,点O为AB中点,点D为AA1中点.(1)求平面ABC与平面B1CD所成锐二面角的大小;(2)已知点E满足,当异面直线DE与CB1所成角最小时,求实数λ的值.【解答】解:在直三棱柱ABC﹣A1B1C1中,AB=BC=CA,取A1B1的中点O1,连接OO1,则OO1∥AA1,AB⊥OC,又直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,而AB,OC⊂平面ABC,故AA1⊥OC,AA1⊥AB,所以OO1⊥OC,OO1⊥AB,以{OA,OO1,OC}为正交基底,建立如图所示的空间直角坐标系O﹣xyz,则,所以,(1)∵AA1⊥平面ABC,∴平面ABC的一个法向量为,设平面B1CD的一个法向量为,则,故可取,∴,∴平面ABC与平面B1CD所成锐二面角为;(2)∵,∴,则,设异面直线DE与CB1所成角为θ,则,令t=λ+1∈[1,2],则,当时,cosθ取得最大值,∵y=cosθ在上递减,∴θ取得最小值,此时.。

立体几何基础选择题(附答案)

立体几何基础选择题(附答案)

立体几何基础选择题(附答案)1.设l,m是两条不同的直线,α是一个平面,则正确的命题是()A、若l⊥m,m∈α,则XXX⊥αB、XXX⊥α,l∥m,则XXX⊥αC、若l∥α,XXXα,则l∥mD、若l∥α,m∥α,则l∥m2.在空间中,正确的命题是()A、平行于同一平面的两条直线平行B、平行于同一直线的两个平面平行C、垂直于同一平面的两个平面平行D、垂直于同一平面的两条直线平行3.用a、b、c表示三条不同的直线,α表示平面,正确的命题有:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥α,b∥α,则a∥b;④若a⊥α,XXXα,则a∥b。

A.①②B.②③C.①④D.③④4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

其中,为真命题的是()A。

①和② B。

②和③ C。

③和④ D。

②和④5.设α,β是两个不同的平面,l是一条直线,正确的命题是()A。

XXX⊥α,α⊥β,则XXXβB。

若XXXα,α∥β,则XXXβC。

XXX⊥α,α∥β,则XXX⊥βD。

若XXXα,α⊥β,则XXX⊥β6.已知m,n是两条不同直线,α,β,γ是三个不同平面,正确的命题是()A。

若m∥α,n∥α,则XXXB。

若α⊥γ,β⊥γ,则α∥βC。

若m∥α,m∥β,则α∥βD。

XXX⊥α,n⊥α,则XXX7.设有直线m,n和平面α,β。

正确的命题是()A。

若m∥α,n∥α,则XXXB。

若m∈α,n∈α,m∥β,n∥β,则α∥βC。

若α⊥β,XXXα,则m⊥βD。

若α⊥β,m⊥β,m∈α,则m∥α8.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

立体几何考察试题及答案

立体几何考察试题及答案

立体几何考察试题及答案一、选择题1. 若直线l与平面α垂直,则直线l与平面α内任意直线的关系是()。

A. 相交B. 平行C. 异面D. 垂直答案:D2. 已知一个正四面体的棱长为a,求其体积。

A. \( \frac{a^3 \sqrt{2}}{12} \)B. \( \frac{a^3 \sqrt{2}}{6} \)C. \( \frac{a^3 \sqrt{3}}{12} \)D. \( \frac{a^3 \sqrt{3}}{6} \)答案:C二、填空题1. 已知一个长方体的长、宽、高分别为a、b、c,则其对角线的长度为 \( \sqrt{a^2 + b^2 + c^2} \)。

2. 一个球的半径为r,则其表面积为 \( 4\pi r^2 \)。

三、解答题1. 已知一个圆锥的底面半径为r,高为h,求其体积。

解:圆锥的体积公式为 \( V = \frac{1}{3}\pi r^2 h \)。

答:圆锥的体积为 \( \frac{1}{3}\pi r^2 h \)。

2. 已知一个圆柱的底面半径为r,高为h,求其侧面积。

解:圆柱的侧面积公式为 \( A = 2\pi rh \)。

答:圆柱的侧面积为 \( 2\pi rh \)。

四、证明题1. 证明:若直线l与平面α内的两条直线m和n都垂直,则直线l与平面α垂直。

证明:设直线m和n在平面α内的交点为O,由于直线l与m、n都垂直,根据直线与平面垂直的判定定理,直线l与平面α垂直。

答:直线l与平面α垂直。

2. 证明:若两个平面α和β的交线为l,直线m在平面α内且与l平行,直线n在平面β内且与l平行,则直线m与直线n平行。

证明:设直线m与直线n的交点为P,由于m在平面α内且与l平行,n在平面β内且与l平行,根据平面与平面平行的性质,直线m与直线n平行。

答:直线m与直线n平行。

立体几何试题及答案

立体几何试题及答案

立体几何试题一、选择题: 1.下列命题中正确命题的个数是( )⑴ 三点确定一个平面 ⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内⑶ 两两相交的三条直线在同一平面内 ⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2 D 。

3 答案:A 2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A 。

1条 B 。

2条 C 。

3条 D 。

4条 答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l //(3) 若m l //,则βα⊥ (4) 若m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2) 答案:B 4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( )A.与m 、n 都相交B.与m 、n 中至少一条相交C.与m 、n 都不相交D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是( ) A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥C. c a b c b a //////⇒⎭⎬⎫ D 。

c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD,BC=BD,则直线a 、b所成的角为 ( ) A 。

︒90 B 。

︒60 C 。

︒45 D 。

︒30 答案:A7.下列四个命题中正确命题的个数是( )有四个相邻侧面互相垂直的棱柱是直棱柱各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D 。

立体几何基础习题和答案

立体几何基础习题和答案

立体几何基础习题和答案立体几何基础习题和答案立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和物体。

在学习立体几何的过程中,掌握基础习题和答案是非常重要的。

本文将为大家提供一些常见的立体几何基础习题及其答案,希望能对大家的学习有所帮助。

一、体积和表面积计算1. 计算一个边长为3cm的正方体的体积和表面积。

解答:正方体的体积公式为V = a^3,表面积公式为A = 6a^2。

其中,a为正方体的边长。

将边长a = 3cm带入公式,可得正方体的体积V = 3^3 = 27cm^3,表面积A = 6 × 3^2 = 54cm^2。

2. 一个半径为4cm的球体的体积和表面积分别是多少?解答:球体的体积公式为V = (4/3)πr^3,表面积公式为A = 4πr^2。

其中,r为球体的半径。

将半径r = 4cm带入公式,可得球体的体积V = (4/3)π × 4^3 ≈ 268.08cm^3,表面积A = 4π × 4^2 = 201.06cm^2。

二、平行四边形和三角形的性质1. 一个平行四边形的两个对角线相交于点O,证明O是平行四边形的中心点。

解答:由平行四边形的性质可知,对角线互相平分。

设平行四边形的两个对角线分别为AC和BD,相交于点O。

由于AC和BD互相平分,所以AO = CO,BO = DO。

又由于平行四边形的对边相等,所以AO = CO = BO = DO。

因此,O是平行四边形的中心点。

2. 在一个等腰直角三角形ABC中,BC = AC = 5cm,求三角形的面积。

解答:由于直角三角形是等腰的,所以AB = AC = 5cm。

三角形的面积公式为S = (1/2) × AB × BC。

将AB = 5cm,BC = 5cm带入公式,可得三角形的面积S = (1/2) × 5 × 5 =12.5cm^2。

三、立体图形的相似性1. 一个正方体的边长为2cm,另一个正方体的边长为4cm,这两个正方体的体积之比是多少?解答:两个正方体的体积之比等于边长之比的立方。

高中立体几何试题及答案

高中立体几何试题及答案

高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。

7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。

8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。

9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。

10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。

三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。

12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。

13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。

14. (20分)已知一个球的表面积为4π,求该球的体积。

答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。

立体几何基础题题库(240道附详细解析)

立体几何基础题题库(240道附详细解析)

