自动控制原理第四章--根轨迹法

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

自动控制原理 根轨迹法

自动控制原理 根轨迹法

n
i
|
注意
• 相角方程是决定系统闭环根轨迹的充分 必要条件 • 用相角方程绘制根轨迹; • 模值方程主要用来确定已知根轨迹上某 一点的K*值 • 例4-1,4-2
4.2 根轨迹绘制的基本法则
• 法则1: 根轨迹的分支数:根轨迹在[s]平面上的分支数 等于闭环 特征方程的阶数n,也就是分支数与闭环极点的 数目相同。
q
h
f
l
结论:1 零点、 2 极点、3 根轨迹增益
b0 ( s z1 )(s z 2 ) ( s zm ) G( s) H ( s ) K* a0 ( s p1 )(s p2 ) ( s pn )
• 根轨迹增益:
(s z ) (s p )
• 法则6: 根轨迹的起始角(从极点pk)和终止角(到零点zk) :
起始角:
例2 证2
m n
pk ( 2k 1) ( pk z j ) ( pk pi )
j 1 i 1 i k
终止角:
zk ( 2k 1) ( z k p i ) ( z k z j )
i
nm

0 ( 1) ( 2) 1 30
a
(2k 1)π π π , , π nm 3 3
d1 0.42, d 2 1.58(舍去)
s j
1 1 1 0 d d 1 d 2
1 G(s)H(s) 0即(s 3 3s 2 2s K * ) j 3 3 2 2 j K * 0
s2

0
常规根轨迹的绘制法则(P138) 终止于开环零点或。 1 根轨迹起始于开环极点或, 根轨迹对称实轴 2 根轨迹的条数为特征根的个数, 3 ∣n-m∣条渐近线对称于实轴,均起于实轴上的σa 点,

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理根轨迹法

自动控制原理根轨迹法

21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域

为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

自动控制原理第4章根轨迹法精

自动控制原理第4章根轨迹法精
上式称为根轨迹开环传递函数的标准形式。所以,绘制根轨迹图 时,首先要把开环传递函数改写成这种标准形式。
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,

根轨迹法(自动控制原理)

根轨迹法(自动控制原理)

i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。

自动控制原理第4章

自动控制原理第4章
第4章 根轨迹法 章
4.1 根轨迹法的基本概念 . 4.1.1 根轨迹的定义
WK (s) = K1K 2 N1(s)N 2 (s) D1(s)D2 (s) K g ∏(s + zi )
i =1 m
X r (s)
K1 N1 ( s ) D1 ( s ) K 2 N 2 ( s) D2 ( s)
典型结构图
第4章 根轨迹法 章
s 解此方程即得重根: = −σ d 。 按照这种思路,令 F ′(s) = 0 ,可求得产生重根时的根轨迹 放大系数 K gd ,将其代回闭环特征方程 F (s) ,即得计算分离点
和会合点的公式。
F ′(s) =[K gd N (s) + D(s)]′ = K gd N ′(s) + D′(s) = 0
第4章 根轨迹法 章
∏(s + p ) + K ∏(s + z ) = 0
j g i j =1 i =1
n
m
根轨迹是系统某一参数从零变化到无穷大时,闭环特征方 程的根在
s 复平面上变化的轨迹。因此,根轨迹的分支数必然
n 中的
与闭环特征方程根的数目相等。 根据上特征方程, 闭环特征方程根的数目等于 m 和 大者。
−和开环极点 zi
s 而言,所有开环有限零点
−σ k ,即
− pj 都汇集在一点,其位置为
− zi = − p j = −σ k
−σ k 就是所求的渐近线交点。
根据幅值条件得:
第4章 根轨迹法 章
N (s) = D(s)
∏(s + z )
i
m
∏(s + p j )
j =1
i =1 n

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

《自动控制原理》第4章_根轨迹分析法

《自动控制原理》第4章_根轨迹分析法
一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母

(完整版)第四章根轨迹法

(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化

自动控制原理_第4章_线性系统的根轨迹法

自动控制原理_第4章_线性系统的根轨迹法

4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b

* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1

j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自动控制原理第四章 根 轨 迹 法

自动控制原理第四章    根 轨 迹 法

K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)

G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )

