展示课:幂函数PPT课件
合集下载
《幂函数》PPT课件
❖ ★当α为奇数时,幂函数为奇函数,
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) = x在[0,+∞]上是增函数.
证明: 任取x1, x2∈[0,+∞],且x1 x2,则
f
(
x1)-f
(
x
)
2
x1-
(
x2
x1- x2)( x1 x1 x2
x2)
= x1 x2
方法技巧:分子有理化
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx
R
R 奇函数 增函数 (1,1)
y x2 R
y ≥0 偶函数
(1,1)
y x3 R
R 奇函数 增函数 (1,1)
1
y x2 x 0 y ≥0 非奇非偶 增函数 (1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
因函数式中α的不同而各异.
❖ ★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
❖ ★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
❖ ★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
α是常量.
几点说明:
1、y x 中 x 前面的系数为 1,并且后面
没为常数项,而且底数只能是x
2、定义域没有固定,与的值有关.
幂函数与指数函数的对比
式子 指数函数: y=a x
a底数名称 Nhomakorabeax
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) = x在[0,+∞]上是增函数.
证明: 任取x1, x2∈[0,+∞],且x1 x2,则
f
(
x1)-f
(
x
)
2
x1-
(
x2
x1- x2)( x1 x1 x2
x2)
= x1 x2
方法技巧:分子有理化
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx
R
R 奇函数 增函数 (1,1)
y x2 R
y ≥0 偶函数
(1,1)
y x3 R
R 奇函数 增函数 (1,1)
1
y x2 x 0 y ≥0 非奇非偶 增函数 (1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
因函数式中α的不同而各异.
❖ ★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
❖ ★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
❖ ★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
α是常量.
几点说明:
1、y x 中 x 前面的系数为 1,并且后面
没为常数项,而且底数只能是x
2、定义域没有固定,与的值有关.
幂函数与指数函数的对比
式子 指数函数: y=a x
a底数名称 Nhomakorabeax
幂函数课件(优质课)(共20张PPT)
1 x ④y ( ) 否 2
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
《幂函数》PPT课件
2 log2
1 22
1 2
练习2 :已知f ( x) m m 1 x
2
m 3
是幂函数,
求m的值。
解 : 因为f ( x)是幂函数
m m 1 1
2
解之得: m 2或m 1
m 2或m 1
加条件 :已知f ( x) m m 1 x
2
(4)y 3
x
(3)y 2x
(5)y x 1 1 (6)y x
2
练习1:已知幂函数f(x)的图像经过点 (2,2), 试求出这个函数的解析式。
证明: 设所求的幂函数为 yx 函数的图像过 (2, 2 )点
2 2 ,
α log2
f ( x)
1 x2
证明幂函数 f ( x) x 在[0,+∞)上是增函数.
用定义证明函数的单调性的步骤:
x x2 x1>0 (1). 取数:设x1, x2是某个区间上任意二值,
(2). 作差: f(x2)-f(x1), (3) 整理: (4). 分析 f(x1)-f(x2) 的符号; (5). 下结论.
yx
yx
2
1 -1 -1 O1
x
y
1 -1 O -1 1
R
x
[0,+∞) 偶函数
y
yx
yx
3
-1
1 -1
O
y 1
1
x
R
R
奇函数
1 2
1
-1 O 1 -1
x
[0,+∞) [0,+∞) (-∞,0)∪ (-∞,0)∪ (0,+∞) (0,+∞)
