人脸识别PCA算法matlab实现及详细步骤讲解
基于matlab程序实现人脸识别
基于matlab程序实现人脸识别
人脸识别已经成为一个广泛被应用的技术,例如手机的解锁方式,安全系统等等。
它是一种基于人脸图像进行身份验证或身份识别的技术,也是近年来计算机视觉和模式识别领域研究的热点方向之一。
在这篇文档中,我们将介绍如何使用matlab编写一个简单的人脸识别程序。
人脸识别是什么?
人脸识别可以被定义为一个过程,旨在使用数字算法识别和验证图像或视频中
人脸身份。
在计算机科学的领域中,这项技术可以被描述为一种模式识别技术,
旨在通过在人脸图像上提取可识别特征来确定身份验证。
通俗易懂地理解,就是计算机能够识别人脸的特征,并将其与已知的数据匹配,从而确定人物身份。
人脸识别程序的开发流程
以下是本文介绍的基本程序开发流程:
1.数据集导入和预处理
2.特征提取和脸部对齐
3.模型训练和分类器设计
4.模型评估和测试
数据集导入和预处理
考虑到一个好的项目,我们需要一个良好的数据集。
在这里,我们可以使用来
自orl人脸数据集的数据。
该数据集中包含的有40个人的400幅灰度图像,每个
人有10个不同的示例。
您可以从该网站下载并使用这些数据来测试您的算法。
在这个过程中,我们需要使用matlab中的imread函数将数据读取为数字矩阵,然后将数据分为训练集和测试集。
这个过程旨在将原始的数据转换为我们算法能
够处理的数字矩阵,并将数据划分为训练集和测试集。
``` % 读取数据集 dataFolderPath =。
MATLAB下人脸图像的PCA重构matlab代码
MATLAB下人脸图像的PCA重构matlab代码主函数clc;clear all;newimage=double(zeros(112*6,92*5));[M,sort_V,avg_face] = averageface( );%返回去均值的矩阵和协方差,以及排列好的特征向量k=1;new_sort_V =sort_V(1:10304,1:30);%取特征向量的前30个,并进行显示for i=1:112:5*112+1for j=1:92:4*92+1newimage(i:i+111,j:j+91)=reshape(new_sort_V(:,k),112,92);k=k+1;endendminum=min(min(newimage));%对特征向量进行标定maxum=max(max(newimage));d=maxum-minum;newimage(:,:)=newimage(:,:)-minum;newimage(:,:)=newimage(:,:)/d;newimage(:,:)=newimage(:,:)*255;newimage=uint8(newimage);subplot(1,3,1);title('特征向量图');imshow(newimage);%显示前30个特征向量avg_face=uint8(avg_face);subplot(1,3,2)title('平均脸');imshow(avg_face);subplot(1,3,3)[ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face);imshow(re_newimage);子函数function []=img2txt()maindir = 'D:\Image';subdir = dir( maindir ); % 先确定子文件夹m=1;k=1;for i = 1 : length( subdir )if( isequal( subdir( i ).name, '.') || isequal( subdir( i ).name, '..') || ~subdir( i ).isdir ) % 如果不是目录跳过continue;endsubdirpath = fullfile( maindir, subdir( i ).name, '*.pgm' );images = dir( subdirpath ); % 在这个子文件夹下找后缀为pgm的文件% 遍历每张图片for j = 1 : length( images )imagepath = fullfile( maindir, subdir( i ).name,images( j ).name );imgdata = imread( imagepath ); % 这里进行你的读取操作[row, col]=size(imgdata); %将数据写入txt中fid = fopen(['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(m),'\',int2str(k),'.txt'],'w'); %新建txt文件存储图像的坐标和灰度值for I=1:rowfor J=1:colfprintf(fid,'%03d\t',imgdata(I,J));endfprintf(fid,'\n') ;endfclose(fid);k=k+1;endm=m+1;k=1;endfunction [M,sort_V,avg_face] = averageface()big_array=double(zeros(10304,400));new_big_array=double(zeros(10304,400));avg_face=double(zeros(112,92));i=1;for m=1:40;for k=1:10FileName = ['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(m),'\',int2str(k),'.txt'];p = load (FileName);big_array(:,i)=reshape(p,10304,1); %将400张脸转换成10304*400的大矩阵new_p=reshape(p,112,92);avg_face(:,:)=avg_face(:,:)+new_p(:,:)/400; %求平均脸i=i+1;endendM=mean(big_array); %对矩阵的每一列求均值for i=1:400new_big_array(:,i)=big_array(:,i)-M(i);%去均值后的矩阵end%用SVD求特征向量C0=new_big_array'*new_big_array;%求低维度的协方差[V0,~]=eig(C0);k=0;V=new_big_array*V0;%特征向量for i=1:400 %将特征向量进行归一化10304*400for j=1:10304k=k+V(j,i)^2;endk=k^(0.5);V(1:10304,i)= V(1:10304,i)/k;k=0;endsort_V=double(zeros(10304,400));k=400;for i=1:400 %将特征向量的列按特征值从大到小排列好sort_V(1:10304,i)=V(1:10304,k);k=k-1;endfunction [ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face)FileName = ['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(1),'\',int2str(1),'.txt'];p = load (FileName);avg_face=double(avg_face);big_array=reshape(p,1,10304);a_big_array=double(reshape(big_array,112,92));big_array=a_big_array(:,:)-avg_face(:,:);big_array=reshape(big_array,1,10304);tyxs=big_array*sort_V;re_newimage=double(zeros(10304,1));for i=1:400re_newimage(:,:)= re_newimage(:,:)+tyxs(i)*sort_V(1:10304,i);endre_newimage= reshape(re_newimage,112,92);re_newimage=re_newimage(:,:)+avg_face(:,:);minum=min(min(re_newimage));%对特征向量进行标定maxum=max(max(re_newimage));d=maxum-minum;re_newimage(:,:)=re_newimage(:,:)-minum;re_newimage(:,:)=re_newimage(:,:)/d;re_newimage(:,:)=re_newimage(:,:)*255;re_newimage=uint8(re_newimage);end。