立体几何基础题题库(240道附详细解析)361. 有一个三棱锥和一个四棱锥,棱长都相等,将它们一个侧面重叠后,还有几个暴露面? 解析:有5个暴露面.如下图,过V 作VS ′∥AB ,那么四边形S ′ABV 为平行四边形,有∠S ′VA=∠VAB=60°,从而ΔS ′VA 为等边三角形,同理ΔS ′VD 也是等边三角形,从而ΔS ′AD 也是等边三角形,得到以ΔVAD 为底,以S ′与S 重合.这说明ΔVAB 与ΔVSA 共面,ΔVCD 与ΔVSD 共面,故共有5个暴露面. 362. 假设四面体各棱长是1或2,且该四面体不是正四面体,那么其体积的值是 .(只须写出一个可能的值)解析: 该题的显著特点是结论发散而不惟一.此题表面上是考查锥体求积公式那个知识点,实际上要紧考查由所给条件构造一个四面体的能力,首先得考虑每个面的三条棱是如何构成的.排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},然后由这三类面在空间构造满足条件的一个四面体,再求其体积.由平时所见的题目,至少可构造出二类满足条件的四面体,五条边为2,另一边为1,对棱相等的四面体.关于五条边为2,另一边为1的四面体,参看图1所示,设AD=1,取AD 的中点为M ,平面BCM 把三棱锥分成两个三棱锥,由对称性可知AD ⊥面BCM ,且V A —BCM =V D —BCM ,因此V ABCD =31S ΔBCM ·AD. CM=22DM CD -=22)21(2-=215.设N 是BC 的中点,那么MN ⊥BC ,MN=22CN CM -=1415-=211,从而S ΔBCM =21×2×211=211, 故V ABCD =31×211×1=611.关于对棱相等的四面体,可参见图2.其体积的计算可先将其置于一个长方体之中,再用长方体的体积减去四个小三棱锥的体积来进行.亦可套公式V=122·)b a c )(a c b )(c b a (222222222-+-+-+, 不妨令a=b=2,c=1,那么V=122·)441)(414)(144(-+-+-+ =122·7=1214. 363. 湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm 的空穴,求该球的半径.解析:设球的半径为R ,依题意知截面圆的半径r =12,球心与截面的距离为d =R-8,由截面性质得:r 2+d 2=R 2,即122+(R-8)2=R 2. 得R =13 ∴该球半径为13cm.364. 在有阳光时,一根长为3米的旗轩垂直于水平地面,它的影长为3米,同时将一个半径为3米的球放在这块水平地面上,如下图,求球的阴影部分的面积(结果用无理数表示).解析:由题意知,光线与地面成60°角,设球的阴影部分面积为S ,垂直于光线的大圆面积为S ′,那么Scos30°=S ′,同时S ′=9π,因此S =63π(米2)365. 设棱锥M —ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,假如ΔAMD 的面积为1,试求能够放入那个棱锥的最大球的半径.解析: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC. 记E 是AD 的中点, 从而ME ⊥AD.∴ME ⊥平面AC , ME ⊥EF设球O 是与平面MAD 、AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,因此O 是ΔMEF 的内心. 设球O 的半径为r ,那么r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a2.MF =22)2(a a +,r =22)2(22aa a a +++≤2222+=2-1当且仅当a =a2,即a =2时,等号成立. ∴当AD =ME =2时,满足条件的球最大半径为2-1. 366. 在正方体ABCD —A 1B 1C 1D 1中,期棱长为a. (1)求证BD ⊥截面AB 1C ;(2)求点B 到截面AB 1C 的距离;(3)求BB 1与截面AB 1C 所成的角的余弦值。