自动控制原理第四章

自动控制原理第四章

∑(−P ) − ∑(−Zi ) j σα = n−m (0 − 3 + (−1 + j) + (−1 − j) − (−1 )) = 3 (−2 −1 −1 ) −4 = = = −1.33 3 3
[规则 ] : 起始 出射)角与终止 入射)角的计算公式为 6 ( ( : m ∠(s + Z ) − n ∠(s + p ) θ ∑j i i p = (2L +1)π + ∑ i=1 j =1,i ≠ s=− p n m θz = (2L +1)π − ∑∠(s + Zi ) − ∑∠(s + pi ) s=− z i =1 i=1,i≠ j
3 2
令s = jω有: (jω) + 5( jω) + 4 jω + k = 0
3 2
− jω − 5ω + 4 jω + k = 0
3 2 2 j(4ω −ω3 ) = 0 ω(4 −ω ) = 0 ω = 0或± 2 2 2 K − 5ω = 0 K = 5ω = 5× 4 = 20 * ∴ω = ±2, K = 20
幅值条件方程(模相等):
∏ ∏
j =1 i =1 n
m
(s + zi ) (s + pj )
=1
相角条件方程(相角相等):
G(s)H (s) = ±(2k +1)π
∑∠(s + z ) − ∑∠(s + p ) = ±(2k +1)π
i =1 i j =1 j
m
n
第三节 根轨迹绘制规则
[规则 根轨迹与实轴对称 规则1]根轨迹与实轴对称 规则