3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
幂函数(共2课时)课件(共35张PPT)
3.3 幂函数
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
高中数学必修一幂函数ppt课件
收益预测
幂函数可以用于预测收益,例如产品的销售量与价格的关系。
05
总结与回顾
本章重点回顾
1 2 3
幂函数的定义
了解幂函数的定义以及形式,明确幂函数的定 义域和值域。
幂函数的性质
熟悉幂函数的单调性、奇偶性、周期性等性质 ,并能够根据这些性质进行简单的计算和推理 。
幂函数的应用
掌握幂函数在生活中的应用,如利用幂函数解 决实际问题、利用幂函数进行优化等。
总结词
理解幂函数的复合运算是提高数学运算能力的重要途径
详细描述
复合运算是指将多个函数或表达式结合起来,形成更复杂的函数或表达式。 在幂函数的学习中,我们需要通过理解幂函数的复合运算,掌握其运算规律 和技巧,提高我们的数学运算能力。
幂函数的指数运算
总结词
掌握幂函数的指数运算是学习高中数学的重要内容
详细描述
指数运算是一种特殊的运算方式,在幂函数的学习中占据着重要的地位。通过学 习和掌握幂函数的指数运算,我们可以更好地理解和应用幂函数,为后续学习对 数函数等其他数学内容打下坚实的基础。
04
幂函数的实际应用
利用幂函数解决实际问题
求解实际问题
幂函数可以用于求解实际问题,例如物理学中的光的强度、 电流、电压等,以及生物学中的细胞分裂等。
2023
高中数学必修一幂函数ppt 课件
目录
• 引言 • 幂函数概述 • 幂函数的运算性质 • 幂函数的实际应用 • 总结与回顾
01
引言
课程背景介绍
幂函数作为基本初等函数之一,是学习高等数学和其他数学 分支的基础。
在日常生活中,幂函数的应用也非常广泛,如计算增长率、 人口增长等。
课程目标与内容
03
幂函数可以用于预测收益,例如产品的销售量与价格的关系。
05
总结与回顾
本章重点回顾
1 2 3
幂函数的定义
了解幂函数的定义以及形式,明确幂函数的定 义域和值域。
幂函数的性质
熟悉幂函数的单调性、奇偶性、周期性等性质 ,并能够根据这些性质进行简单的计算和推理 。
幂函数的应用
掌握幂函数在生活中的应用,如利用幂函数解 决实际问题、利用幂函数进行优化等。
总结词
理解幂函数的复合运算是提高数学运算能力的重要途径
详细描述
复合运算是指将多个函数或表达式结合起来,形成更复杂的函数或表达式。 在幂函数的学习中,我们需要通过理解幂函数的复合运算,掌握其运算规律 和技巧,提高我们的数学运算能力。
幂函数的指数运算
总结词
掌握幂函数的指数运算是学习高中数学的重要内容
详细描述
指数运算是一种特殊的运算方式,在幂函数的学习中占据着重要的地位。通过学 习和掌握幂函数的指数运算,我们可以更好地理解和应用幂函数,为后续学习对 数函数等其他数学内容打下坚实的基础。
04
幂函数的实际应用
利用幂函数解决实际问题
求解实际问题
幂函数可以用于求解实际问题,例如物理学中的光的强度、 电流、电压等,以及生物学中的细胞分裂等。
2023
高中数学必修一幂函数ppt 课件
目录
• 引言 • 幂函数概述 • 幂函数的运算性质 • 幂函数的实际应用 • 总结与回顾
01
引言
课程背景介绍
幂函数作为基本初等函数之一,是学习高等数学和其他数学 分支的基础。
在日常生活中,幂函数的应用也非常广泛,如计算增长率、 人口增长等。
课程目标与内容
03
3.3幂函数(共43张PPT)
解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.
2023高考数学基础知识综合复习第5讲幂函数 课件(共19张PPT)
20 + = 100,
220 + = 0,
考点一
考由题意,f(x)= 1 2
- + 110,20 ≤ ≤ 220,
2
当0≤x≤20时,f(x)的最大值为f(20)=2 000,
当20≤x≤220时,f(x)=-
1
2
(x-110)2+6 050,
解析
4
(1)y= 5 的定义域是
4
(2)y= 5
R,值域是[0,+∞);
1
= 4 的定义域是{x|x≠0},值域是(0,+∞);
5
5
(3)y= 4 的定义域是[0,+∞),值域是[0,+∞);
5
(4)y= 4
1
= 5 的定义域是(0,+∞),值域是(0,+∞).
4
考点一
考点二
◆角度3.幂函数的性质
考点一
考点二
◆角度2.幂函数的三要素
例 2-1 已知幂函数
1 2
),则 k+a=
2 2
f(x)=k·xa 的图象过点( ,
.
答案 1.5
解析 因为函数 f(x)=k·xa 是幂函数,所以 k=1,又因为幂函数的图象过点
1 2
),
2 2
1
2 1
所以( )a= =( )0.5,
2
2
2
( ,
所以 a=0.5,所以 k+a=1.5.