立体几何初步检测考试试题含答案高一数学A

立体几何初步检测考试试题含答案高一数学A

本章达标测评(总分:150分;时间:120分钟)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )①三角形一定是平面图形;②若四边形的两条对角线相交于一点,则该四边形是平面图形;③圆心和圆上两点可确定一个平面;④三条平行线最多可确定三个平面.A.①③④B.②③④C.①②④D.①②③2.如下图所示,α∩β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线ACB.直线ABC.直线CDD.直线BC3.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与轴线所成的角为( )A.30°B.45°C.60°D.75°4.下面说法正确的是( )A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,直线b⫋α,则a∥αD.与两条异面直线都平行的平面有无穷多个5.若平面α内不共线的三点到平面β的距离都相等,则平面α与平面β的位置关系是( )A.平行B.相交且不垂直C.垂直D.以上三种情况都有可能6.在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确的是( )A.①②③B.①③C.①②D.②③7.在长方体ABCD-A1B1C1D1中,AA1=2,AB=1,AD=4,则从A出发,沿长方体的表面到C1的最短距离是( ) A.5 B.7C.√29D.√378.在如下图所示的三棱锥A-BCD中,VA-BPQ =2,VC-APQ=6,VC-DPQ=12,则VA-BCD等于( )A.20B.24C.28D.569.如下图所示,在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1D1、EF、CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条10.如下图所示,在空间四边形ABCD中,E、F分别为AB、AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC、CD的中点,则( )A.BD∥平面EFGH,且四边形EFGH是矩形B.E F∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.若球的体积与其表面积的数值相等,则球的半径是.12.如下图所示,梯形A1B1C1D1是水平放置的平面图形ABCD的直观图,若A 1D1∥O'y',A1B1∥C1D1,A1B1=23C1D1=2,A1D1=1,则四边形ABCD的面积是.13.一个几何体的三视图(单位:cm)如下图所示,则该几何体的表面积是cm2.14.在△ABC中,∠BAC=90°,P为△ABC所在平面外一点,且PA=PB=PC,则平面PBC与平面ABC的位置关系是.15.在棱长为1的正方体ABCD-A1B1C1D1中,过体对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D.其中正确的是(请写出所有正确结论的序号).三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(10分)一几何体按比例绘制的三视图如图(单位:m):(1)试画出它的直观图;(2)求它的表面积和体积.17.(12分)在三棱柱ABC-A1B1C1中,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.18.(12分)一个多面体的直观图及三视图如图所示(其中M、N分别是AF、BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.19.(13分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC 的中点,PA=AD.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.20.(14分)已知正方体ABCD-A1B1C1D1中,O是底面ABCD的对角线的交点,求证:(1)C1O∥平面AB1D1;(2)A1C⊥平面AB1D1.21.(14分)如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形,侧棱A1A⊥底面ABC,点E、F分别是棱CC1、BB1上的点,点M是线段AC上的动点,EC=2FB=2.问:当点M在什么位置时,BM∥平面AEF?附加题(2012上海理,14,4分,★★☆)如下图所示,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.一、选择题1.C 过不在同一条直线上的三点有且只有一个平面,所以三角形一定是平面图形,所以①对;两条对角线相交于一点的四边形一定是平面图形,所以②对;三条平行线可确定一个或三个平面,所以④对;可以有无数个平面经过圆的一条直径,③错.故选C.2.C D∈l,l⫋β,∴D∈β,又C∈β,∴CD⫋β.同理,CD⫋平面ABC,∴平面ABC∩平面β=直线CD.3.A 设圆锥的母线长为L,底面圆的半径为r,则由题意得πrL=2πr2,∴L=2r,∴圆锥的母线与轴线所成的角为30°.4.D 对于A,当l⫋α时,平面α内也有无数条直线与l平行;对于B,a在平面α外有a与α相交,a∥α两种情况;对于C,a∥b,b⫋α,则a⫋α或a∥α;对于D,平移异面直线中的一条,使之与另一条相交,两相交直线可确定一个平面α,则与平面α平行的无穷多个平面都与这两条异面直线平行.5.D 三点若在平面β的一侧,则α∥β,三点若在β的两侧,则α与β可能相交且不垂直,也有可能垂直.6.C 画图形(图略),可得①②正确.7.A 两点之间,线段最短,在长方体展开图中,由A到C1的路线有三条,如下图,三条路线长分别为l1=√12+(2+4)2=√37,l2=√42+(1+2)2=5,l3=√22+(1+4)2=√29,所以最短距离为5.8.B 由V A-BPQV C-APQ =26=13,得V P-BDQV P-CDQ=13,所以VP-BDQ=13VP-CDQ=4,所以VA-BCD=2+6+12+4=24.9.D 在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN 与这三条异面直线都有交点,故选D.10.B 由AE∶EB=AF∶FD=1∶4知EF 15BD,∴EF∥平面BCD.又H 、G 分别为BC 、CD 的中点,∴HG12BD,∴EF∥HG 且EF≠HG,∴四边形EFGH 是梯形,故选B. 二、填空题 11.答案 3解析 设球的半径为R,由题意知4πR 2=43πR 3,∴R=3. 12.答案 5解析 还原图形,如下图所示.CD=C 1D 1=3,AD=2A 1D 1=2, AB=A 1B 1=2,∠ADC=90°, 所以S 梯形ABCD =12×(2+3)×2=5. 13.答案 (4π+12)解析 由三视图知该几何体为一个四棱柱、一个半圆柱和一个半球的组合体,其中四棱柱上底面与半球重合部分之外的面积为1×2-12×π×12=(2-π2)cm 2,四棱柱中不重合的表面积为2-π2+1×2×2+2×2+1×2=(12-π2)cm 2,半圆柱中不重合的表面积为12×2π×2+12π=52π cm 2,半球的表面积为12×4π×12=2π cm 2,所以该几何体的表面积为(4π+12)cm 2. 14.答案 垂直解析 如下图所示,取BC 的中点O,连接AO,PO.∵PB=PC,∴PO⊥BC.又△ABC 是以A 为直角顶点的直角三角形,∴OA=OB,又PA=PB, ∴△POA≌△POB,∴∠POA=∠POB=90°,即PO⊥OA, 而OA∩BC=O,∴PO⊥平面ABC,而PO ⫋平面PBC, ∴平面PBC⊥平面ABC. 15.答案 ②③④解析 因为正方体中对面互相平行,所以截面与对面的交线互相平行,所以一定是平行四边形,①不对;当E 、F 分别是所在棱的中点时,四边形BFD 1E 为菱形,②对;根据投影知识知③对;当E 、F 分别是所在棱中点时,EF⊥平面BB 1D 1D,④对. 三、解答题16.解析 (1)直观图如图①.(2)解法一:由三视图可知该几何体是由长方体截去一个角而得到的,且该几何体的体积是以A 1A,A 1D 1,A 1B 1为棱的长方体的体积的34,在直角梯形AA 1B 1B 中,作BE⊥A 1B 1于E,如图②,则四边形AA 1EB 是正方形, ∴AA 1=BE=1 m.在Rt△BEB 1中,BE=1 m,EB 1=1 m, ∴BB 1=√2 m.∴几何体的表面积S=S 正方形AA 1D 1D +2S 梯形AA 1B 1B +S 矩形BB 1C 1C +S正方形ABCD+S 矩形A 1B 1C 1D 1=1+2×12×(1+2)×1+1×√2+1+1×2=(7+√2)m 2,几何体的体积V=34×1×2×1=32 m 3.∴该几何体的表面积为(7+√2)m 2,体积为32 m 3.解法二:该几何体可看成以四边形AA 1B 1B 为底面的直四棱柱,其表面积求法同解法一, V 直四棱柱D 1C 1CD -A 1B 1BA =Sh=12×(1+2)×1×1=32 m 3. ∴该几何体的表面积为(7+√2)m 2,体积为32 m 3.17.证明 如图,连接AB 1交A 1B 于点E, 则E 为AB 1的中点,连接ED 1.∵E 为AB 1的中点,D 1是B 1C 1的中点, ∴ED 1为△B 1AC 1的中位线, ∴ED 1∥AC 1.∵ED 1⊈平面AC 1D,AC 1⫋平面AC 1D, ∴ED 1∥平面AC 1D,又∵A 1B∥平面AC 1D,且ED 1∩A 1B=E, ∴平面A 1BD 1∥平面AC 1D. 18.解析 由题图知该多面体是底面为直角三角形的直三棱柱ADE-BCF,AB=BC=BF=2,DE=CF=2√2,∠CBF=90°. (1)证明:取BF 的中点G,连接MG 、NG. 由M 、N 分别为AF 、BC 的中点,可得NG∥CF,MG∥AB∥EF,又MG∩NG=G,EF∩CF=F ⇒平面MNG∥平面CDEF ⇒MN∥平面CDEF.(2)取DE 的中点H,连接AH. 因为AD=AE,所以AH⊥DE. 在直三棱柱ADE-BCF 中, 平面ADE⊥平面CDEF, 平面ADE∩平面CDEF=DE, 所以AH⊥平面CDEF,所以多面体A-CDEF 是以AH 为高,矩形CDEF 为底面的棱锥. AH=√2,S 矩形CDEF =DE·EF=4√2,所以棱锥A-CDEF 的体积V=13S 矩形CDEF ·AH=83. 19.证明 (1)取PD 的中点E,连接EN,AE. ∵N 是PC 的中点,∴EN12DC.又∵AM12DC,∴EN AM,∴四边形AENM是平行四边形, ∴AE∥MN.又∵AE⫋平面PAD,MN⊈平面PAD, ∴MN∥平面PAD.(2)∵PA=AD,E是PD的中点,∴AE⊥PD.∵PA⊥平面ABCD,∴PA⊥CD.又AD⊥CD,PA∩AD=A,∴CD⊥平面PAD.∵AE⫋平面PAD,∴AE⊥CD.∵PD∩CD=D,∴AE⊥平面PCD. 又∵AE∥MN,∴MN⊥平面PCD.∵MN⫋平面PMC,∴平面PMC⊥平面PCD.20.证明(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1.∵ABCD-A1B1C1D1是正方体,∴四边形A 1ACC 1是平行四边形, ∴A 1C 1∥AC,且A 1C 1=AC. 又O 1,O 分别是A 1C 1,AC 的中点, ∴O 1C 1∥AO,且O 1C 1=AO,∴AOC 1O 1是平行四边形,∴C 1O∥AO 1, 又AO 1⫋平面AB 1D 1, C 1O ⊈平面AB 1D 1, ∴C 1O∥平面AB 1D 1. (2)∵CC 1⊥平面A 1B 1C 1D 1, ∴CC 1⊥B 1D 1.又A 1C 1⊥B 1D 1,CC 1∩A 1C 1=C 1, ∴B 1D 1⊥平面A 1C 1C,∴A 1C⊥B 1D 1. 同理可证A 1C⊥AB 1, 又D 1B 1∩AB 1=B 1, ∴A 1C⊥平面AB 1D 1.21.解析 如图,取AE 的中点O,连接OF,过点O 作OM⊥AC 于点M,连接MB.因为侧棱A 1A⊥底面ABC,所以侧面A 1ACC 1⊥底面ABC,所以OM⊥底面ABC.则OM 12EC,又因为EC=2FB=2,所以OMFB,所以四边形OMBF 为矩形,所以BM∥OF. 又因为BM ⊈平面AEF,OF ⫋平面AEF, 故BM∥平面AEF,此时点M 为AC 的中点.附加题答案 23c √a 2-c 2-1解析 过点D 作DE⊥BC 于点E,连接AE,则BE⊥平面ADE.作△ADE 的边AD 上的高EF,则EF为最大值时,该几何体体积最大,则当BA=BD=CA=CD=a,且EF为AD和BC的公垂线段,F为AD的中点时,该几何体体积V最大,Vmax =13S△AED·BC=13×12AD·EF·BC=2c3√a2-c2-1.。

立体几何小题基础练-高考数学重点专题冲刺演练(解析版)

立体几何小题基础练-高考数学重点专题冲刺演练(解析版)