如何使用Matlab进行人脸检测和人脸识别
如何使用Matlab进行人脸检测和人脸识别人脸检测和人脸识别是计算机视觉领域中的重要技术应用,可以广泛用于人脸识别系统、人脸支付、安全监控等众多领域。
本文将介绍如何使用Matlab进行人脸检测和人脸识别。
1. 背景介绍人脸检测和人脸识别技术的出现,为计算机系统实现对人脸的自动分析和识别提供了可能。
人脸检测是指从一幅图像或视频序列中确定是否存在人脸,并找出人脸的位置和大小。
而人脸识别则是在检测到的人脸图像上进行特征提取和模式匹配,以实现对人脸的身份识别。
2. 人脸检测在Matlab中,可以使用Viola-Jones算法进行人脸检测。
该算法通过构造Haar特征与Adaboost集成学习算法相结合,能够在较短的时间内实现高效的人脸检测。
具体操作如下:2.1 加载图像首先,在Matlab中加载需要进行人脸检测的图像。
可以使用imread函数进行图像加载,并将其转换为灰度图像进行处理。
例如:```Matlabimage = imread('face.jpg');gray_image = rgb2gray(image);```2.2 构建人脸检测器在Matlab中,可以使用vision.CascadeObjectDetector对象构建人脸检测器。
该对象可以通过Viola-Jones算法进行人脸检测。
具体代码如下:```MatlabfaceDetector = vision.CascadeObjectDetector();bbox = step(faceDetector, gray_image);```2.3 显示检测结果最后,可以使用insertObjectAnnotation函数将检测到的人脸位置在原始图像上标记出来。
代码示例如下:```Matlabdetected_image = insertObjectAnnotation(image, 'rectangle', bbox, 'Face');imshow(detected_image);```3. 人脸识别在Matlab中,可以使用基于人脸特征的Eigenface、Fisherface和LBPH等算法进行人脸识别。
人脸识别核心算法及MATLAB代码
人脸识别核心算法在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。
识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。
我们在这方面的主要工作包括:∙基于LGBP的人脸识别方法问题:统计学习目前已经成为人脸识别领域的主流方法,但实践表明,基于统计学习的方法往往会存在“推广能力弱”的问题,尤其在待识别图像“属性”未知的情况下,更难以确定采用什么样的训练图像来训练人脸模型。
鉴于此,在对统计学习方法进行研究的同时,我们还考虑了非统计模式识别的一类方法。
思路:对于给定的人脸图像,LGBP方法首先将其与多个不同尺度和方向的Gabor滤波器卷积(卷积结果称为Gabor特征图谱)获得多分辨率的变换图像。
然后将每个Gabor特征图谱划分成若干互不相交的局部空间区域,对每个区域提取局部邻域像素的亮度变化模式,并在每个局部空间区域内提取这些变化模式的空间区域直方图,所有Gabor特征图谱的、所有区域的直方图串接为一高维特征直方图来编码人脸图像。
并通过直方图之间的相似度匹配技术(如直方图交运算)来实现最终的人脸识别。
在FERET四个人脸图像测试集合上与FERET97的结果对比情况见下表。
由此可见,该方法具有良好的识别性能。
而且LGBP方法具有计算速度快、无需大样本学习、推广能力强的优点。
参见ICCV2005表.LGBP方法与FERET'97最佳结果的对比情况∙基于AdaBoost的Gabor特征选择及判别分析方法问题:人脸描述是人脸识别的核心问题之一,人脸识别的研究实践表明:在人脸三维形状信息难以准确获取的条件下,从图像数据中提取多方向、多尺度的Gabor特征是一种合适的选择。
使用Gabor特征进行人脸识别的典型方法包括弹性图匹配方法(EGM)和Gabor特征判别分类法(GFC)。
EGM在实用中需要解决关键特征点的定位问题,而且其速度也很难提高;而GFC则直接对下采样的Gabor特征用PCA降维并进行判别分析,尽管这避免了精确定位关键特征点的难题,但下采样的特征维数仍然偏高,而且简单的下采样策略很可能遗漏了非常多的有用特征。
PCA人脸识别算法详解
识别阶段
• 1测试样本 W Rm*n 向 X1... X p 空间投影后得到样本 W的特征矩阵 Yt 和主成分分量 Yji (1),...,Yji ( p) :
Yt [Yji (1),...,Yji p] WX1,...,WX p
第25页,共28页。
识别阶段
• 2根据测试样本投影特征矩阵与所有训练样本投 影特征矩阵之间的最小距离来判断测试样本所属 的类别。定义如下的距离度量准则:
主成分分析简介
• Principal Component Analysis(PCA) • 主成分分析(Principal Component Analysis,
简称PCA)是一种常用的基于变量协方差矩 阵对信息进行处理、压缩和抽提的有效方 法。
第1页,共28页。
基于PCA算法的人脸识别
• PCA方法由于其在降维和特征提取方面的 有效性,在人脸识别领域得到了广泛 的应用。
j
1,2,...,p
第23页,共28页。
训练阶段
• 5 训练样本 s ji ,i 1,2,...,N, j 1,2,...,K 向 X 1... X p 空间
投影得到: Yji [S ji Xi ,...,S ji X p ] [Yji (1),...,Yji ( p)] Rmp
第24页,共28页。
识别阶段
• 第一步:将待识别的人脸图像 与平均脸的差
值脸投影到特征脸空间,得到其特征向量表示:
wT
第13页,共28页。
识别阶段
• 第二步:定义阈值
1 max 2 i, j
i
j
,i, j 1,2,...,200
第14页,共28页。
识别阶段
• 第三步:采用欧式距离来计算 与每个人脸的距
基于主成分分析(PCA)的人脸识别技术
基于主成分分析(PCA)的⼈脸识别技术本科期间做的⼀个课程设计,觉得⽐较好玩,现将之记录下来,实验所⽤。
1、实验⽬的(1)学习主成分分析(PCA)的基础知识;(2)了解PCA在⼈脸识别与重建⽅⾯的应⽤;(3)认识数据降维操作在数据处理中的重要作⽤;(4)学习使⽤MATLAB软件实现PCA算法,进⾏⼈脸识别,加深其在数字图像处理中解决该类问题的应⽤流程。
2、实验简介(背景及理论分析)近年来,由于恐怖分⼦的破坏活动发⽣越发频繁,包括⼈脸识别在内的⽣物特征识别再度成为⼈们关注的热点,各国均纷纷增加了对该领域研究的投⼊。
同其他⽣物特征识别技术,如指纹识别、语⾳识别、虹膜识别、DNA识别等相⽐,⼈脸识别具有被动、友好、⽅便的特点。
该技术在公众场合监控、门禁系统、基于⽬击线索的⼈脸重构、嫌疑犯照⽚的识别匹配等领域均有⼴泛应⽤。
⼈脸识别技术是基于⼈的脸部特征,对输⼊的⼈脸图像或者视频流,⾸先判断其是否存在⼈脸。
如果存在⼈脸,则进⼀步的给出每个脸的位置、⼤⼩和各个主要⾯部器官的位置信息。
其次并依据这些信息,进⼀步提取每个⼈脸中所蕴涵的⾝份特征,并将其与已知的⼈脸进⾏对⽐,从⽽识别每个⼈脸的⾝份。
⼴义的⼈脸识别实际包括构建⼈脸识别系统的⼀系列相关技术,包括⼈脸图像采集、⼈脸定位、⼈脸识别预处理、⾝份确认以及⾝份查找等;⽽狭义的⼈脸识别特指通过⼈脸进⾏⾝份确认或者⾝份查找的技术或系统。
我们在处理有关数字图像处理⽅⾯的问题时,⽐如经常⽤到的图像查询问题:在⼀个⼏万或者⼏百万甚⾄更⼤的数据库中查询⼀幅相近的图像。
其中主成分分析(PCA)是⼀种⽤于数据降维的⽅法,其⽬标是将⾼维数据投影到较低维空间。
PCA形成了K-L变换的基础,主要⽤于数据的紧凑表⽰。
在数据挖掘的应⽤中,它主要应⽤于简化⼤维数的数据集合,减少特征空间维数,可以⽤较⼩的存储代价和计算复杂度获得较⾼的准确性。
PCA法降维分类原理如下图所⽰:如上图所⽰,其中五⾓星表⽰⼀类集合,⼩圆圈表⽰另⼀类集合。
Matlab在视频人脸检测与人脸识别中的应用技巧
Matlab在视频人脸检测与人脸识别中的应用技巧人脸检测和人脸识别是计算机视觉领域中的重要研究方向,近年来得到了广泛的应用。
在视频处理中,人脸的准确检测和识别是实现许多高级应用的基础。
Matlab作为一种功能强大的数学建模与仿真软件,提供了丰富的图像处理工具箱,使得人脸检测与识别算法的实现变得简单与高效。
一、图像预处理在进行人脸检测与识别之前,通常需要对图像进行预处理,以提高算法的准确性。
图像预处理的过程包括灰度化、直方图均衡化、尺寸归一化等。