考点一
考点二
◆角度4.幂函数的图象
例4-1(2020浙江杭州高一期末)已知幂函数y=xn在第一象限内的图
1 1
象如图所示.若n∈{2,-2, ,- } ,则与曲线C1,C2,C3,C4对应的n的值依
2024年度高一数学《幂函数》PPT课件
举例
(2x)^3 = 2^3 × x^3 = 8x^3;(3a^2b)^4 = 3^4 × a^(2×4) × b^4 = 81a^8b^4
17
复杂表达式化简技巧
利用幂的性质进行化简
如a^(m+n) = a^m × a^n,a^(m-n) = a^m ÷ a^n等
注意运算顺序
先进行乘除运算,再进行加减运算;有括号 时,先算括号里面的
2024/3/24
5
幂函数图像与性质
幂函数性质
当a>0时,幂函数在其定义域内是增函数;
2024/3/24
当a<0时,幂函数在其定义域内是减函数;
6
幂函数图像与性质
当a=0时,幂函数为常数函数; 幂函数的值域为[0,+∞),即所有非负实数。
2024/3/24
7
幂函数与指数函数关系
联系
幂函数和指数函数都是常见的 初等函数,它们在数学和实际 应用中都有广泛的应用。
2024/3/24
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
28
易错难点剖析及注意事项
01
指数取值范围
在幂函数中,指数a可以取Hale Waihona Puke 意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
2024/3/24
图像
一个抛物线
性质
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。对称轴为 x=-b/2a,顶点坐标为(-b/2a, c-b^2/4a)。
2024/3/24
11
三次幂函数
(2x)^3 = 2^3 × x^3 = 8x^3;(3a^2b)^4 = 3^4 × a^(2×4) × b^4 = 81a^8b^4
17
复杂表达式化简技巧
利用幂的性质进行化简
如a^(m+n) = a^m × a^n,a^(m-n) = a^m ÷ a^n等
注意运算顺序
先进行乘除运算,再进行加减运算;有括号 时,先算括号里面的
2024/3/24
5
幂函数图像与性质
幂函数性质
当a>0时,幂函数在其定义域内是增函数;
2024/3/24
当a<0时,幂函数在其定义域内是减函数;
6
幂函数图像与性质
当a=0时,幂函数为常数函数; 幂函数的值域为[0,+∞),即所有非负实数。
2024/3/24
7
幂函数与指数函数关系
联系
幂函数和指数函数都是常见的 初等函数,它们在数学和实际 应用中都有广泛的应用。
2024/3/24
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
28
易错难点剖析及注意事项
01
指数取值范围
在幂函数中,指数a可以取Hale Waihona Puke 意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
2024/3/24
图像
一个抛物线
性质
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。对称轴为 x=-b/2a,顶点坐标为(-b/2a, c-b^2/4a)。
2024/3/24
11
三次幂函数
幂函数教学讲解ppt课件
03
幂函数的运算性质及应用
幂函数的加法、减法、乘法运算性质
总结词:掌握幂函数的基本运算性质是 理解幂函数应用的基础。
3. 幂函数的乘法运算性质: $(a^m)(a^n)=a^{m+n}$
2. 幂函数的减法运算性质:$(a^m)(a^n)=a^m-a^n$
详细描述
1. 幂函数的加法运算性质: $(a^m)+(a^n)=a^m+a^n$
课堂练习题
练习1:求解下列函数的奇 偶性
$y=x^2,x \in (-1,1)$;
$y=x^3,x \in (-1,1)$。
解析:对于$y=x^2,x \in (1,1)$,因为$-1<x<1$,所 以$-x<-1<1$,因此有$f(x)=(-x)^2=x^2=f(x)$,即 该函数为偶函数;对于 $y=x^3,x \in (-1,1)$,因为 $-1<x<1$,所以$-x<1<1$,因此有$f(-x)=(x)^3=-x^3=-f(x)$,即该函 数为奇函数。
02
在日常生活中,我们经常遇到幂 函数的实例,例如人口增长、金 融投资、计算机科技等。
幂函数的概念及重要性
定义
形如y=x^n的函数称为幂函数, 其中x是自变量,n是实常数。
幂函数的重要性
掌握幂函数的性质和变化规律, 有助于解决各种实际问题,培养 数学思维和解决问题的能力。
学习目标与学习方法
学习目标
详细描述
介绍幂函数的阶乘定义,通过实例阐述排列组合的基本概念,例如,组合公式、 排列公式等。
幂函数的对数运算
总结词
掌握幂函数的对数运算性质
详细描述
说明幂函数与对数函数之间的关系,推导基于幂函数的对数运算法则,例如,log(a^b)=b*log(a)。
第三章3.3幂函数PPT课件(人教版)
1.幂函数的概念 一般地,函数 y=xα 叫做幂函数,其中x是自变量,α是常数. 2.幂函数的图象和性质
拓展:对于幂函数y=xα(α为实数)有以下结论: (1)当α>0时,y=xα在(0,+∞)上单调递增;(2)当α<0时,y=xα在(0,+∞)上单 调递减;(3)幂函数在第一象限内指数的变化规律:在直线x=1的右侧,图象从 上到下,相应的幂指数由大变小.