立体几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·广东·统考一模)已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为()A.12B.2C.3D2.(2023·山东济南·一模)已知正三角形边长为2,用斜二测画法画出该三角形的直观图,则所得直观图的面积为()A.4B.4C.D.3.(2023·广东惠州·统考模拟预测)已知互不重合的三个平面α、β、γ,其中a αβ⋂=,b βγ= ,c γα= ,且a b P = ,则下列结论一定成立的是()A .b 与c 是异面直线B .a 与c 没有公共点C .//b cD .b c P= 【答案】D【分析】根据题设条件可得相应的空间图形,从而可得正确的选项.【详解】∵a b P = ,∴P a ∈,P b ∈,∵a αβ= ,b βγ= ,∴P α∈,P β∈,P γ∈,∵c αγ⋂=,∴P c ∈,∴b c P = ,∴a c P ⋂=,如图所示:故A ,B ,C 错误;故选:D .4.(2023·浙江嘉兴·统考模拟预测)《九章算术·商功》中记载:“斜解立方,得两堑堵..”我们可以翻译为:取一长方体,分成两个一模一样的直三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得一个四棱锥和一个三棱锥,这个四棱锥称为阳马,这个三棱锥称为鳖臑.现已知某个鳖臑的体积是1,则原长方体的体积是()A .8B .6C .4D .35.(2023·辽宁阜新·校考模拟预测)已知矩形ABCD 中,AB =8,取AB 、CD 的中点E 、F ,沿直线EF 进行翻折,使得二面角A EF B --的大小为120°,若翻折后A 、B 、C 、D 、E 、F 都在球O 上,且球O 的体积为288π,则AD =()A .B .C .4D .2记三角形CDF 外接圆的圆心为因为二面角A EF B --的大小为且,EF DF EF CF ⊥⊥,所以所以30DCF ∠=o ,由正弦定理可得sin DFDCF∠6.(2023·山东日照·统考一模)红灯笼,起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分.如图2,球冠是由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球面的半径为R,球冠的高为h,则球冠的面积S Rh=.如图1,已知该灯笼的高为58cm,圆柱的高为5cm,圆柱的底面圆直径为14cm,2π则围成该灯笼中间球面部分所需布料的面积为()A.21940πcm B.22400πcm D.22540πcm2350πcm C.27.(2023·山东·烟台二中校考模拟预测)已知圆锥的侧面积为,高为,若圆锥可在某球内自由运动,则该球的体积最小值为()A.B.8πC.9πD.【答案】D【分析】由圆锥侧面积公式及勾股定理可得圆锥半径r与母线l长,求该圆锥的外接球体积即可.【详解】解:设圆锥的底面半径为r,母线长为l,则8.(2023·山东威海·统考一模)已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为()A .4πB .8πC .12πD .20π9.(2023·山东聊城·统考一模)在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【分析】根据线面垂直的判定定理及直线位置关系来判定选项即可.【详解】如图所示:A 选项,若m 垂直于AB ,则面11ABB A 内的所有直线均与m 垂直,无法证明,AB n 的关系,故A 选项错误,B 选项与A 同理;C 选项,若m 不垂直于AB ,因为1BB m ⊥,所以当m n ⊥时,1//BB n ,又因为1BB AB ⊥,所以n 垂直于AB ;D 选项与C 同理.故选:C10.(2023·江苏徐州·徐州市第七中学校考一模)则三棱锥-P ABC 中,PA ⊥平面π,6,3,6ABC PA BC CAB ==∠=,则三棱锥-P ABC 的外接球半径为()A .3B.C .D .611.(2023·湖北武汉·统考模拟预测)某车间需要对一个圆柱形工件进行加工,该工件底面半径15cm ,高10cm ,加工方法为在底面中心处打一个半径为r cm 且和原工件有相同轴的圆柱形通孔.r 的值应设计为()A .BC .4D .5【答案】D【分析】表示出表面积后,根据二次函数性质可得.【详解】大圆柱表面积为2215π10215π750π⨯+⨯⨯=小圆柱侧面积为102πr ⨯,上下底面积为22πr 所以加工后物件的表面积为2750π20π2πr r +-,当=5r 时表面积最大.故选:D12.(2023·湖北·统考模拟预测)截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为()A.B .2023C D .13.(2023·湖北·荆州中学校联考二模)甲、乙两个圆锥的底面积相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲、S 乙,体积分别为V 甲、V 乙,若2S S =甲乙,则V V 甲乙等于()A B .5C .5D14.(2023·湖南湘潭·统考二模)已知,,A B C为球O球面上的三个点,若3AB BC AC===,球O的表面积为36π,则三棱锥O ABC-的体积为()A B.4C.4D.415.(2023·湖南·湖南师大附中校联考模拟预测)如图所示,一个球内接圆台,已知圆台上、下底面的半径分别为3和4,球的表面积为100π,则该圆台的体积为()A.175π3B.75πC.238π3D.259π3因为圆台上、下底面的半径分别为所以4OB OA ==,1O B 所以2211OO OB O B =-所以127O O =,16.(2023·广东茂名·统考一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m ;上半部分近似一个与下半部分同底的圆锥,其母线长为,轴截面(过圆锥旋转轴的截面)是面积为2的等腰钝角三角形,则该蒙古包的体积约为()A .321πmB .318πm C .(318πm+D .(320πm+【答案】C因为其轴截面(过圆锥旋转轴的截面)是腰长为()2211sin 23sin 3l αα=⨯⨯=17.(2023·广东茂名·统考一模)已知菱形ABCD 的各边长为2,=60B ∠︒.将ABC 沿AC 折起,折起后记点B 为P ,连接PD ,得到三棱锥P ACD -,如图所示,当三棱锥P ACD -的表面积最大时,三棱锥P ACD -的外接球体积为()A .π3B .π3C .D .π34+【点睛】结论点睛:若三棱锥有两个面为共斜边的直角三角形,则三棱锥的外接球的球心为该斜边的中点.18.(2023·江苏·统考一模)已知正四面体-P ABC 的棱长为1,点O 为底面ABC 的中心,球О与该正四面体的其余三个面都有且只有一个公共点,且公共点非该正四面体的顶点,则球O 的半径为()A B C .9D .3二、多选题19.(2023·浙江·统考一模)已知三棱柱ABC DEF -的棱长均相等,则()A .AB CF ⊥B .AE BD ⊥C .60ABC ∠=︒D .60ADE ∠=︒【答案】BC【分析】根据题意结合异面直线夹角逐项分析判断.【详解】对A :∵AD CF ,则AB 与CF 的夹角为BAD ∠,不一定是直角,A 错误;对B :由题意:ABED 为菱形,则AE BD ⊥,B 正确;对C :由题意:AB BC CA ==,则60ABC ∠=︒,C 正确;对D :由题意:ABED 为菱形,则()0,πADE ∠∈,即ADE ∠大小无法确定,D 错误.故选:BC.20.(2023·江苏泰州·统考一模)在棱长为2的正方体1111ABCD A B C D -中,AC 与BD 交于点O ,则()A .1AD //平面1BOCB .BD ⊥平面1COC C .1C O 与平面ABCD 所成的角为45 D .三棱锥1C BOC -的体积为23【答案】ABD【分析】根据线面平行判定定理判断A ,利用线面垂直判定定理判断B ,利用线面夹角的定义判断C ,根据等体积法判断D.【详解】∵111//,AD BC AD ⊄平面11,BOC BC ⊂平面1,BOC 1∴AD //平面1BOC ,A 对;21.(2023·辽宁葫芦岛·统考一模)已知a ,b 为空间中两条不同直线,α,β为空间中两个不同的平面,则下列命题一定成立的是()A .αβ∥,a α⊂,b a b β⊥⇒⊥B .αβ∥,a α⊥,b a b β⊥⇒∥C .αβ⊥,a αβ⋂=,b a b β⇒∥∥D .αβ⊥,a α⊥,b a b β⊥⇒⊥22.(2023·江苏南通·统考模拟预测)已知点P 是正方体1111ABCD A B C D -侧面11BB C C (包含边界)上一点,下列说法正确的是()A .存在唯一一点P ,使得DP //1AB B .存在唯一一点P ,使得AP //面11ACD C .存在唯一一点P ,使得1A P ⊥1B D D .存在唯一一点P ,使得1D P ⊥面11AC D 【答案】AD【分析】建立空间直角坐标系,设()1,,1,AD P x z =,写成点的坐标,A 选项,根据向量平行得到方程组,得到0,1x z ==,存在唯一一点P ,使得DP //1AB ,A 正确;B 选项,证明出1BD ⊥ 平面11AC D ,从而得到10AP BD ⋅=,列出方程,解得:x z =,得到P 点轨迹为线段1B C ;C 选项,由向量数量积为0列出方程,得到P 在线段1BC 上,满足条件的P 有无数个;D 选项,在1BD ⊥平面11AC D 的基础上,得到,P B 重合,D 正确.【详解】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B AC D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-=,因为1111A C A D A ⋂=,111,A C A D ⊂平面11AC D ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅=,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.23.(2023·山东青岛·统考一模)下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补24.(2023·湖南常德·统考一模)已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件【答案】ACD【分析】根据面面垂直的性质定理可判断A,根据线面平行的判断以及性质可判断BD,根据线面垂直的性质可判断C.【详解】由面面垂直的性质定理可知A 正确,对于B,若l αβα⊂∥,,m β⊂,则//l m ,或者,l m 异面,故B 错误,对于C,若m α⊂,l α⊥则l m ⊥,故充分性成立,但是l m ⊥,m α⊂,不能得到l α⊥,故C 正确,对于D,若m α⊂,l α⊄,l α∥,不能得到l m ,因为,l m 有可能异面,但是l m ,m α⊂,l α⊄,则l α∥,故D 正确,故选:ACD25.(2023·广东茂名·统考一模)已知空间中三条不同的直线a 、b 、c ,三个不同的平面αβγ、、,则下列说法中正确的是()A .若a b ∥,a α⊥,则b α⊥B .若a αβ⋂=,b βγ= ,c αγ⋂=,则a b c ∥∥C .若αβ⊥,a α⊄,a β⊥,则a αP D .若c β⊥,c γ⊥,则βγ∥如图,正方体两两相交的三个平面平面ABCD ⋂平面11ABB A =平面11ABB A 平面11ADD A =对于C ,若αβ⊥,a β⊥,则αP三、填空题26.(2023·江苏南通·校联考模拟预测)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意粮食满园、称心如意、十全十美,下图为一种婚庆升斗的规格,该升斗外形是一个正四棱台,上、下底边边长分别为20cm ,10cm ,侧棱长为10cm ,忽略其壁厚,则该升斗的容积为_________3cm .【详解】上下底面对角线的长度分别为:202,10上底面的面积2120400S ==()2cm ,下底面的面积四棱台的体积27.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)在直角梯形ABCD 中,//AB CD ,AD AB ⊥,22AB DC ==,E 为AD 的中点.将EAB 和ECD 分别沿,EB EC 折起,使得点A ,D 重合于点F ,构成四面体FBCE .若四面体FBCE 的四个面均为直角三角形,则其外接球的半径为_________.故答案为:324.28.(2023·山东·烟台二中校联考模拟预测)已知在正方体1111ABCD A B C D -中,12AM AD =,平面11A BC ⋂平面1CC M l =,则直线l 与1D M 所成角的余弦值为__________.【答案】3030【分析】作出辅助线,找到1C G 即为直线l ,建立空间直角坐标系,设出点的坐标,利用异面直线夹角余弦公式求出答案.【详解】作出图形,如图所示.延长DC 至E ,使得DC CE =,则1A AB △≌1C CE △,111D A C≌CBE △,故11A B C E =,11A C BE =,故四边形11A C EB 为平行四边形,连接BE ,延长MC ,BE 交于点G ,连接1C G ,则1C G 即为直线l .以D 为坐标原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设2AD =,过点G 作GN ⊥y 轴于点N ,则MDC △∽GNC △,且相似比为1:2,故24CN CD ==,22GN DM ==,则()10,2,2C ,()2,6,0G -,()1,0,0M ,()10,0,2D ,29.(2023·湖北·校联考模拟预测)葫芦是一种爬藤植物,在我国传统文化中,其枝密集繁茂,象征着儿孙满堂、同气连枝;其音近于“福禄”,寓意着长寿多福、事业发达;其果口小肚大,代表着心胸开阔、和谐美满.如图,一个葫芦的果实可以近似看做两球相交所得的几何体Ω,其中Ω的下半部分是半径为1O 的一部分,Ω的上半部分是半径为3的球2O 的一部分,且126O O =,则过直线12O O 的平面截Ω所得截面的面积为__________.30.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知圆台的侧面积与轴截面的面积之比为23π3,若上、下底面的半径分别为1和2,则母线长为__________.【答案】2【分析】设圆台的母线长为l .解得2故答案为:2.。