利用Matlab的图像处理工具箱,可以快速实现这些预处理操作。
1.1 灰度化灰度化是将彩色图像转换为灰度图像的过程,将去除色彩信息,使图像变得更易处理。
在Matlab中,使用rgb2gray函数可以方便地将彩色图像转换为灰度图像。
1.2 直方图均衡化直方图均衡化是一种增强图像对比度的方法,通过对图像的灰度直方图进行变换来实现。
在Matlab中,使用histeq函数可以对图像的灰度直方图进行均衡化操作,提高图像的细节显示能力。
1.3 尺寸归一化不同的人脸图像具有不同的尺寸和角度,这对人脸检测与识别算法会造成影响。
为了提高算法的鲁棒性,通常需要将人脸图像进行尺寸归一化处理。
在Matlab中,可以使用imresize函数将图像进行缩放,使得人脸图像具有相同的尺寸。
二、人脸检测人脸检测是指在一幅图像中自动识别和定位人脸的过程,是人脸识别的首要步骤。
Matlab提供了多种人脸检测算法的实现,其中常用的有Haar特征分类器和基于深度学习的卷积神经网络(CNN)。
2.1 Haar特征分类器Haar特征分类器是一种基于机器学习的人脸检测算法,可以通过训练集的正负样本学习出人脸的特征。
在Matlab中,可以使用vision.CascadeObjectDetector对象和trainCascadeObjectDetector函数来实现Haar特征分类器的训练与检测。
2.2 基于深度学习的卷积神经网络(CNN)近年来,深度学习在图像处理领域取得了巨大的突破,其中卷积神经网络是一种非常有效的人脸检测方法。
人脸识别PCA算法matlab实现和详细步骤讲解
人脸识别% FaceRec.m% PCA 人脸识别修订版,识别率88%% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endi=1;% (训练阶段)计算特征脸形成的坐标系base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数,accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别% 测试过程for i=1:40for j=6:10 %读入40 x 5 副测试图像a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));b=a(1:10304);b=double(b);tcoor= b * base; %计算坐标,是1×p 阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:));end;%三阶近邻[dist,index2]=sort(mdist);class1=floor( (index2(1)-1)/5 )+1;class2=floor((index2(2)-1)/5)+1;class3=floor((index2(3)-1)/5)+1;if class1~=class2 && class2~=class3class=class1;elseif class1==class2class=class1;elseif class2==class3class=class2;end;if class==iaccu=accu+1;end;end;end;accuracy=accu/200 %输出识别率特征人脸% eigface.mfunction [] = eigface()% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endp = 199;% (训练阶段)计算特征脸形成的坐标系%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% 生成特征脸for (k=1:p),temp = reshape(base(:,k), 112,92);newpath = ['d:\test\' int2str(k) '.jpg'];imwrite(mat2gray(temp), newpath);endavg = reshape(samplemean, 112,92);imwrite(mat2gray(avg), 'd:\test\average.jpg');% 将模型保存save('e:\ORL\model.mat', 'base', 'samplemean');人脸重建% Reconstruct.mfunction [] = reconstruct()load e:\ORL\model.mat;% 计算新图片在特征子空间中的系数img = 'D:\test2\10.jpg'a=imread(img);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量% 根据特征系数及特征脸重建图% 前15 个t = 15;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg'); % 前50 个t = 50;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg'); % 前100 个t = 100;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg'); % 前150 个t = 150;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg'); % 前199 个t = 199;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');基于2DPCA与(2D)2PCA的人脸识别(第二版)。
PCA用于人脸特征提取及Matlab实现
随机过程PCA用于人脸识别附Matlab代码于琦2011/10/27学号:2009011149【摘要】人脸识别技术是近来非常活跃的研究领域,它综合多学科知识,且应用非常广泛。
采用主元分析法(PCA)进行人脸识别的经典方法之一。
本文利用Matlab在ORL人脸库上实现PCA初步人脸识别,包括图像特征提取、人脸重构与识别方法设计。
讨论了用奇异值分解等方法简化特征向量求解,并详细阐述其在Matlab中的实现过程。
结合ORL人脸库自身特点,通过对特征值和特征脸的分析进行合理取舍,提高了识别率。
【介绍】“人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
更好的解决该问题将有助于身份确认和身份查找等应用、促进众多学科的发展。
”“目前,人脸识别的方法可以分为5类,分别为基于特征脸(PCA)的人脸识别方法,神经网络的人脸识别方法,弹性图匹配的人脸识别方法,线段Hausdorff 距离(LHD) 的人脸识别方法支持向量机(SVM) 的人脸识别方法。
其中给予特征脸的人脸识别是传统方法,基于K-L 变换(PCA)的人脸识别方法又叫特征脸方法、本征脸方法(Eigenface),最早由Turk 和Pentland 提出。
它有均方误差最小,降维减少计算量,主分量特性稳定等优点。
”“由于PCA较之于前几种方法相对简单,故本文对PCA算法进行研究并用Matlab 给出实现。
”“本文的结构安排如下:第二章模型(Model)及基本理论和方法(Basic Theory and Method),第三章方法(Method)及方法分析(Analysis of Method),第四章算法(Algorithm)及算法分析(Analysis of Algorithm),第五章数值结果及讨论(Discussion),第六章结论(Conclusion)。
第二章模型及基本理论和方法采用PCA对原始数据的处理,通常有三个方面的作用—降维、相关性去除、概率估计。
Matlab中的人脸识别与人脸特征提取
Matlab中的人脸识别与人脸特征提取近年来,随着计算机技术的快速发展和应用的普及,人脸识别技术逐渐进入了我们的生活。
无论是在安全领域的门禁系统、身份验证应用,还是在娱乐领域的人脸美化软件,人脸识别都发挥着重要的作用。
而在人脸识别技术的实现中,人脸特征提取是一个关键的环节。
本文将介绍在Matlab中实现人脸识别和人脸特征提取的方法与技巧。
在Matlab中,有许多经典的人脸识别算法可供选择,其中最为常见且被广泛应用的是基于主成分分析(PCA)的人脸识别算法。
PCA是一种经典的降维算法,它通过线性变换将高维数据映射到低维空间中,从而捕捉数据的主要特征。
在人脸识别中,我们可以将每张人脸的像素矩阵视为一个高维数据向量,利用PCA算法将其映射到一个低维特征空间中。
在特征空间中,每张人脸都可以表示为一个特征向量,就像每个人都有自己独特的“人脸特征码”一样。
