灰色预测法GM(1,1)总结
灰色预测GM(1,1)算法
% 创建时间:2014/07/26
% 创建来源:银海之上
% 此命令是为了求解灰色预测中GM(1,1)模型方程系数a,u
% 此命令尝试输出模型方程
% A为原始数据,以矩阵形式表示
% 此命令使用GM(1,1)模型
[m1,n1]=size(A);
if k==0
y2=0
end
fprintf('第k+1个值是:');
f=y1-y2;
hold on
plot(X,'-*');
pp=1:0.1:n;
yy=(A(1)-q)*exp(-a*(pp-1))+q;
plot(pp,yy,'r-'); % 作出原始数据与预测数据的对比图
% 误差分析,对于GM(1,1)这步其实也没有多大作用,需要就写上吧
fw=A(1);
for j=2:n
fw0=(A(1)-q)*exp(-a*j)-(A(1)-q)*exp(-a*(j-1));
fw=[fw,fw0];
end
wucha=sum(1-fw./A)/n;
fprintf('平均误差是:%f',wucha);
end
B=[];
for i=1:n-1
B1=(-1/2)*(X(i)+X(i+1));
B=[B;B1];
end
B=[B,ones(n-1,1)];
C=B';
a1;
q=u/a;
fprintf('\n灰色预测数学方程为:\n\nY(k+1)=(%f-%f)e^(-%fk)+%f\n\n',A(1),q,a,q);
Matlab+灰色预测模型模型GM(1,1)
GM(1,1)灰色预测模型IntroductionInitial给定原始序列:x(0) =(x(0)(1), x(0)(2), x(0)(3)…, x(0)(n))Step 1一次AGO(1-AGO)生成序列,以弱化原始序列的随机性和波动性:x(1) =(x(1)(1), x(1)(2), x(1)(3)…, x(1)(n)) Matlab Programclearsyms a b;c=[a b]';fid=fopen('.\Grey Model\test.txt');x0=fscanf(fid,'%f');x0=x0';fclose(fid);x1=cumsum(x0); %原始数据累加n=length(x0);for i=1:(n-1)z(i)=(x1(i)+x1(i+1))/2; %生成累加矩阵end%计算待定参数的值Y=x0;Y(1)=[];Y=Y';B=[-z;ones(1,n-1)];B=B';c=inv(B'*B)*B'*Y;c=c';a=c(1);b=c(2);%预测后续数据%预测之后10个时间单位的数据xx1=[];xx1(1)=x0(1);for i=2:(n+10)xx1(i)=(x0(1)-b/a)/exp(a*(i-1))+b/a; endxx0=[];xx0(1)=x0(1);Step 2(1) dx (1)dt+ax (1)(t )=u ,式中a, u 为待定系数。
灰微分方程模型为:x (0)(k )+az (1)(k )=u ,z 为背景值z (1)(k )=1/2(x (1)(k )+x (1)(k −1))(2) 构造矩阵B 和数据向量Y nY n =Ba ̂Y n =[ x (0)(2)x (0)(3)⋮x (0)(n )] , B =[ −1/2(x (1)(1)+x (1)(2)),−1/2(x (1)(2)+x (1)(3)),⋮−1/2(x (1)(n −1)+x (1)(n )), 1 1 ⋮ 1]a ̂=(au)=(B T B)−1B T Y nStep 3模型响应函数x ̂(1)(k +1)=(x (0)(1)−u a )e −ak +u ax ̂(0)(k +1)=x ̂(1)(k +1)−x ̂(1)(k )Step 4检验和判断GM(1,1)模型的精度 (1) 残差检验for i=2:(n+10)xx0(i)=xx1(i)-xx1(i-1); end%关联度检验 for i=1:ne(i)=abs(x0(i)-xx0(i)); endmmax=max(e); for i=1:nee(i)=0.5*mmax/(e(i)+0.5*mmax); endr=sum(ee)/n; %后验差检验x0bar=sum(x0)/n; s1=0; for i=1:ns1=s1+(x0(i)-x0bar)^2; ends1=sqrt(s1/n); s2=0;ebar=sum(e)/n; for