高中数学立体几何专题练习题1(含答案)

高中数学立体几何专题练习题1(含答案)

⾼中数学⽴体⼏何专题练习题1(含答案)⾼中数学⽴体⼏何专题练习题姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

满分100分。

考试时间90分钟。

2、考⽣请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)⼀、选择题(每题2分,共40分)1、⼀个正⽅体的展开图如图所⽰,A、B、C、D为原正⽅体的顶点,则在原来的正⽅体中A.AB∥ CDB. AB与 CD相交C. AB⊥CDD. AB与CD所成的⾓为60°2、(多选)如果⼀个棱锥的底⾯是正⽅形,且顶点在底⾯内的射影是底⾯的中⼼,那么这样的棱锥叫正四棱锥.若⼀正四棱锥的体积为18,则该正四棱锥的侧⾯积最⼩时,以下结论正确的是().A.棱的⾼与底边长的⽐为 22B.侧棱与底⾯所成的⾓为π4C.棱锥的⾼与底⾯边长的⽐为 2 D.侧棱与底⾯所成的⾓为π33、某⼏何体的三视图如图所⽰,则该⼏何体的体积为()A .43B .4C .2D .234、某⼏何体的三视图如图所⽰,则此⼏何体的体积为()A.23 B. 1C.43D.135、已知圆锥的轴截⾯为正三⾓形,且边长为2,则圆锥的表⾯积为() A .3π3B .πC .2πD .3π6、如图,在正⽅体中, E 为线段A 1C 1的中点,则异⾯直线与所成⾓的⼤⼩为()度.A. 60B. 45C. 30D. 157、已知⼀个⽔平放置的平⾯四边形ABCD 的直观图是⾯积为2的正⽅形,则原四边形ABCD 的⾯积为()A .2B .22C .2 2D .4 28、下列说法正确的是()A .通过圆台侧⾯上⼀点可以做出⽆数条母线B .直⾓三⾓形绕其⼀边所在直线旋转⼀周得到的⼏何体是圆锥C .圆柱的上底⾯下底⾯互相平⾏D .五棱锥只有五条棱9、如图,是⼀个⼏何体的三视图,主视图和侧视图是全等的半圆,俯视图是⼀个圆,则该⼏何体的体积是()A 、32π3.B .26π3C .16π3D .64π310、某⼏何体的三视图如图所⽰,则该⼏何体的体积为()A. 56B. 23C. 43D. 4511、⼀个⼏何体的三视图如图,则该⼏何体的体积为()A.263 B .283C. 10D.32312、某⼏何体的三视图如图所⽰,则该⼏何体中的最长棱长为()A .3 2B .2 5C .2 6D .2 713、(多选题)如图,在棱长为1的正⽅体中,下列结论正确的是A .异⾯直线AC 与BC1所成的⾓为60°B .直线AB 1与平⾯ABC 1D 1所成⾓为45° C .⼆⾯⾓A-B 1C-B 的正切值为 2D .四⾯体D 1-AB 1C 的的体积为1214、下列命题错误的是A .不在同⼀直线上的三点确定⼀个平⾯B .两两相交且不共点的三条直线确定⼀个平⾯C .如果两个平⾯垂直,那么其中⼀个平⾯内的直线⼀定垂直于另⼀个平⾯D .如果两个平⾯平⾏,那么其中⼀个平⾯内的直线⼀定平⾏于另⼀个平⾯15、某四棱锥的三视图如图所⽰,俯视图是⼀个等腰直⾓三⾓形,则该四棱锥的体积为()A .2B .C. D .16、如图所⽰,O 是正⽅体ABCD-A 1B 1C 1D 1对⾓线A 1C 与AC 1的交点,E 为棱BB 1的中点,则⼏何体OEC 1D 1 在正⽅体各⾯上的正投影不可能是()A. B. C. D.17、如图,在正⽅体ABCD -A1B l C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG =GC1.则下列直线与平⾯A1BD平⾏的是(A) CE (B) CF (C) CG (D) CC118、⼏何体的三视图如图所⽰,则它的体积是A. B.C. D.19、如图,三棱P-ABC中,PC⊥平⾯ABC,PC=3,∠ACB=90°D、E.分别为线段AB、BC上的点,且CD=DE= 2,CE=2EB=2,则⼆⾯⾓A-PD-C的余弦值是().A、 24B、62C、33D、3620、下图为某⼏何体的三视图,则该⼏何体的表⾯积是()A. 6+4B. 4+4C. 6+2D. 4+2⼆、填空题(15分)21、如图,点P在长⽅体ABCD-A1B1C1D1的⾯对⾓线BC1(线段BC1)上运动,给出下列四个说法:①直线AD与直线B1P为异⾯直线;②恒有A1P∥⾯ACD1;③三棱锥A-D1PC的体积为定值;④当长⽅体各棱长都相等时,⾯PDB1⊥⾯ACD1.其中所有正确说法的序号是.22、已知⼀个⼏何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为,等腰三⾓形的腰长为,则该⼏何体的体积是。