要在Matlab中实现基于PCA的人脸识别,首先需要收集一组包含多个人脸的图像数据集作为训练样本。
然后,将每个人脸的像素矩阵展开成一个列向量,并将这些列向量按列排成一个矩阵,构成一个大的数据矩阵。
接下来,通过对数据矩阵进行协方差矩阵分解和特征值分解,可以得到一组特征向量。
这些特征向量被称为“特征脸”,它们是训练样本中人脸数据的主要变化方向。
最后,通过计算待识别人脸与训练样本中每个人脸的特征向量的距离,并找出距离最小的特征向量所对应的人脸,即可完成人脸识别的过程。
除了PCA算法,还有其他一些在Matlab中常用的人脸识别算法,如线性判别分析(LDA)算法、小波变换、局部二值模式(LBP)等。
这些算法在原理和实现上各有特点,可以根据实际需求选择合适的算法进行人脸识别。
在人脸识别之前,首先需要对输入的人脸图像进行预处理。
通常的预处理步骤包括灰度化、直方图均衡化和人脸检测。
灰度化是将彩色图像转换为灰度图像,降低了计算复杂度,同时保留了图像的关键信息。
直方图均衡化可以增强图像的对比度,使得人脸特征更加明显。
使用MATLAB进行人脸识别的基本原理
使用MATLAB进行人脸识别的基本原理人脸识别是一种应用广泛的生物特征识别技术,它通过对人脸图像进行分析和比对,来判断图像中的人脸是否与已知的人脸相匹配。
随着计算机视觉和模式识别技术的发展,人脸识别技术已经在安全领域、人机交互、社交媒体等方面得到广泛应用。
在人脸识别的研究中,MATLAB是一个非常有用的工具。
它提供了强大的图像处理和模式识别相关的函数和工具箱,可以方便地实现人脸识别算法的原理。
本文将介绍使用MATLAB进行人脸识别的基本原理,包括人脸图像的预处理、特征提取和分类方法。
1. 人脸图像的预处理在进行人脸识别之前,首先需要将人脸图像进行预处理,以提高后续的识别效果。
预处理包括人脸检测、人脸对齐和人脸裁剪等步骤。
人脸检测是最基本的预处理步骤。
它的目的是从图像中准确地检测出人脸区域。
在MATLAB中,可以使用现成的人脸检测算法,如Viola-Jones算法和基于深度学习的卷积神经网络。
这些算法可以在MATLAB的计算机视觉工具箱中找到,可以很方便地实现。
人脸对齐是为了保证后续的特征提取和分类算法对人脸具有良好的可比性。
在人脸对齐步骤中,通常需要将检测到的人脸图像进行标准化处理,如旋转、缩放和平移等。
MATLAB提供了丰富的图像几何变换函数和工具箱,可以方便地实现这些操作。
人脸裁剪是为了去除图像中的多余背景,并将人脸图像转化为统一大小和灰度值范围。
在MATLAB中,可以使用图像剪裁函数和变换函数来完成这一步骤。
同时,还可以对图像进行直方图均衡化、归一化和滤波等处理,以进一步提升识别效果。
2. 特征提取特征提取是人脸识别中最重要的步骤之一。
它的目的是从人脸图像中提取出具有代表性的特征向量,以实现对人脸的唯一性描述。
在MATLAB中,可以使用各种图像处理和模式识别函数来进行特征提取。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)和人脸描述子(Face Descriptor)等。
人脸识别中pca算法步骤及流程
人脸识别中pca算法步骤及流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 数据预处理收集人脸图像数据,并进行预处理,例如裁剪、调整大小、灰度化等。
(完整版)基于matlab程序实现人脸识别
基于matlab程序实现人脸识别1.人脸识别流程1.1.1基本原理基于YCbCr颜色空间的肤色模型进行肤色分割。
在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显著不同。
采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。
1.1.2流程图人脸识别流程图读入原始图像将图像转化为YCbCr颜色空间利用肤色模型二值化图像并作形态学处理选取出二值图像中的白色区域,度量区域属性,筛选后得到所有矩形块否筛选特定区域(高度和宽度的比率在(0.6~2)之间,眼睛特征)是存储人脸的矩形区域特殊区域根据其他信息筛选,标记最终的人脸区域2.人脸识别程序(1)人脸和非人脸区域分割程序function result = skin(Y,Cb,Cr)%SKIN Summary of this function goes here% Detailed explanation goes herea=25.39;b=14.03;ecx=1.60;ecy=2.41;sita=2.53;cx=109.38;cy=152.02;xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)];%如果亮度大于230,则将长短轴同时扩大为原来的1.1倍if(Y>230)a=1.1*a;b=1.1*b;end%根据公式进行计算Cb=double(Cb);Cr=double(Cr);t=[(Cb-cx);(Cr-cy)];temp=xishu*t;value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2;%大于1则不是肤色,返回0;否则为肤色,返回1if value>1result=0;elseresult=1;endend(2)人脸的确认程序function eye = findeye(bImage,x,y,w,h)%FINDEYE Summary of this function goes here % Detailed explanation goes herepart=zeros(h,w);%二值化for i=y:(y+h)for j=x:(x+w)if bImage(i,j)==0part(i-y+1,j-x+1)=255;elsepart(i-y+1,j-x+1)=0;endendend[L,num]=bwlabel(part,8);%如果区域中有两个以上的矩形则认为有眼睛if num<2eye=0;elseeye=1;endend(3)人脸识别主程序clear all;%读入原始图像I=imread('face3.jpg');gray=rgb2gray(I);ycbcr=rgb2ycbcr(I);%将图像转化为YCbCr空间heighth=size(gray,1);%读取图像尺寸width=size(gray,2);for i=1:heighth %利用肤色模型二值化图像for j=1:widthY=ycbcr(i,j,1);Cb=ycbcr(i,j,2);Cr=ycbcr(i,j,3);if(Y<80)gray(i,j)=0;elseif(skin(Y,Cb,Cr)==1)%根据色彩模型进行图像二值化gray(i,j)=255;elsegray(i,j)=0;endendendendse=strel('arbitrary',eye(5));%二值图像形态学处理gray=imopen(gray,se);figure;imshow(gray)[L,num]=bwlabel(gray,8);%采用标记方法选出图中的白色区域stats=regionprops(L,'BoundingBox');%度量区域属性n=1;%存放经过筛选以后得到的所有矩形块result=zeros(n,4);figure,imshow(I);hold on;for i=1:num %开始筛选特定区域box=stats(i).BoundingBox;x=box(1);%矩形坐标Xy=box(2);%矩形坐标Yw=box(3);%矩形宽度wh=box(4);%矩形高度hratio=h/w;%宽度和高度的比例ux=uint16(x);uy=uint8(y);if ux>1ux=ux-1;endif uy>1uy=uy-1;endif w<20 || h<20|| w*h<400 %矩形长宽的范围和矩形的面积可自行设定continueelseif ratio<2 && ratio>0.6 && findeye(gray,ux,uy,w,h)==1%根据“三庭五眼”规则高度和宽度比例应该在(0.6,2)内;result(n,:)=[ux uy w h];n=n+1;endendif size(result,1)==1 && result(1,1)>0 %对可能是人脸的区域进行标记rectangle('Position',[result(1,1),result(1,2),result(1,3),result(1,4)],'EdgeColor','r'); else%如果满足条件的矩形区域大于1,则再根据其他信息进行筛选a=0;arr1=[];arr2=[];for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%得到符合和人脸匹配的数据if m1+m3<width && m2+m4<heighth && m3<0.2*widtha=a+1;arr1(a)=m3;arr2(a)=m4;%rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endend%得到人脸长度和宽度的最小区域arr3=[];arr3=sort(arr1,'ascend');arr4=[];arr4=sort(arr2,'ascend');%根据得到的数据标定最终的人脸区域for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%最终标定人脸if m1+m3<width && m2+m4<heighth && m3<0.2*widthm3=arr3(1);m4=arr4(1);rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endendend(4)程序说明人脸识别程序主要包含三个程序模块,人脸识别主程序由三部分构成。
