宝钢4号高炉投产1年实践

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:为持续改进大型高炉炼铁技术。依据4号高炉投产1年来的生产实践。分析了提高高炉产量、稳定炉体热负荷、低燃料比操作、热风炉高风温烧炉等方面的工艺,认为高炉产量的提高可以采用多元化措施。并提出了炉体热负荷是一项重要的高炉操作制度等观点。对大型高炉稳定、低耗、长寿具有借鉴意义。

关键词:高炉;热负荷;铁水产量;热风炉

宝钢4号高炉于2005年4月27日投入生产,内容积为4 747m3,是宝钢投入生产的第4座4 000m3级大型高炉,也是国内目前运行中内容积最大的高炉。为达到高效、长寿、清洁和可持续发展的生产目标,许多新技术和新装备在宝钢4号高炉上得到了应用,如:改进炉型设计,降低高炉高径比;炉前采用高效吸尘系统、双层式平坦化作业平台,提高了作业效率;水渣采用无蒸汽排放的环保型新INBA系统,大幅度降低了有害蒸汽的排放等。

1 宝钢4号高炉概况

投产1年来,这座更大、更新的高炉创造了一些骄人的业绩,如在开炉阶段,投产1星期内日产量突破10 000t,投产1个月内煤比突破200kg/t,创造了宝钢大型高炉开炉最好水平。在4号高炉一年来的生产过程中,通过精心维护和操作,在保持生产稳定的基础上,煤比、燃料消耗、铁水质量等关键指标保持了先进的水平。

4号高炉取得这些先进的经济技术指标,得益于操作观念的进步,在提高高炉产量、炉体热负荷管理、低燃料比操作等方面的认识。

2对提高高炉产量的认识

风量是影响高炉产量的主要因素,但不是唯一因素。高炉产量还受到富氧率、燃料消耗率等多种高炉操作条件影响,特别对大喷煤、高富氧的高炉来说,这些操作条件的影响力更加明显。从最大限度降低高炉能耗、提高高炉效率角度出发,应采取多元化技术措施来提高高炉产量。

(1)适宜鼓风能力的选择

增加高炉鼓风量是提高高炉产量的重要措施,但鼓风机能力应和高炉炉容相匹配,特别对于大型高炉不宜保留过剩的鼓风能力,造成不必要的运行成本上升。宝钢4号高炉鼓风机能力主要根据炉容大小来确定,高炉炉容对鼓风机能力需求的简要确定方法如下。

首先依据风口前燃料燃烧反应方程(式(1)),在不考虑喷吹物带入02的情况下,可以近似得到吨铁的消耗氧量V O2(式(2))。

2C+02=2C0 (1)

V O2,=22.4×C h/(2×12) (2)

宝钢高炉采用富氧操作,因此可以进一步得到吨铁的耗风量V f计算公式:

V f=V O2/(0.21+βO2)=(22.4×C h/(2×12)/(0.21+βO2) (3)式中,C h为风口前吨铁的耗碳量;βO2为富氧率。

宝钢高炉在200kg/t煤比的操作条件下,风口前吨铁耗碳水平为260kg左右,富氧率可以达到4%。因此可以计算出宝钢4号高炉预计的吨铁风耗量为970m3。

最后结合预计铁水产量、热风炉换炉充风等相关因素,便可以建立和高炉炉容相匹配的鼓风能力K计算方法:V g=f(V f,V n,P Fe,a)=(V n×P Fe×V f)/(24×60))×(1+∝) (4)式中,V n为高炉内容积,取4 747m3;P Fe为利用系数,参考国内外大炉一流指标,取2.5t/(m3·d);

∝为热风炉充风增加系数,根据外燃式热风炉充风特点,取10%。

计算结果表明,和宝钢4号高炉炉容相匹配的鼓风能力:

V g=8 793m3/min。

作为4号高炉配套工程,宝钢增加了l台鼓风能力8 800m3/min的鼓风机,与原来4 063m3高炉相配的风机一致,这是系统考虑4号高炉容积、指标后的科学选择,也是从高炉设计上努力降低高炉工序能耗的具体表现。

(2)提高富氧率达到提高高炉产量目的

在不增加鼓风机能力的前提下,提高鼓风富氧率是提升高炉产能的又一重要措施。利用公式(3)经过一定的理论推导,结合宝钢高利用系数生产经验,得到在风量维持不变前提下宝钢高炉富氧率与吨铁风耗、产量之间对应的关系。