自动控制原理第4章

自动控制原理第4章

z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G(s)H(s) 1
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
——除-zl 之外的其余开环零点指向零点-zl 矢量 的相角之和。
[例]如图,试确定根轨迹离开复数共轭极点的出射角。 p1 1 j1, p2 1 j1, p3 0, p4 3, z 2
1
根轨迹与系统性能
稳定性 考察根轨迹是否进入右 半 s 平面。
稳态性能 开环传递函数在坐标 原点的极点个数,就是系统的型 号。根轨迹上的K值就是开环增 益。(通常根轨迹增益与开环增 益不同,但有一定的对应关系)
动态性能 由K值所对应的闭环 极点分布来估计。
j n
K 5
K 1
1
K 0 K 0.5 2 1 0
60
五、根轨迹的会合点和分离点:
若干根轨迹在复平面上某一点相遇后又分开, 称该点为分离点或会合点。
Kg
B
Kg Kg 0 Kg 0
z p2 A p1
如图所示某系统的根 轨迹,A点称为根轨 迹在实轴上的分离点, B点称为根轨迹在实 轴上的会合点。
[分离点和会合点的求法]:
可由 dK g 0 确定分离点或会合点。
∴ 相角条件:
m
n
(s zi ) (s p j ) (2k 1) ,
i 1
j 1
k 0,1, 2
幅值条件:
m
m
(s zi )
| (s zi ) |
Kg
i 1 n
Kg
i 1 n
1
(s pj )
| (s pj ) |
j 1
j 1
m
n
相角条件: (s zi ) (s p j ) (2k 1) ,
m
(s zi )
lim
s
i 1 n
lim
s
nm
1
0
(s pj )
(s pj )
j1
j 1
我们称系统有n-m个无限远零点。有限值零 点加无穷远零点的个数等于极点数。
n阶特征方程有n个根。当Kg从0到无穷大变 化时,n个根在复平面内连续变化组成n支根轨 迹。即根轨迹的支数等于系统阶次。
三、实轴上的根轨迹:
是开环传递函数的极点 ② 当K=0.32时,s1=-0.4,s2=-1.6 ③ 当K=0.5时,s1=-1,s2=-1 ④ 当K=1时,s1=-1+j,s2=-1-j ⑤ 当K=5时,s1=-1+3j,s2=-1-3j ⑥ 当K=∞时,s1=-1+∞j,s2=-1-∞j
j n
K 5
K 1
1
K 0 K 0.5 2 1 0
4-1 根轨迹的基本概念 4-2 绘制根轨迹的基本条件和基本规则 4-3 广义根轨迹 4-4 滞后系统的根轨迹 4-5 利用根轨迹法分析系统的性能 4-6 用MATLAB绘制系统的根轨迹
控制系统的稳定性由闭环极点(特征 根)决定,系统暂态响应的基本特性也与 闭环极点在s平面的分布有密切的关系。
高阶系统特征根的求取比较困难,从 而限制了时域分析法在二阶以上系统中的 广泛应用。
试确定实轴上根轨迹的会合点和分离点的位置。
[解]: 5
实轴上根轨迹区间是:(,5]和[1,0]
1 0
闭环特征方程为:
1
Gk (s)
1
s(s
Kg 1)(s
5)
0
K g s(s 1)(s 5) (s3 6s2 5s)
dK g (3s2 12s 5) 0 ds
s1,2 2
实轴上具有根轨迹的区间是:其右方开环 实数零点数和极点数的总和为奇数。
[证明]:例如在实轴上有两个开环极 点p1、p2,复平面上有一对共轭极点 p3、 p4和一对共轭零点z1、 z2 。
先看试验点s1点: ①成对出现的共轭极点p3、 p4对实轴 上任意试探点构成的两个向量的相角 之和为0°;
z1
1
根轨迹可以很直观地表示出当参数K变 化时闭环特征根的变化,反映出参数K对系 统性能的影响;
也可以很方便地确定满足系统性能要 求的K值。
一、根轨迹绘制条件
系统的结构图如下:
R(s)
C(s)
G(s)
-
H(s)
闭环传递函数为:
(s) G(s) 1 G(s)H(s)
闭环特征方程式为: 1 G(s)H(s) 0
一般物理系统特征方程的系数是实数,其根 必为实根或共轭复根。因此根轨迹必然对称于实 轴。
二、根轨迹的起点和终点 根轨迹起始于开环极点,终止于开环零点。
根轨迹方程为:
m
(s zi )
i 1
1
n
(s pj )
Kg
j 1
K g 0 时为起点,K g 时为终点。
当 K g 0 时,只有 s p j ( j 1 ~ n) 时,上 式才能成立,所以根轨迹起始于开环极点。
R(s)
系统开环传递函数为:
-
Gk (s)
K s(0.5s
1)
K
C(s)
s(0.5s 1)
闭环传递函数: (s) 2K
s2 2s 2K
特征方程为: s2 2s 2K 0
特征根为: s1,2 1 1 2K
特征根为: s1,2 1 1 2K
[讨论]: ① 当K=0时,s1=0,s2=-2,
[解]: tg 1, 45; 2 90; 3 135; tg4 0.5, 4 26.6
p1
p1 1
p4
4
z
1
3
p3
p1 (2k 1) 45 90 135 26.6 (2k 1) 180 26.6
2
p2
2k 26.6 1c 26.6(考虑到周期性 )
根据对称性,可知 p2 点的出射角为: p2 26.6
七、根轨迹和虚轴的交点: 根轨迹和虚轴相交时,系统处于临界稳定状
态。则闭环特征方程至少有一对共轭虚根。这时 的增益 K gc称为临界根轨迹增益。
交点和 K gc 的求法:
由劳斯稳定判据求解。
在闭环特征方程中令 s j ,然后使特征
方程的实、虚部为零即可求出 和 K gc。
凡是满足该方程的s值,就是系统的特征根, 或者说是根轨迹上的点。
所以该方程也称为根轨迹方程。
1 G(s)H(s) 0
把上式改写为: G(s)H (s) 1 G(s)H(s) 为开环传递函数。
因为s是复数,所以G(s)H(s)也是复数,需 满足幅值和幅角(相角)两方面的条件,即: 1.幅值条件:
i 1
j 1
k 0,1, 2
可见,幅值条件与Kg有关,相角条件与Kg无关。
因此,把满足相角条件的s值代入到幅值条件中, 一定能求得一个与之相对应的Kg值。即凡是满足相角 条件的点必然也同时满足幅值条件;反之,满足幅值
条件的点未必都满足相角条件。
根轨迹就是s平面上满足相角条件的点 的集合。
通常根据相角条件绘制根轨迹;用幅 值条件确定根轨迹上某些点对应的Kg值。
m
m
(s zi )
| (s zi ) |
Kg
i 1 n
Kg
i 1 n
1
(s pj)
|(s pj)|
j 1
j1
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) K g
i 1 n
(s pj )
j 1
式中:k g称为根轨迹增益; zi , p j为开环零极点。
[例]开环传递函数为:Gk (s)
Kg
,试求根轨迹与
s(s 1)( s 5)
虚轴的交点和 K gc 。
方法一:用劳斯判据
闭环系统的特征方程为: s3 6s2 5s K g 0
劳斯表: s 3 1
5
s2 6
n阶系统有n个开环极点,分别是n支根轨迹 的起点。
当 K g 时,① s zi (i 1 ~ m) ,上式成立。
zi 是开环传递函数有限值的零点,有m个。故n阶系 统有m支根轨迹的终点在m个有限零点处。
相关文档
最新文档