(完整版)人脸识别MATLAB代码
1.色彩空间转换function [r,g]=rgb_RGB(Ori_Face)R=Ori_Face(:,:,1);G=Ori_Face(:,:,2);B=Ori_Face(:,:,3);R1=im2double(R); % 将uint8型转换成double型G1=im2double(G);B1=im2double(B);RGB=R1+G1+B1;row=size(Ori_Face,1); % 行像素column=size(Ori_Face,2); % 列像素for i=1:rowfor j=1:columnrr(i,j)=R1(i,j)/RGB(i,j);gg(i,j)=G1(i,j)/RGB(i,j);endendrrr=mean(rr);r=mean(rrr);ggg=mean(gg);g=mean(ggg);2.均值和协方差t1=imread('D:\matlab\皮肤库\1.jpg');[r1,g1]=rgb_RGB(t1); t2=imread('D:\matlab\皮肤库\2.jpg');[r2,g2]=rgb_RGB(t2); t3=imread('D:\matlab\皮肤库\3.jpg');[r3,g3]=rgb_RGB(t3); t4=imread('D:\matlab\皮肤库\4.jpg');[r4,g4]=rgb_RGB(t4); t5=imread('D:\matlab\皮肤库\5.jpg');[r5,g5]=rgb_RGB(t5); t6=imread('D:\matlab\皮肤库\6.jpg');[r6,g6]=rgb_RGB(t6); t7=imread('D:\matlab\皮肤库\7.jpg');[r7,g7]=rgb_RGB(t7); t8=imread('D:\matlab\皮肤库\8.jpg');[r8,g8]=rgb_RGB(t8);t9=imread('D:\matlab\皮肤库\9.jpg');[r9,g9]=rgb_RGB(t9);t10=imread('D:\matlab\皮肤库\10.jpg');[r10,g10]=rgb_RGB(t10);t11=imread('D:\matlab\皮肤库\11.jpg');[r11,g11]=rgb_RGB(t11);t12=imread('D:\matlab\皮肤库\12.jpg');[r12,g12]=rgb_RGB(t12);t13=imread('D:\matlab\皮肤库\13.jpg');[r13,g13]=rgb_RGB(t13);t14=imread('D:\matlab\皮肤库\14.jpg');[r14,g14]=rgb_RGB(t14);t15=imread('D:\matlab\皮肤库\15.jpg');[r15,g15]=rgb_RGB(t15);t16=imread('D:\matlab\皮肤库\16.jpg');[r16,g16]=rgb_RGB(t16);t17=imread('D:\matlab\皮肤库\17.jpg');[r17,g17]=rgb_RGB(t17);t18=imread('D:\matlab\皮肤库\18.jpg');[r18,g18]=rgb_RGB(t18);t19=imread('D:\matlab\皮肤库\19.jpg');[r19,g19]=rgb_RGB(t19);t20=imread('D:\matlab\皮肤库\20.jpg');[r20,g20]=rgb_RGB(t20);t21=imread('D:\matlab\皮肤库\21.jpg');[r21,g21]=rgb_RGB(t21);t22=imread('D:\matlab\皮肤库\22.jpg');[r22,g22]=rgb_RGB(t22);t23=imread('D:\matlab\皮肤库\23.jpg');[r23,g23]=rgb_RGB(t23);t24=imread('D:\matlab\皮肤库\24.jpg');[r24,g24]=rgb_RGB(t24);t25=imread('D:\matlab\皮肤库\25.jpg');[r25,g25]=rgb_RGB(t25);t26=imread('D:\matlab\皮肤库\26.jpg');[r26,g26]=rgb_RGB(t26);t27=imread('D:\matlab\皮肤库\27.jpg');[r27,g27]=rgb_RGB(t27);r=cat(1,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22, r23,r24,r25,r26,r27);g=cat(1,g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,g16,g17,g18,g19,g20 ,g21,g22,g23,g24,g25,g26,g27);m=mean([r,g])n=cov([r,g])3.求质心function [xmean, ymean] = center(bw)bw=bwfill(bw,'holes');area = bwarea(bw);[m n] =size(bw);bw=double(bw);xmean =0; ymean = 0;for i=1:m,for j=1:n,xmean = xmean + j*bw(i,j);ymean = ymean + i*bw(i,j);end;end;if(area==0)xmean=0;ymean=0;elsexmean = xmean/area;ymean = ymean/area;xmean = round(xmean);ymean = round(ymean);end4. 求偏转角度function [theta] = orient(bw,xmean,ymean) [m n] =size(bw);bw=double(bw);a = 0;b = 0;c = 0;for i=1:m,for j=1:n,a = a + (j - xmean)^2 * bw(i,j);b = b + (j - xmean) * (i - ymean) * bw(i,j);c = c + (i - ymean)^2 * bw(i,j);end;b = 2 * b;theta = atan(b/(a-c))/2;theta = theta*(180/pi); % 从幅度转换到角度5. 找区域边界function [left, right, up, down] = bianjie(A)[m n] = size(A);left = -1;right = -1;up = -1;down = -1;for j=1:n,for i=1:m,if (A(i,j) ~= 0)left = j;break;end;end;if (left ~= -1) break;end;end;for j=n:-1:1,for i=1:m,if (A(i,j) ~= 0)right = j;break;end;end;if (right ~= -1) break;end;for i=1:m,for j=1:n,if (A(i,j) ~= 0)up = i;break;end;end;if (up ~= -1)break;end;end;for i=m:-1:1,for j=1:n,if (A(i,j) ~= 0)down = i;break;end;end;if (down ~= -1)break;end;end;6. 