立体几何初步测试卷(A卷基础篇)解析版

立体几何初步测试卷(A卷基础篇)解析版

第八章立体几何初步A(基础卷)参考答案与试题解析一.选择题(共8小题)1.(2019秋•兴庆区校级期末)如图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是四面体D.④不是棱柱【解答】解:图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上、下两个面不平行,所以(2)不是圆台;图(3)是四面体.图(4)前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱.故选:C.2.(2020春•红岗区校级期中)古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的,若圆柱的表面积是6π现在向圆柱和球的缝隙里注水,则最多可以注入的水的体积为()A.B.C.πD.【解答】解:设球的半径为r,则由题意可得球的表面积为,所以r=1,所以圆柱的底面半径为1,高为2,所以最多可以注入的水的体积为.故选:B.3.(2019春•扬州期末)已知△ABC中,AB=AC=2,AB⊥AC,将△ABC绕BC所在直线旋转一周,形成几何体K,则几何体K的表面积为()A.B.C.D.【解答】解:由题知该几何体为两个倒立的圆锥底对底组合在一起,其中若L=2,R∴Sπ×22×2=4π故选:B.4.(2019春•湖南期末)已知α、β为两个不同平面,l为直线且l⊥β,则“α⊥β”是“l∥α”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:根据题意,当“l∥α”时,必有“α⊥β”,反之,当“α⊥β”时,l可能在平面α内,即“l∥α”不一定成立,则“α⊥β”是“l∥α”的必要不充分条件;故选:B.5.(2020春•顺德区月考)已知正三棱柱ABC﹣A1B1C1,O为△ABC的外心,则异面直线AC1与OB所成角的大小为()A.30°B.60°C.45°D.90°【解答】解:如图,∵△ABC是等边三角形,且O为△ABC的外心,∴O是△ABC的垂心,∴BO⊥AC,且AA1⊥平面ABC,BO⊂平面ABC,∴BO⊥AA1,∴BO⊥平面AA1C1C,且AC1⊂平面AA1C1C,∴BO⊥AC1,∴异面直线AC1与OB所成角的大小为90°.故选:D.6.(2019秋•安庆期末)下列命题的符号语言中,不是公理的是()A.a⊥α,b⊥α⇒a∥bB.P∈α,且P∈β⇒α∩β=l,且P∈lC.A∈l,B∈l,且A∈α,B∈α⇒l⊂αD.a∥b,a∥c⇒b∥c【解答】解:A不是公理,在B中,由公理三知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B是公理.在C中,由公理一知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故C是公理;在D中,由平行公理得:平行于同一条直线的两条直线互相平行,故D是公理;故选:A.7.(2019秋•滑县期末)在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,点M在线段PC上,PM=tPC,P A∥平面MQB,则实数t的值为()A.B.C.D.【解答】解:连AC交BQ于N,交BD于O,连接MN,如图则O为BD的中点,又∵BQ为△ABD边AD上中线,∴N为正三角形ABD的中心,令菱形ABCD的边长为a,则AN a,AC a.∵P A∥平面MQB,P A⊂平面P AC,平面P AC∩平面MQB=MN∴P A∥MN∴PM:PC=AN:AC即PM PC,t.故选:C.8.(2020•聊城模拟)我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD ﹣EFGH有外接球,且AB=2,平面ABCD与平面EFGH间的距离为1,则该刍童外接球的体积为()A.12πB.24πC.36πD.48π【解答】解:如图,设上底面中心为O1,下底面中心为O2,刍童外接球的球心为O,则O,O1,O2共线,连接O1E,O2A,OE,OA,由已知可得,,O1O2=1.设该刍童的外接球的半径为R,OO2=h,则R2=8+h2,R2=5+(h+1)2,联立解得R2=9.∴该刍童的外接球的表面积为S=4πR2=36π.故选:C.二.多选题(共4小题)9.(2020春•芝罘区校级期末)下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.B.C.D.【解答】解:在A中,连接AC,则AC∥MN,由正方体性质得到平面MNP∥平面ABC,∴AB∥平面MNP,故A成立;B若下底面中心为O,则NO∥AB,NO∩面MNP=N,∴AB与面MNP不平行,故B不成立;C过M作ME∥AB,则E是中点,则ME与平面PMN相交,则AB与平面MNP相交,∴AB与面MNP不平行,故C不成立;D连接CE,则AB∥CE,NP∥CD,则AB∥PN,∴AB∥平面MNP,故D成立.故选:AD.10.(2019秋•汕尾期末)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点.现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,下列说法正确的是()A.AG⊥平面EFH B.AH⊥平面EFH C.HF⊥平面AEH D.HG⊥平面AEF【解答】解:由题意可得:AH⊥HE,AH⊥HF.∴AH⊥平面EFH,而AG与平面EFH不垂直.∴B正确,A不正确.又HF⊥HE,∴HF⊥平面AHE,C正确.HG与AG不垂直,因此HG⊥平面AEF不正确.D不正确.故选:BC.11.(2019春•东营期末)设m,n是两条不同的直线,α,β是两个不同的平面,则下列结论正确的是()A.若m⊥α,n⊥α,则m∥nB.若m∥n,m∥α,则n∥αC.若m⊂α,n⊂β,则m,n是异面直线D.若α∥β,m⊂α,n⊂β,则m∥n或m,n是异面直线【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,得:对于A,若m⊥α,n⊥α,则由线面垂直的性质定理得m∥n,故A正确;对于B,若m∥n,m∥α,则n∥α或n⊂α,故B错误;对于C,若m⊂α,n⊂β,则m,n相交、平行或异面,故C错误;对于D,若α∥β,m⊂α,n⊂β,则m∥n或m,n是异面直线,故D正确.故选:AD.12.(2020•泉州一模)已知正方体ABCD﹣A1B1C1D1的棱长为1,E是DD1的中点,则下列选项中正确的是()A.AC⊥B1EB.B1C∥平面A1BDC.三棱锥C1﹣B1CE的体积为D.异面直线B1C与BD所成的角为45°【解答】解:如图,∵AC⊥BD,AC⊥BB1,∴AC⊥平面BB1D1D,又B1E⊂平面BB1D1D,∴AC⊥B1E,故A正确;∵B1C∥A1D,A1D⊂平面A1BD,B1C⊄平面A1BD,∴B1C∥平面A1BD,故B正确;三棱锥C1﹣B1CE的体积为,故C错误;∵BD∥B1D1,∴∠CB1D1是异面直线B1C与BD所成的角,又△CB1D1是等边三角形,∴异面直线B1C与BD所成的角为60°,故D错误.故选:AB.三.填空题(共4小题)13.(2020•中卫二模)已知三棱锥O﹣ABC中,A,B,C三点在以O为球心的球面上,若AB=BC=2,∠ABC=120°,且三棱锥O﹣ABC的体积为,则球O的表面积为52π.【解答】解:如图所示设△ABC的外接圆的圆心为O1,半径为r,在△ABC中,由余弦定理可得:|AC|2,∵2r4,解得:r=2.又由题知S△ABC2×2×sin120°,又三棱锥O﹣ABC的体积为S△ABC•|OO1|,所以棱锥O﹣ABC的高|OO1|=3,∴球O的半径R,∴球O的表面积为4πR2=52π.故答案为:52π.14.(2020•江苏)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是12cm3.【解答】解:六棱柱的体积为:,圆柱的体积为:π×(0.5)2×2,所以此六角螺帽毛坯的体积是:(12)cm3,故答案为:12.15.(2020•宿迁模拟)已知圆锥的底面直径与母线长相等,一球体与该圆锥的所有母线和底面都相切,记圆锥和球体的体积分别为V1,V2,则的值为.【解答】解:设圆锥底面圆半径为R,球的半径为r,由题意知,圆锥的轴截面是边长为2R的等边三角形,球的大圆是该该等边三角形的内切圆,所以r R,V2πr3π•(R)3πR3,V1πR2(R)πR3,所以球与圆锥的体积之比为.故答案为:.16.(2019秋•莆田期末)在三棱锥P﹣ABC中,∠ABC=60°,∠PBA=∠PCA=90°,点P到底面ABC 的距离为,若三棱锥P﹣ABC的外接球表面积为6π,则AC的长为.【解答】解取P A的中点哦,连接OB,OC,因为∠PBA=∠PCA=90°,所以OA=OP=OB=OC,即O为三棱锥外接球的球心,设外接球半径为R,由S=4πR2=6π,所以R2,过O做OO'⊥面ABC交于O',连接O'A则O'A为△ABC,则O'A为△ABC外接圆的半径设为r,则r=O'A,因为点P到底面ABC的距离为,所以OO',在△AOO'中,R2=OO'2+r2,所以r2()2=1,即r=1,在△ABC中,2r,所以AC=2r•sin60°=2,故答案为:.四.解答题(共5小题)17.(2020•广东学业考试)如图,四棱锥P﹣ABCD的底面ABCD为菱形,PB=PD,E,F分别为AB和PD的中点.(1)求证:EF∥平面PBC;(2)求证:平面PBD⊥平面P AC.【解答】证明:(1)取PC的中点G,∵F是PD的中点,∴FG∥CD,且FG CD,又∵底面ABCD是菱形,E是AB中点,∴BE∥CD,且BE CD,∴BE∥FG,且BE=FG,∴四边形BEFG是平行四边形,∴EF∥BG,又EF⊄平面PBC,BG⊂平面PBC,∴EF∥平面PBC;(2)设AC∩BD=O,则O是BD中点,∵底面ABCD是菱形,∴BD⊥AC,又∵PB=PD,O是BD中点,∴BD⊥PO,又AC∩PO=O,AC⊂平面P AC,PO⊂平面P AC,∴BD⊥平面P AC,∵BD⊂平面PBD,∴平面PBD⊥平面P AC.18.(2019秋•赣州期末)在矩形ABCD中,AB=1,BC=2,E为AD的中点,如图1,将△ABE沿BE折起,使得点A到达点P的位置(如图2),且平面PBE⊥平面BCDE(1)证明:PB⊥平面PEC;(2)若M为PB的中点,N为PC的中点,求三棱锥M﹣CDN的体积.【解答】解:(1)证明:由题意,易得,∴BE2+CE2=BC2,即BE⊥CE,又∵平面PBE⊥平面BCDE,交线为BE,∴CE⊥平面PBE,∴CE⊥PB,又∵PB⊥PE,∴PB⊥平面PEC;(2)取BE中点O,连接PO,∵PB=PE,∴PO⊥BE,,又∵平面PBE⊥平面BCDE,交线为BE,∴PO⊥平面BCDE,∵M为PB的中点,N为PC的中点,∴.19.(2019春•河南月考)如图所示,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,PB⊥平面ABCD,PB=1.(Ⅰ)求证:CD⊥PD;(Ⅱ)求四棱锥P﹣ABCD的表面积.【解答】解:(Ⅰ)证明:在梯形ABCD中,易求,∵BC=2,∴CD⊥PD,∵PB⊥平面ABCD,CD在平面ABCD内,∴PB⊥CD,又PB∩BD=B,且都在平面PBD内,∴CD⊥平面PBD,又PD在平面PBD内,∴CD⊥PD;(Ⅱ)由(Ⅰ)知,,又∵DA∥BC,BC⊥AB,PB⊥平面ABCD,∴△P AD,△PBA,△PCD都为直角三角形,∴,∵,∴四棱锥P﹣ABCD的表面积为.20.(2019春•玉溪期末)如图,在三棱柱ABC﹣A1B1C1中(底面△ABC为正三角形),A1A⊥平面ABC,AB=AC=2,,D是BC边的中点.(1)证明:平面ADB1⊥平面BB1C1C.(2)求点B到平面ADB1的距离.【解答】(1)证明:∵AB=AC,D为BC的中点,∴AD⊥BC.又BB1⊥平面ABC,AD⊂平面ABC,∴BB1⊥AD.又BC∩BB1=B,∴AD⊥平面BB1C1C.又AD⊂平面ADB1,∴平面ADB1⊥平面BB1C1C.(2)解:由(1)知,AD⊥平面BB1C1C,B1D⊂平面BB1C1C,∴AD⊥B1D.,∵,B1D=2,∴,.设点B到平面ADB1的距离为d,由,得,即,∴d,即点B到平面ADB1的距离为.21.(2019秋•路南区校级期中)在直三棱柱ABC﹣A1B1C1中,AC=BC,∠ACB=90°,AA1=2,D 为AB的中点.(1)求异面直线AC1与B1C所成角的余弦值;(2)在棱A1B1上是否存在一点M,使得平面C1AM∥平面B1CD.【解答】解:(1)以C为原点,CB、CA、CC1分别为x、z、y轴建立空间直角坐标系.因为AC=BC,AA1=2.所以C(0,0,0),A(),C1(0,2,0),.所以,那么;(2)在A1B1上中点M,连接MA.证明如下:∵三棱柱ABC﹣A1B1C1是直三棱.∴平面ABC∥平面A1B1C1,AB∥A1B1,AB=A1B1.∵D、M分别是AB、A1B1的中点.∴C1M∥CD.∵CD⊂平面CDB1,C1M⊄平面CDB1,∴C1M∥平面CDB1.∴,.∴MB1=AD,MB1∥AD.∴四边形ADB1M是平行四边形.∴AM∥DB1.∵DB1⊂平面DCB1,AM⊄平面DBC1.∴AM∥平面DCB1.∵C1M∩AM=M.∴平面C1AM∥平面B1CD.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