已知 n 取±2,±12四个值,则相应于 C1,C2,C3,C4 的 n 依次为(
)
A.-2,-12,12,2
B.2,12,-12,-2
C.-12,-2,2,12
D.2,12,-2,-12
解析 根据幂函数 y=xn 的性质,在第一象限内的图象当 n>0 时,n 越大,y=xn
递增速度越快,故 C1 的 n=2,C2 的 n=12;当 n<0 时,|n|越大,曲线越陡峭,所
奇偶性 _奇___
_偶___
_奇___ __非__奇__非__偶__
__奇__
x∈[0,+∞), 单调性 _增___ __增__
x∈(-∞,0], __减__
_增___
__增__
x∈(0,+∞),_减___ x∈(-∞,0),_减___
公共点
都经过点(__1_,__1_)___
教材拓展补遗
[微判断] 1.函数y=-x2是幂函数.( × )
【训练1】 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)的值等于________. 解析 设f(x)=xα,因为f(4)=16,∴4α=16,解得α=2,∴f(-4)=(-4)2=16. 答案 16
题型二 幂函数的图象及其应用 关键取决于α>0,α<0
高一数学幂函数ppt课件.ppt
(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1
幂函数(课件)
04
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
人教版高中数学必修一课件:2.3幂函数 (共24张PPT)
(2) y 1 x
(4) y x
1 2
(5) y=2x2 (6) y=x3+2
(3) y= -x2
思考:指数函数y=ax与幂函数y=xα有什么 区别?
二.幂函数与指数函数比较
名称 式子 指数函数: y=a
(a>0且a≠1)
x
常数 a为底数 α为指数
x
指数 底数
y
幂值 幂值
幂函数: y= xα
1
一般地,幂函数的图象 在直线x=1的右侧,大指 数在上,小指数在下, 在Y轴与直线x =1之间正 好相反。
练习:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明 : 设所求的幂函数为
函数的图像过点
y x
( 3,27 )
3
27 3
,即 3
3
3
3
1
观察上述图象,将你发现的结论写在P78的表格内
(-2,4)
4
y= x 3
(2,4) y= x 2
3
y=x y= x
2
1 2
(4,2)
1
(-1,1)
(1,1) y= x -1
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
在第一象限内, a >0,在(0,+∞)上为增函数; a <0,在(0,+∞)上为减函数. 幂函数的图象都通过点(1,1) a>0时,图象还都过点(0,0) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
判断一个函数是幂函数还是指数函数切入点 看未知数x是指数还是底数 指数函数 幂函数
(4) y x
1 2
(5) y=2x2 (6) y=x3+2
(3) y= -x2
思考:指数函数y=ax与幂函数y=xα有什么 区别?
二.幂函数与指数函数比较
名称 式子 指数函数: y=a
(a>0且a≠1)
x
常数 a为底数 α为指数
x
指数 底数
y
幂值 幂值
幂函数: y= xα
1
一般地,幂函数的图象 在直线x=1的右侧,大指 数在上,小指数在下, 在Y轴与直线x =1之间正 好相反。
练习:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明 : 设所求的幂函数为
函数的图像过点
y x
( 3,27 )
3
27 3
,即 3
3
3
3
1
观察上述图象,将你发现的结论写在P78的表格内
(-2,4)
4
y= x 3
(2,4) y= x 2
3
y=x y= x
2
1 2
(4,2)
1
(-1,1)
(1,1) y= x -1
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
在第一象限内, a >0,在(0,+∞)上为增函数; a <0,在(0,+∞)上为减函数. 幂函数的图象都通过点(1,1) a>0时,图象还都过点(0,0) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
判断一个函数是幂函数还是指数函数切入点 看未知数x是指数还是底数 指数函数 幂函数
新课标人教版必修一幂函数课件(共11张PPT)
幂 函 数
代 兵
高中数学必修1同步辅导课程——幂函数
知识要点:
1:幂函数的定义:
一般地,函数y x 叫做幂函数, 其中x是自变量,
是常数.