求起始坐标function newcoord = checklimit(coord,maxval) newcoord = coord;if (newcoord<1)newcoord=1;end;if (newcoord>maxval)newcoord=maxval;end;7.模板匹配function [ccorr, mfit, RectCoord] = mobanpipei(mult, frontalmodel,ly,wx,cx, cy, angle)frontalmodel=rgb2gray(frontalmodel);model_rot = imresize(frontalmodel,[ly wx],'bilinear'); % 调整模板大小model_rot = imrotate(model_rot,angle,'bilinear'); % 旋转模板[l,r,u,d] = bianjie(model_rot); % 求边界坐标bwmodel_rot=imcrop(model_rot,[l u (r-l) (d-u)]); % 选择模板人脸区域[modx,mody] =center(bwmodel_rot); % 求质心[morig, norig] = size(bwmodel_rot);% 产生一个覆盖了人脸模板的灰度图像mfit = zeros(size(mult));mfitbw = zeros(size(mult));[limy, limx] = size(mfit);% 计算原图像中人脸模板的坐标startx = cx-modx;starty = cy-mody;endx = startx + norig-1;endy = starty + morig-1;startx = checklimit(startx,limx);starty = checklimit(starty,limy);endx = checklimit(endx,limx);endy = checklimit(endy,limy);for i=starty:endy,for j=startx:endx,mfit(i,j) = model_rot(i-starty+1,j-startx+1);end;end;ccorr = corr2(mfit,mult) % 计算相关度[l,r,u,d] = bianjie(bwmodel_rot);sx = startx+l;sy = starty+u;RectCoord = [sx sy (r-1) (d-u)]; % 产生矩形坐标8.主程序clear;[fname,pname]=uigetfile({'*.jpg';'*.bmp';'*.tif';'*.gif'},'Please choose a color picture...'); % 返回打开的图片名与图片路径名[u,v]=size(fname);y=fname(v); % 图片格式代表值switch ycase 0errordlg('You Should Load Image File First...','Warning...');case{'g';'G';'p';'P';'f';'F'}; % 图片格式若是JPG/jpg、BMP/bmp、TIF/tif 或者GIF/gif,才打开I=cat(2,pname,fname);Ori_Face=imread(I);subplot(2,3,1),imshow(Ori_Face);otherwiseerrordlg('You Should Load Image File First...','Warning...');endR=Ori_Face(:,:,1);G=Ori_Face(:,:,2);B=Ori_Face(:,:,3);R1=im2double(R); % 将uint8型转换成double型处理G1=im2double(G);B1=im2double(B);RGB=R1+G1+B1;m=[ 0.4144,0.3174]; % 均值n=[0.0031,-0.0004;-0.0004,0.0003]; % 方差row=size(Ori_Face,1); % 行像素数column=size(Ori_Face,2); % 列像素数for i=1:rowfor j=1:columnif RGB(i,j)==0rr(i,j)=0;gg(i,j)=0;elserr(i,j)=R1(i,j)/RGB(i,j); % rgb归一化gg(i,j)=G1(i,j)/RGB(i,j);x=[rr(i,j),gg(i,j)];p(i,j)=exp((-0.5)*(x-m)*inv(n)*(x-m)'); % 皮肤概率服从高斯分布endendendsubplot(2,3,2);imshow(p); % 显示皮肤灰度图像low_pass=1/9*ones(3);image_low=filter2(low_pass, p); % 低通滤波去噪声subplot(2,3,3);imshow(image_low);% 自适应阀值程序previousSkin2 = zeros(i,j);changelist = [];for threshold = 0.55:-0.1:0.05two_value = zeros(i,j);two_value(find(image_low>threshold)) = 1;change = sum(sum(two_value - previousSkin2));changelist = [changelist change];previousSkin2 = two_value;end[C, I] = min(changelist);optimalThreshold = (7-I)*0.1two_value = zeros(i,j);two_value(find(image_low>optimalThreshold)) = 1; % 二值化subplot(2,3,4);imshow(two_value); % 显示二值图像frontalmodel=imread('E:\我的照片\人脸模板.jpg'); % 读入人脸模板照片FaceCoord=[];imsourcegray=rgb2gray(Ori_Face); % 将原照片转换为灰度图像[L,N]=bwlabel(two_value,8); % 标注二值图像中连接的部分,L为数据矩阵,N为颗粒的个数for i=1:N,[x,y]=find(bwlabel(two_value)==i); % 寻找矩阵中标号为i的行和列的下标bwsegment = bwselect(two_value,y,x,8); % 选择出第i个颗粒numholes = 1-bweuler(bwsegment,4); % 计算此区域的空洞数if (numholes >= 1) % 若此区域至少包含一个洞,则将其选出进行下一步运算RectCoord = -1;[m n] = size(bwsegment);[cx,cy]=center(bwsegment); % 求此区域的质心bwnohole=bwfill(bwsegment,'holes'); % 将洞封住(将灰度值赋为1)justface = uint8(double(bwnohole) .* double(imsourcegray));% 只在原照片的灰度图像中保留该候选区域angle = orient(bwsegment,cx,cy); % 求此区域的偏转角度bw = imrotate(bwsegment, angle, 'bilinear');bw = bwfill(bw,'holes');[l,r,u,d] =bianjie(bw);wx = (r - l +1); % 宽度ly = (d - u + 1); % 高度wratio = ly/wx % 高宽比if ((0.8<=wratio)&(wratio<=2))% 如果目标区域的高度/宽度比例大于0.8且小于2.0,则将其选出进行下一步运算S=ly*wx; % 计算包含此区域矩形的面积A=bwarea(bwsegment); % 计算此区域面积if (A/S>0.35)[ccorr,mfit, RectCoord] = mobanpipei(justface,frontalmodel,ly,wx, cx,cy, angle);endif (ccorr>=0.6)mfitbw=(mfit>=1);invbw = xor(mfitbw,ones(size(mfitbw)));source_with_hole = uint8(double(invbw) .* double(imsourcegray));final_image = uint8(double(source_with_hole) + double(mfit));subplot(2,3,5);imshow(final_image); % 显示覆盖了模板脸的灰度图像imsourcegray = final_image;subplot(2,3,6);imshow(Ori_Face); % 显示检测效果图end;if (RectCoord ~= -1)FaceCoord = [FaceCoord; RectCoord];endendendend% 在认为是人脸的区域画矩形[numfaces x] = size(FaceCoord);for i=1:numfaces,hd = rectangle('Position',FaceCoord(i,:));set(hd, 'edgecolor', 'y');end人脸检测是人脸识别、人机交互、智能视觉监控等工作的前提。