立体几何题库100题

立体几何题库100题

立体几何题库100题1. 一个正方体的棱长扩大到原来的3 倍,它的体积扩大到原来的()倍。

A. 3B. 9C. 27D. 812. 长方体的长、宽、高分别是6cm、4cm、5cm,它的棱长总和是()cm。

A. 60B. 48C. 30D. 153. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是()平方厘米。

A. 62.8B. 31.4C. 12.56D. 25.124. 一个圆锥的底面直径是6 分米,高是3 分米,它的体积是()立方分米。

A. 28.26B. 84.78C. 169.56D. 56.525. 用同样大小的正方体摆成的物体,从正面和左面看到的图形都是,那么从上面看到的图形是()。

A. B. C. D.6. 一个圆柱和一个圆锥等底等高,它们的体积之和是48 立方分米,圆锥的体积是()立方分米。

A. 12B. 16C. 32D. 367. 把一个棱长为6 分米的正方体木块削成一个最大的圆柱,这个圆柱的体积是()立方分米。

A. 169.56B. 113.04C. 216D. 56.528. 一个长方体的长、宽、高分别是a 米、b 米、h 米,如果高增加3 米,体积增加()立方米。

A. 3abB. 3abhC. ab(h + 3)D. 3h9. 一个圆锥的底面半径扩大到原来的2 倍,高不变,它的体积扩大到原来的()倍。

A. 2B. 4C. 8D. 1610. 一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()。

A. 1 : πB. 1 : 2πC. π: 1D. 2π: 111. 有一个长方体容器,从里面量长5 分米,宽4 分米,高6 分米,里面注有水,水深3 分米。

如果把一块边长 2 分米的正方体铁块浸入水中,水面上升()分米。

A. 0.4B. 0.8C. 1.6D. 3.212. 一个圆柱的底面周长是12.56 分米,高是5 分米,它的表面积是()平方分米。

立体几何测试题(共10篇)

立体几何测试题(共10篇)

立体几何测试题(共10篇)立体几何测试题(一): 立体几何问题立体几何试题已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1、C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R三点共线.1.EF平行于B1D1,B1D1平行于BD,所以EF平行于BD,EFBD四点共面2.F,D,A,C1属于平面A1ACC1,且AC1与PQ不平行,所以AC1与PQ相交A1C交平面DBFE于R点,又因为PQ属于平面DBFE,所以AC1与PQ相交于R 所以R属于PQ,PQR共线立体几何测试题(二): 几个书后练习题立体几何1.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.是否正确2.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.为什么不对谢不对,因为a有可能在经过b的面上,不是平行关系立体几何测试题(三): 一道数学基本的立体几何的题目~在正方形ABCD-A"B"C"D"中,P、Q分别为A"B"、BB"的中点.(1)求直线AP与CQ所成的角的大小(2)求直线AP与BD所成的角的大小我还没学过空间向量,1.取DC中点E,连EC,证明EC平行AP,用余弦定理算2.取AB中点F,连接FB,用余弦定理算【立体几何测试题】立体几何测试题(四): 求大量立体几何难题!立体几何综合试题(自己画图)1、已知正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点.(1)求证:DE‖平面A1B1C1;(2)求二面角A1—DE—B1的大小.2、已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF =BC=2a.(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1;(II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么证明你的结论3、在底面是直角梯形的四棱锥中,AD‖BC,∠ABC=90°,且 ,又PA⊥平面ABCD,AD=3AB=3PA=3a.(I)求二面角P—CD—A的正切值;(II)求点A到平面PBC的距离.4、在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.(Ⅰ)确定点G的位置;(Ⅱ)求直线AC1与平面EFG所成角θ的大小.5、已知四棱锥P—ABCD,底面ABCD是菱形,平面ABCD,PD=AD,点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面PAB;(2)求二面角P—AB—F的平面角的余弦值6.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P 在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.7、在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明平面;(II)证明平面EFD;(III)求二面角的大小.8、已知在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D 1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).9、直四棱柱ABCD-A1B1C1D1的底面是梯形,AB‖CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.点P到直线AD1的距离为⑴求证:AC‖平面BPQ⑵求二面角B-PQ-D的大小10、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心.(Ⅰ)证明:AF⊥平面FD1B1;(Ⅱ)求异面直线EB与O1F所成角的余弦值;这些题应该还可以!你来试试吧!题不要求多就精就可以了!不懂的或不会做的,我来帮你解答!立体几何测试题(五): 立体几何初步练习题已知正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱B1C1,C1D1,A1B1,D1A1的中点,求证(1)MN平行于DEF,(2)平面AMN平行于平面CEF(1)连接B1D1因为MN、EF为三角形A1B1D1、B1C1D1的中位线,所以MN平行于EF因为MN不属于面DEF,EF属于面DEF所以MN平行于面DEF(2)这题题目错了吧,应该是DEF吧立体几何测试题(六): 解析几何基础知识练习题靠!一楼的那么多废话那么多选择题:集合,函数(图像),立体几何,圆锥一、数学命题原则 1.普通高等学校招生数学科的考试,按照“考查基础知识的【立体几何测试题】立体几何测试题(七): 高一必修二立体几何习题1-7的题仓库的房顶呈正四棱锥形,量的地面的边长为2.6m,侧棱长2.1m,先要在房顶上铺一层油毡纸,问:需要油毡纸的面积多少运用海伦公式房顶为4个相同的三角形海伦公式a=2.6 b=2.1 c=2.1 p=a+b+c/2=3.4S=根号下p*(p-a)*(p-b)*(p-c)=2.1444S=2.144*4=8.576平方米立体几何测试题(八): 怎么根据题目画数学的立体几何图形搞懂了题目的要求,就照那意思去画,立体几何记住透视很重要.立体几何测试题(九): 求立体几何判断题的解题方法.①过平面外一点有且仅有一个平面与已知平面垂直②过直线外一点有且仅有一个平面与已知直线平行③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直⑤……等等,诸如此类.见到很多这样的题目,但是却总找不到解题的方法,概念定理也经常记混.本人感激不尽!记一些模型,例如墙角模型什么的这个很重要.遇见不熟悉的题,用书本和笔(手指也可以)比划一下.这种题目主要是找反例!想象力也很重要啦……立体几何测试题(十): 一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E 是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了,做EF垂直于平面ABCD 垂足为F易得出CEF相似于O1CC1因为C1O1=根号2 CC1=4 得CO1=3根号2CE/CO1=EF/CC1 得出EF=4X/3根号2Y=底面积*EF/3=4*4X/9根号2Y=8根号2*X/9职高立体几何测试题空间立体几何测试题。