随着富氧率的不断提高,可能引起风口前理论燃烧温度过高而影响高炉顺行,但宝钢高炉具有高煤比特点,在200kg/t煤比的操作条件下,即使富氧率提高到6%,风口前理论燃烧温度仍能保证在2 300℃以内。

(3)降低吨铁燃料消耗来提高高炉产量

降低高炉燃料消耗来提高高炉产量更加具有经济性和技术性,在当前炼铁行业成本、环保压力巨大状况下,更应提倡通过技术进步来改善高炉各项经济技术指标。在相同的风氧量条件下通常认为产量提高率和吨铁风耗下降率一致,因此结合公式(3),并假设焦比的下降主要影响风口前耗碳量,可以总结出高炉产量提高率和焦比下降量之间的近似关系,见式(5)。

P=(CR d×C g×100)/Cr (5)

式中,P为高炉产量提高率; CR d为焦比下降量;C g为焦炭固定碳含量,取87%。

利用式(5),在宝钢4号高炉操作条件下,假如入炉焦比下降.5kg/t,铁水产量预计可提高1.67%左右。以宝钢4号高炉日产铁水ll 000t计算,如果焦比下降5kg/t,日铁水产量可提高180t左右,经济效益非常突出。因此宝钢高炉在实际操作中,努力采取各种措施来降低焦比,如控制合理的煤气流分布来提高煤气利用率、提高风温、减少炉墙脱落等,通过不断改进高炉操作技术,4号高炉开炉以来一直保持了较低的燃料消耗,对提高铁水产量和降低成本都起到了积极的作用。

3 炉体热负荷管理是一项重要的高炉操作制度

高炉炉体热负荷的强弱反应了高炉炉体各部分的热量散失状况,根据热负荷的分布状况能够获得高炉煤气流分布、炉墙侵蚀等方面的信息,鉴于热负荷管理的重要性把热负荷管理提升为一项重要的高炉操作制度,并成为和炉温控制一样的高炉日常管理内容。合理控制热负荷的高低和其在炉体各部位的分布,对高炉保持稳定顺行、降低能耗、达到长寿的目标都有重要意义。相反,如果热负荷控制不当,则会对高炉生产起到不良的影响,比如炉体热负荷过高,会加剧炉墙耐材的侵蚀,从而影响高炉长寿,热负荷过高还不利于降低燃料消耗,使高炉生产成本上升。宝钢4号高炉在设计及生产过程中都非常重视炉体热负荷的管理。

3.1 设计上有利于炉体热负荷的跟踪和管理

在宝钢其它高炉生产操作过程中,对炉体热负荷管理的重要性有了比较全面的认识,因此在4号高炉设计过程中就把高炉炉体热负荷管理纳入重要设计项目。为更加具体、分区域了解炉体热负荷在高炉炉体各部位的实际分布状况,炉体热负荷在炉体范围内进行网格化分区,实际操作中便可以对炉体不同高度和不同圆周方向同时进行数据跟踪和分析,为高炉操作调整提供详尽的判断依据,充分发挥了炉体热负荷管理的优势,为炉体稳定和高炉顺行创造了条件。

3.2 热负荷管理对炉体稳定具有重要性

由于炉体稳定建立在炉体能量传递稳定的基础上,而热负荷反映了炉体热能的损失状况,因此对热负荷的管理就是对炉体能量平衡的控制,和传统水温差管理相比,更加有利于炉体粘结层的稳定。不论是宝钢2号高炉炉役后期的维护还是宝钢4号高炉投产初期的操作,都非常重视对炉体热负荷的管理。经过对炉内煤气流和炉体冷却强度的合理安排,在高强度冶炼条件下保持了稳定的炉体热负荷,减少了炉墙渣皮脱落现象的发生概率,炉墙砖衬及炉皮受到热冲击次数减少,对炉体长寿意义重大。

3.3 热负荷管理对高炉顺行具有重要性

在对高炉操作影响方面,炉体热负荷管理也显示出比传统水温差管理更具优势。首先,由于热负荷反映了炉体热量的传递状况,因此它能更加准确地反映高炉边缘煤气流的稳定性和强弱性,当炉体热负荷稳定时即反映出高炉煤气流分布稳定,炉况顺行良好;反之如果热负荷波动大,反映出高炉煤气流分布不稳定,炉况容易失常。

另外,由于热负荷提示了高炉炉体散热的状况,在实际高炉操作中就成为了必须考虑的热量平衡因素,对高炉最基本的炉温控制具有指导意义。

4 对低燃料比操作的认识

相关文档
最新文档