MATLAB技术人脸识别算法
MATLAB技术人脸识别算法MATLAB技术在人脸识别算法中的应用人脸识别技术是近年来快速发展的一项先进技术,它可以实现对人脸图像进行自动识别和身份验证。
作为一种非接触式的生物识别技术,人脸识别具有高效、方便、准确的特点,因此在安全领域、人机交互、图像检索等方面有着广泛的应用。
而MATLAB作为一种功能强大的科学计算工具,其丰富的图像处理工具箱和灵活的编程环境,使得其成为人脸识别算法研究和开发的重要工具。
一、人脸识别算法概述人脸识别算法主要包括人脸检测、人脸特征提取和人脸匹配三个步骤。
人脸检测是指从图像或视频中自动检测并定位人脸,通常采用基于特征的方法(如Haar特征、HOG特征等)或基于模型的方法(如支持向量机、神经网络等)进行。
人脸特征提取是指从检测到的人脸中提取出具有代表性的特征,常用的方法有主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
人脸匹配是指将提取出来的人脸特征与已有的数据库中的人脸特征进行比对和匹配,一般采用欧氏距离、余弦相似度等度量方法。
二、MATLAB中的人脸检测算法实现MATLAB提供了多种人脸检测算法的库函数和工具箱,例如Viola-Jones算法、DLib算法等。
这些算法基于不同的原理和方法,可以根据实际需求选择适合的算法进行人脸检测。
以Viola-Jones算法为例,其基于Haar特征的方法可以高效地进行人脸检测。
在MATLAB中,可以使用“vision.CascadeObjectDetector”类实现Viola-Jones算法的人脸检测功能。
首先,需要加载人脸检测器对象,并使用“detect”方法对图像进行人脸检测,最后使用“insertShape”方法将检测结果标记在原图像上。
三、MATLAB中的人脸特征提取算法实现MATLAB提供了多种常用的人脸特征提取算法的函数和工具箱,如PCA、LDA、LBP等。
这些算法能够对从图像中提取到的人脸特征进行降维和优化,以便于后续的人脸匹配工作。
Matlab中的人脸识别与表情分析方法
Matlab中的人脸识别与表情分析方法人脸识别和表情分析是计算机视觉领域中的热门研究方向。
在这个信息爆炸的时代,人们对于自动化识别和分析人脸表情的需求越来越高。
Matlab作为一种功能强大的数值计算与可视化软件,提供了一些重要的工具和算法来实现人脸识别和表情分析。
本文将介绍Matlab中一些常用的人脸识别与表情分析方法。
首先,我们来介绍一下人脸识别的基本概念和方法。
人脸识别是指通过计算机技术来识别和验证人脸的身份。
常见的人脸识别方法包括主成分分析(PCA)、线性判别分析(LDA)和支持向量机(SVM)等。
在Matlab中,可以使用内置的人脸识别工具箱来实现这些方法。
其中,主成分分析是一种常用的降维方法,它通过对数据进行特征提取和投影变换,将高维数据映射到低维空间。
在人脸识别中,PCA可以用来提取脸部特征,并通过与已知人脸数据的比较来判断其身份。
在Matlab中,可以使用pca函数实现主成分分析。
另一种常用的人脸识别方法是线性判别分析。
LDA可以通过最大化类间散布和最小化类内散布的方式来找到最优的投影向量,从而实现有效的人脸分类。
Matlab提供了lda函数来实现线性判别分析。
此外,支持向量机也是一种常用的分类方法,它的基本思想是寻找一个最优的超平面来实现数据的最佳分类。
在人脸识别领域,SVM可以通过训练一组已知标记的人脸图像来建立分类模型,然后利用该模型来识别新的人脸图像。
Matlab中的svmtrain和svmclassify函数可以帮助我们实现这一过程。
除了人脸识别,表情分析也是一个引人注目的研究领域。
表情分析旨在从人脸图像中提取和解释情绪表达。
常见的表情分析方法包括基于特征提取的方法、基于神经网络的方法和基于统计模型的方法等。
在Matlab中,可以使用图像处理工具箱提供的函数来实现基于特征提取的表情分析。
这些函数包括人脸检测、特征检测和分类器训练等功能。
通过这些函数,我们可以提取脸部特征,如眼睛、嘴巴等,进而分析表情的特征,如笑容、愤怒等。
基于PCA算法人脸识别的matlab实现_罗鑫
信息产业基于PCA 算法人脸识别的matlab 实现罗鑫1赵永进1柳长春2邵越鹏1(1、河南师范大学计算机与信息工程学院,河南新乡4530072、清华大学机械工程系,北京100000)摘要:本文介绍了人脸识别中常用的PCA 算法,并在matlab 环境下分别实现了基于PCA 的人脸识别,融合了小波变换,PCA ,奇异值分解等方法简化特征提取和识别过程,采用了ORL 人脸数据库作为实验库,验证了该方法可以有效地进行识别,对实际应用有一定参考价值。
关键词:人脸识别;PCA;奇异值分解图1图像识别原理图图2图像识别过程各环节数据维数的变化本项目由河南师范大学(国家)大学生创新性实验计划资助项目编号:2010143作者简介:罗鑫(1990,8-),女,汉,河南省范县,本科,研究方向:模式识别与图像处理。
计算机人脸识别技术也就是利用计算机分析人脸图象,进而从中提取出有效的识别信息,用来“辨认”身份的一门技术。
[1]人脸识别特征主要分为两类:(1)直观几何特征,人脸的几何特征是研究人脸的各部件形状、大小以及部件之间的相对关系等。
人脸的部件包括眼睛、眉毛、鼻子、嘴、下巴以及面颊和轮廓线等。
(2)数学特征,任何图像都可以近似的用特征图的线性组合来表示,用图像在特征空间中的坐标向量作为图像的特征描述。
[2]特征脸(Eigenface)方法是一种数学特征方法,是近些年人脸识别中广为流行的一种算法,也是本文所要论述的重点。
1问题模型综述图像识别,很容易想到的一种方法是将待识别的图像与数据库中的图像点点匹配,计算相关系数从而达到识别的目的,但这种方法在人脸识别中从未用到乃至提及过,因为这种方法有一个致命的弱点:数据量太大,导致存储和运算相当复杂。
实用的图像识别原理如图1所示:[3]学习过程就是通过特征选择,建立特征空间,并将训练图像在特征空间中做投影,以该坐标向量作为图像的表达,进而进行分类和识别。
可用图2来说明可见,从图像(矩阵,往往很大且不稀疏)到类型空间,实质上是数据降维的的过程,本文也将围绕数据降维的方法展开。
matlab实现pca特征提取方法
matlab实现pca特征提取方法PCA 是一种常用的特征提取方法,常被应用于图像处理、模式识别等领域。
在 Matlab 中,实现 PCA 特征提取方法非常简单。
首先,我们需要准备一个数据矩阵 X,其中每一列代表一个特征,每一行代表一个样本。
假设我们有 m 个样本,每个样本有 n 个特征,那么 X 就是一个m×n 的矩阵。
接下来,我们需要计算 X 的均值。
通过使用 Matlab 中的 mean() 函数即可计算出所有特征的平均值,如下所示:mu = mean(X);接下来,我们需要将 X 的每个特征都减去均值,这个操作可以通过下面的代码实现:X_norm = X - repmat(mu, m, 1);其中,repmat() 函数用于将 mu 复制成 m 行的矩阵,每一行都是mu。
然后,我们需要计算协方差矩阵 C。
协方差矩阵可以通过下面的代码计算得出:C = (X_norm' * X_norm) / (m-1);接下来,我们需要计算协方差矩阵 C 的特征向量和特征值。
这个操作可以通过 Matlab 中的 eig() 函数来实现:[V, D] = eig(C);其中,V 是特征向量矩阵,每一列代表一个特征向量;D 是特征值矩阵,是一个对角矩阵,每个对角元素代表对应特征向量的特征值。
最后,我们可以根据特征向量来选取前 k 个主成分,将数据投影到主成分上,实现特征提取。
代码如下所示:k = 2;U = V(:,1:k);Z = X_norm * U;其中,U 是前 k 个特征向量组成的矩阵,Z 是将 X 投影到主成分上得到的矩阵。
根据需要,可以将Z 作为输入数据,应用于后续的算法中。
总的来说,使用 Matlab 实现 PCA 特征提取方法非常简单,只需要几行代码即可完成。