注: 1 1.对于幂函数,我们重点讨论 =1,2,3, ,-1 2 时的情形。(对照教材,作出上述图像)
2.幂函数不同于指数函数和对数函数,其定义域
1
高中数学必修1同步辅导课程——幂函数
p x (0,1) 变式1: 时,函数 y x 的图像在直线 y x
上方,则P的取值范围是_________.
高中数学必修1同步辅导课程——幂函数
变式2:如果函数 f ( x) (m m 1) x
2
m2 ;∞ )内是减函数,求满足条件 的实数m的集合。
1.所有的幂函数在(0,+∞)都有定义,并且函 数图象都通过点(1,1);
a>1 0<a<1
2.如果a>0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数;
a<0
3.如果a<0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数; 其它象限的图像可由函数奇偶性对称作出
高中数学必修1同步辅导课程——幂函数
典型题例:
例1:若f(x)=(m2-3m+3)x3为幂函数,求m的值
解析:由题意: m2-3m+3=1 解得:m=1或4
高中数学必修1同步辅导课程——幂函数
例2:如图所示,曲线是幂函数 y = xa 在第一象
1 限内的图象,已知 a分别取 1,1, , 2 2
四个值,则相应图象依次为:________
高中数学必修1同步辅导课程——幂函数
代 兵
高中数学必修1同步辅导课程——幂函数
知识要点:
1:幂函数的定义:
一般地,函数y x 叫做幂函数, 其中x是自变量,
是常数.
注: 1 1.对于幂函数,我们重点讨论 =1,2,3, ,-1 2 时的情形。(对照教材,作出上述图像)
2.幂函数不同于指数函数和对数函数,其定义域
1
高中数学必修1同步辅导课程——幂函数
p x (0,1) 变式1: 时,函数 y x 的图像在直线 y x
上方,则P的取值范围是_________.
高中数学必修1同步辅导课程——幂函数
变式2:如果函数 f ( x) (m m 1) x
2
m2 ;∞ )内是减函数,求满足条件 的实数m的集合。
1.所有的幂函数在(0,+∞)都有定义,并且函 数图象都通过点(1,1);
a>1 0<a<1
2.如果a>0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数;
a<0
3.如果a<0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数; 其它象限的图像可由函数奇偶性对称作出
高中数学必修1同步辅导课程——幂函数
典型题例:
例1:若f(x)=(m2-3m+3)x3为幂函数,求m的值
解析:由题意: m2-3m+3=1 解得:m=1或4
高中数学必修1同步辅导课程——幂函数
例2:如图所示,曲线是幂函数 y = xa 在第一象
1 限内的图象,已知 a分别取 1,1, , 2 2
四个值,则相应图象依次为:________
高中数学必修1同步辅导课程——幂函数
3.3 幂函数 课件(37张)
[教材提炼]
预习教材,思考问题
函数 f(x)=x、f(x)=x2、f(x)=1x,以前叫什么函数,它们有什么共同特征?
知识梳理 (1)一般地,函数__y_=__x_α__叫做幂函数(power function),其中 x 是自变量, α 是常数. (2)幂函数解析式的结构特征 ①指数为常数; ②底数是自变量,自变量的系数为 1; ③幂 xα 的系数为 1; ④只有 1 项.
若函数 f(x)=(2m+3)xm2-3 是幂函数,则 m 的值为( )
A.-1
B.0
C.1
D.2
解析:幂函数是形如 f(x)=xα 的函数,所以 2m+3=1,∴m=-1.
答案:A
探究二 幂函ቤተ መጻሕፍቲ ባይዱ的图象
[例 2] 幂函数 y=x2,y=x-1,y= 内的图象依次是图中的曲线( ) A.C2,C1,C3,C4 B.C4,C1,C3,C2 C.C3,C2,C1,C4 D.C1,C4,C2,C3
由题意得(a+
.
∵y= 在(-∞,0),(0,+∞)上均单调递减, ∴a+1>3-2a>0 或 0>a+1>3-2a 或 a+1<0<3-2a, 解得23<a<32或 a<-1.
利用幂函数解不等式的步骤 利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与 幂函数的单调性、奇偶性等综合命题.求解步骤如下: (1)确定可以利用的幂函数; (2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系; (3)解不等式求参数范围,注意分类讨论思想的应用.