立体几何练习题(含答案)精选全文完整版

立体几何练习题(含答案)精选全文完整版

可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何基础题题库一(有详细答案)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则 (A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C1和∠2分别为直线AB 与平面,αβ所成的角。

根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PPQQRSSPPPQ QRR RSS SPP PQQQ RRSSSPP Q QR RRSSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。

3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。

B 项:如正方体的一个角,三个平面互相垂直,却两两相交。

C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为11111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:P 点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。

5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条 C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。

6. 设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅AC AB,0=⋅AD AC,0=⋅AD AB,则△BCD 是(A )钝角三角形 (B )直角三角形 (C )锐角三角形 (D )不确定 C解析:假设AB 为a ,AD 为b ,AC 为c ,且a b c >>则,BD=,,BC=如图则BD为最长边,根据余弦定理222cos 0D C B +-∠=>D C B ∴∠最大角为锐角。

所以△BCD 7.设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题 ( )①若αα//,,b a b a 则⊥⊥ ②若ββαα⊥⊥a a 则,,// ③αβαβ//,,a a 则⊥⊥ ④βαβα⊥⊥⊥⊥则若,,,b a b a 其中正确的命题的个数是 ( )A .0个B .1个C .2个D .3个B 解析:注意①中b 可能在α上;③中a 可能在α上;④中b//α,或α∈b 均有βα⊥, 故只有一个正确命题8.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底 面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为 () A .90° B .60° C .45° D .30°B 解析:平移SC 到B S ',运用余弦定理可算得.2='='=B S E S BE9. 对于平面M 与平面N, 有下列条件: ①M 、N 都垂直于平面Q; ②M 、N 都平行于平面Q; ③ M 内不共线的三点到N 的距离相等; ④ l , M 内的两条直线, 且l // M, m // N; ⑤ l , m 是异面直线,且l // M, m // M; l // N, m // N, 则可判定平面M 与平面N 平行的条件的个数是 ( )A .1B .2C .3D .4只有②、⑤能判定M//N ,选B10. 已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则A 1B 与AC 1 所成的角为(A )450(B )600(C )900 (D )1200C 解析:作CD ⊥AB 于D ,作C 1D 1⊥A 1B 1于D 1,连B 1D 、AD 1,易知ADB 1D 1是平行四边形,由三垂线定理得A 1B ⊥AC 1,选C 。

11. 正四面体棱长为1,其外接球的表面积为A.3πB.23π C.25π D.3π解析:正四面体的中心到底面的距离为高的1/4。

(可连成四个小棱锥得证12. 设有如下三个命题:甲:相交直线l 、m 都在平面α内,并且都不在平面β内;乙:直线l 、m 中至少有一条与平面β相交;丙:平面α与平面β相交. 当甲成立时,A .乙是丙的充分而不必要条件B .乙是丙的必要而不充分条件C .乙是丙的充分且必要条件D .乙既不是丙的充分条件又不是丙的必要条件解析:当甲成立,即“相交直线l 、m 都在平面α内,并且都不在平面β内”时,若“l 、m 中至少有ABA 11一条与平面β相交”,则“平面α与平面β相交.”成立;若“平面α与平面β相交”,则“l 、m 中至少有一条与平面β相交”也成立.选(C ). 13. 已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是 .解析:(1)成立,如m 、n 都在平面内,则其对称轴符合条件;(2)成立,m 、n 在平面α的同一侧,且它们到α的距离相等,则平面α为所求,(4)成立,当m 、n 所在的平面与平面α垂直时,平面α内不存在到m 、n 距离相等的点14.空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为( )A .3B .1或2C .1或3D .2或3解析:C 如三棱柱的三个侧面。

15.若b a 、为异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交B .异面C .平行D . 异面或相交解析:D 如正方体的棱长。

16.在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成的角的大小为 ( )A .6πB .4πC .3πD .2π解析:D B 1D 在平面AC 上的射影BD 与AC 垂直,根据三垂线定理可得。

17.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是( )解析:C A ,B 选项中的图形是平行四边形,而D 选项中可见图:18.如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于 ( ) A .45° B .60°C .90°D .120°解析:B 如图★右图是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与CD 所在直线垂直; ②CD 与EF 所在直线平行 ③AB 与MN 所在直线成60°角; ④MN 与EF 所在直线异面 其中正确命题的序号是( )A .①③B .①④C .②③D .③④解析:DC19.线段OA ,OB ,OC 不共面,∠AOB =∠BOC =∠COA =60 ,OA =1,OB =2,OC =3,则△ABC 是( )A .等边三角形B 非等边的等腰三角形C .锐角三角形D .钝角三角形解析:B . 设 AC =x ,AB =y ,BC =z ,由余弦定理知:x 2=12+32-3=7,y 2=12+22-2=3,z 2=22+32-6=7。

∴ △ABC 是不等边的等腰三角形,选(B ).20.若a ,b ,l 是两两异面的直线,a 与b 所成的角是3π,l 与a 、l 与b 所成的角都是α,则α的取值范围是( )A .[65,6ππ] B .[2,3ππ] C .[65,3ππ] D .[2,6ππ]解析:D解 当l 与异面直线a ,b 所成角的平分线平行或重合时,a 取得最小值6π,当l 与a 、b 的公垂线平行时,a 取得最大值2π,故选(D ).21.小明想利用树影测树高,他在某一时刻测得长为1m 的 竹竿影长0.9m ,但当他马上测树高时, 因树靠近一幢建 筑物,影子不全落在地面上,有一部分影子上了墙如图所 示.他测得留在地面部分的影子长2.7m, 留在墙壁部分的 影高1.2m, 求树高的高度(太阳光线可看作为平行光线) _______. 4.2米解析:树高为AB ,影长为BE ,CD 为树留在墙上的影高, 1.21,0.9C D C EC E∴==CE=1.08米,树影长BE=2.7 1.08 3.78+=米,树高AB=10.9BE=4.2米。

22.如图,正四面体A B C D -(空间四边形的四条边长及两对角线的长都相等)中,,E F 分别是棱,AD BC 的中点, 则E F 和A C 所成的角的大小是________.解析:设各棱长为2,则AB 的中点为M,cos 2M FE ∠=即.4πθ=23.OX ,OY ,OZ 是空间交于同一点O 的互相垂直的三条直 线,点P 到这三条直线的距离分别为3,4,7,则OP 长 为_______.解析:在长方体OXAY —ZBP C 中,OX 、OY 、OZ 是相交的三条互相垂直的三条直线。

又PZ ⊥OZ ,PY ⊥OY ,PX ⊥OX ,有 OX 2+OZ 2=49,OY 2=OX 2=9, OY 2+OZ 2=16, 得 OX 2+OY 2+OZ 2=37,OP =37.24.设直线a 上有6个点,直线b 上有9个点,则这15个点,能确定_____个不同的平面.解析: 当直线a ,b 共面时,可确定一个平面; 当直线a ,b 异面时,直线a 与b 上9个点可确定9个不同平面,直线b 与a 上6个点可确定6个不同平面,所以一点可以确定15个不同的平面. 25. 在空间四边形ABCD 中,E ,F 分别是AB ,BC 的中点.求证:EF 和AD 为异面直线. 解析:假设EF 和AD 在同一平面α内,…(2分),则A ,B ,E ,F α∈;……(4分)又A ,E ∈AB ,∴AB ⊂α,∴B α∈,……(6分)同理C α∈……(8分)故A ,B ,C ,D α∈,这与ABCD 是空间四边形矛盾。

∴EF 和AD 为异面直线.26. 在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别是CB ,CD 的中点,若AC + BD = a ,AC ⋅BD =b ,求22EG FH +.解析:四边形EFGH 是平行四边形,…………(4分)22EG FH +=222()EF FG +=22211()(2)22AC BD a b +=-27. 如图,在三角形⊿ABC 中,∠ACB=90º,AC=b,BC=a,P 是⊿A BC 所在平面外一点,PB ⊥AB ,M 是PA 的中点,AB ⊥MC ,求异面直MC 与PB 间的距离. 解析:作MN//AB 交PB 于点N .(2分)∵PB ⊥AB ,∴PB ⊥MN 。

相关文档
最新文档