通过特征提取,我们可以将原始数据中的噪声和冗余信息去除,提取出最具代表性的特征,这有助于提高后续算法的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%FaceRec.m%PCA人脸识别修订版,识别率88%%calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));%imshow(a);b=a(1:112*92);%b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples;b];%allsamples是一个M*N矩阵,allsamples中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples);%平均图片,1×Nfor i=1:200xmean(i,:)=allsamples(i,:)-samplemean;%xmean是一个M×N矩阵,xmean每一行保存的数据是“每个图片数据-平均图片”end;%获取特征值及特征向量sigma=xmean*xmean';%M*M阶矩阵[v d]=eig(sigma);d1=diag(d);%按特征值大小以降序排列dsort=flipud(d1);vsort=fliplr(v);%以下选择90%的能量dsum=sum(dsort);dsum_extract=0;p=0;while(dsum_extract/dsum<0.9)p=p+1;dsum_extract=sum(dsort(1:p));endi=1;%(训练阶段)计算特征脸形成的坐标系base=xmean'*vsort(:,1:p)*diag(dsort(1:p).^(-1/2));%base是N×p阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)%详见《基于PCA的人脸识别算法研究》p31%xmean'*vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while(i<=p&&dsort(i)>0)%base(:,i)=dsort(i)^(-1/2)*xmean'*vsort(:,i);%base是N×p阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)%详见《基于PCA的人脸识别算法研究》p31%i=i+1;%xmean'*vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end%以下两行add by gongxun将训练样本对坐标系上进行投影,得到一个M*p阶矩阵allcoor allcoor=allsamples*base;%allcoor里面是每张训练人脸图片在M*p子空间中的一个点,即在子空间中的组合系数,accu=0;%下面的人脸识别过程中就是利用这些组合系数来进行识别for i=1:40for j=6:10%读入40x5副测试图像a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));b=a(1:10304);b=double(b);tcoor=b*base;%计算坐标,是1×p阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:));end;%三阶近邻[dist,index2]=sort(mdist);class1=floor((index2(1)-1)/5)+1;class2=floor((index2(2)-1)/5)+1;class3=floor((index2(3)-1)/5)+1;if class1~=class2&&class2~=class3class=class1;elseif class1==class2class=class1;elseif class2==class3class=class2;end;if class==iaccu=accu+1;end;end;end;accuracy=accu/200%输出识别率特征人脸%eigface.mfunction[]=eigface()%calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));%imshow(a);b=a(1:112*92);%b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples;b];%allsamples是一个M*N矩阵,allsamples中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples);%平均图片,1×Nfor i=1:200xmean(i,:)=allsamples(i,:)-samplemean;%xmean是一个M×N矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;%获取特征值及特征向量sigma=xmean*xmean';%M*M阶矩阵[v d]=eig(sigma);d1=diag(d);%按特征值大小以降序排列dsort=flipud(d1);vsort=fliplr(v);%以下选择90%的能量dsum=sum(dsort);dsum_extract=0;p=0;while(dsum_extract/dsum<0.9)p=p+1;dsum_extract=sum(dsort(1:p));endp=199;%(训练阶段)计算特征脸形成的坐标系%while(i<=p&&dsort(i)>0)%base(:,i)=dsort(i)^(-1/2)*xmean'*vsort(:,i);%base是N×p阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA的人脸识别算法研究》p31%i=i+1;%xmean'*vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase=xmean'*vsort(:,1:p)*diag(dsort(1:p).^(-1/2));%生成特征脸for(k=1:p),temp=reshape(base(:,k),112,92);newpath=['d:\test\'int2str(k)'.jpg'];imwrite(mat2gray(temp),newpath);endavg=reshape(samplemean,112,92);imwrite(mat2gray(avg),'d:\test\average.jpg');%将模型保存save('e:\ORL\model.mat','base','samplemean');人脸重建%Reconstruct.mfunction[]=reconstruct()load e:\ORL\model.mat;%计算新图片在特征子空间中的系数img='D:\test2\10.jpg'a=imread(img);b=a(1:112*92);%b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c=b*base;%c是图片a在子空间中的系数,是1*p行矢量%根据特征系数及特征脸重建图%前15个t=15;temp=base(:,1:t)*c(1:t)';temp=temp+samplemean';imwrite(mat2gray(reshape(temp,112,92)),'d:\test2\t1.jpg');%前50个t=50;temp=base(:,1:t)*c(1:t)';temp=temp+samplemean';imwrite(mat2gray(reshape(temp,112,92)),'d:\test2\t2.jpg');%前100个t=100;temp=base(:,1:t)*c(1:t)';temp=temp+samplemean';imwrite(mat2gray(reshape(temp,112,92)),'d:\test2\t3.jpg'); %前150个t=150;temp=base(:,1:t)*c(1:t)';temp=temp+samplemean';imwrite(mat2gray(reshape(temp,112,92)),'d:\test2\t4.jpg'); %前199个t=199;temp=base(:,1:t)*c(1:t)';temp=temp+samplemean';imwrite(mat2gray(reshape(temp,112,92)),'d:\test2\t5.jpg');基于2DPCA与(2D)2PCA的人脸识别(第二版)。