[解析] y= =3 x2≥0,故只有 D 中的图象适合. [答案] D
3.如果一个函数 f(x)在其定义域内对任意 x,y 都满足 fx+2 y≤12[f(x)+f(y)],则称这 个函数为下凸函数.下列函数:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形的边长a
1
S2
1
y x2
(5)如果某人t s内骑车行进了1 km,那么他骑车的平
均速度 V t 1 km / s
y x1
若将它们的自变量全部用x来表示,函数值用y来表示,
则它们的函数关系式将是: y x , 是常数
二、定义: 一般地,函数 y x 叫做幂函数,其中 x 是自变
量, 是常量。
(0,0),(1,1)
R上 增函数
(0,0),(1,1)
0, )增 (,0) 减 (0, ) 减
(0,0),(1,1)
(1,1)
图像特征:
幂函数的图象有以下特点:
(1)恒过点(1,1),且不过第四象限.
(2)当α>0时,
-4
-3
过点(0,0) 、幂函数的图象
在(0,+∞)上都是增函数;
பைடு நூலகம்
-2
-1
(-1,-1)
当α<0时,幂函数的图象
在(0,+∞)上都是减函数.
y y x3
4 3 2
y x2 yx
1
y x2
1
(1,1)
y x1
o
1
2
3
4x
-1
-2
-3
(3)在第一象限内:直线x=1的右侧,图象由上到下
相应的指数由大变小.
练习:
1.已知幂函数 y f ( x)的图象过点 (2, 2 ) , 2
则 f (4) _________
学习重点
幂函数的概念、五种幂函数的图像和性质.
学习难点
幂函数图像和性质的应用.
一、问题引入:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她
需要支付p= w 元
(2) 如果正方形的边长为a,那么正方形的面积 y ax22
(3) 如果立方体的边长为a,那么立方体的体积 y ax33
(4)如果一个正方形场地的面积为S,那么这个正方
拓展延伸
讨论下列函数的奇偶性:
y
x
n m
(m,
n
N
,
n m
为既约分数)
1
5
(1)当m,n都是奇数,如:y=x3 ,y=x3 ;
2
4
(2)当m为奇数,n为偶数,如:y=x3 ,y=x3;
3
3
(3)当m为偶数,n为奇数,如y=x2 ,y=x4 .
本课小结:
一般地,函数 y x 叫做幂函数,其中 x 是自变
量, 是常量。
几个幂函数的性质:
定义域
y x y x2
R
R
y x3
R
1
y x2 y x1
0, ) (,0)∪(0, )
值域
R
0, )
R
0, ) (,0)∪(0, )
奇偶性 奇函数 偶函数 奇函数 非奇非偶 奇函数
单调性 R上
增函数
公共点
(0,0),(1,1)
(, 0) 减 (0, ) 增
2.3 幂函数
学习目标
知识与技能 理解幂函数的图象与性质,掌握研究函数的一般方法,
能初步运用所学知识解决有关问题,培养灵活思维能力. 过程与方法
通过具体函数归纳与概括幂函数定义、图象和性质,体 验数学概念的形成过程,培养学生的抽象概括能力. 情感、态度与价值观
培养学生数形结合、分类讨论的思想,以及分析归纳的 能力,培养学生勇于探索、合作交流的意识.
2.证明:幂函数 f ( x) x 在 [0, ) 上是增函数。
3.比较大小。
1
1
(1)1.52 ,1.72
(2)(1.2)3 ,(1.25)3
(3)5.251 , 5.261, 5.262
(4)(2)3 ,(2.5)3
4.若
(3
1
2m)2
(m
1
1) 2
,则实数m的取值范围
为_______.
(0,0),(1,1)
R上 增函数
(0,0),(1,1)
0, )增 (,0) 减 (0, ) 减
(0,0),(1,1)
(1,1)
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
练习:
在
y
1 x2
,y
2x2, y
x2
x, y
3x
中,幂函
数的个数是__________
四、常见五种幂函数的图象
在同一坐标系中分别作出如下函数的图象:
1
y x, y x2 , y x3 , y x 2 , y x1
观察图象,说一说它们有什么共同特征?
几何画板
y x3
y x2
yx
1
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
y x2
y x1
几个幂函数的性质:
定义域
y x y x2
R
R
y x3
R
1
y x2 y x1
0, ) (,0)∪(0, )
值域
R
0, )
R
0, ) (,0)∪(0, )
奇偶性 奇函数 偶函数 奇函数 非奇非偶 奇函数
单调性 R上
增函数
公共点
(0,0),(1,1)
(, 0) 减 (0, ) 增