i=1:ns2=s2+(e(i)-ebar)^2; ends2=sqrt(s2/n); C=s2/s1; p=0;for i=1:nif abs(e(i)-ebar)<0.6745*s1绝对误差:ε(k)=|x(0)(k)−x̂(0)(k)|相对误差:Φ(k)=ε(k)x(0)(k)(2) 关联度检验分辨率β一般取0.5,此时若关联度大于0.6则认为模型可接受(3) 后验差检验和小误差概率原始序列标准差:S1=√∑[x(0)(i)−x̅(0)]2n绝对误差序列标准差:S2=√∑[ε(i)−ε̅]2n计算方差比:C=S2S1小误差概率:P=P{|ε(i)−ε̅|<0.6745S1}p=p+1;endendp=p/n;Cpif p>0.95&C<0.35disp('预测精度好');else if p>0.8&C<0.5disp('预测合格');else if p>0.7&C<0.65disp('预测勉强合格'); elsedisp('预测不合格'); endendend%原始数据与预测数据进行比较t1=1:n;t2=1:(n+10);xx0plot(t1,x0,'o',t2,xx0)。
灰色预测GM(1,1)模型在环境空气质量变化趋势预测中的应用
123智能环保NO.10 2020智能城市 INTELLIGENT CITY 灰色预测GM(1,1) 模型在环境空气质量变化趋势预测中的应用许发明1 李优良2 (1.中央民族大学,北京 100081;2.湖南泸溪县环境监测站,湖南 泸溪 416100)摘 要:利用灰色系统理论,以泸溪县环境空气自动监测数据为样本,构建GM(1,1)预测模型,分析预测该县“十四五”期间的环境空气质量变化趋势。
预测结果显示,该县未来5年环境空气质量将持续好转。
关键词:灰色模型;环境空气质量;趋势预测空气清新评估指标作为美丽中国建设评估指标体系的五类指标之一,包含细颗粒物(PM2.5)浓度、可吸入颗粒物(PM10)浓度、城市空气质量优良天数比例 3 个指标。
因此聚焦美丽中国建设评估指标,开展细颗粒物浓度、可吸入颗粒物浓度变化趋势预测,对于科学确定泸溪县“十四五”期间这两项控制目标值具有很好的参考意义。
泸溪县环境空气自动监测站2013年建站,2016年具备六参数全自动24 h监测能力,从当前有限数据,要开展该县“十四五”大气环境质量趋势预测,必须选择适当的预测方法,通过构建数理统计模型开展预测。
灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论[1]。
灰色预测是对灰色系统所做的预测,灰色预测模型所需建模信息少,运算方便,建模精度高,在各种领域都有着广泛的应用,是处理小样本预测问题的有效工具[2]。
因此,尝试采用灰色系统理论来开展环境质量趋势预测工作[3]。
1 影响空气质量优良天数比例的因子识别为筛分出影响泸溪县环境空气质量的主要污染因子,我们对2016~2019年空气质量监测中的首要污染物,最大单项污染物和最大单项指数污染因子进行了分析与判别。
(1) 环境空气中首要污染物占比统计分析。
通过数据统计,发现各年中细颗粒物(PM2.5)、可吸入颗粒物(PM10)和臭氧(O3)3个因子为我县的首要污染物,它们所引起的污染天数共149 d,其中细颗粒物作为首要污染物的天数最多,为112 d,占总天数的75.17%;臭氧作为首要污染物的天数居第2位,为23 d,占总天数的15.44%;可吸入颗粒物作为首要污染物的天数为14 d,占总天数的9.39%。
GM(1,1)模型
灰色系统模型GM(1,1)进行水文灾变预测问题的讨论王正发(国家电力公司西北勘测设计研究院,西安,710001)关键词灰色系统模型灾变预测误差摘要在简述灰色系统预测基本原理的基础上,用灰色系统模型GM(1,1)进行水文灾变预测,并用实例进行检验,结果表明预测精度是令人怀疑的,近期不宜用灰色系统模型进行水文灾变预测。
1 水文系统的灰色特征灰色系统理论认为:部分信息已知,部分信息未知的系统叫―灰色系统‖。
水文系统就其本身而言具有灰色系统的一些基本特征,即水文系统中长期观测到的水文资料只是水文系统中极少的一部分,如有限年代的雨量、流量记录等;更有未知信息部分,如未来年代的雨量大小、流量丰枯,洪水、干旱的出现时刻以及水环境的前景变化等;因此,水文系统是一灰色系统,可用灰色系统理论对其进行分析、研究。
2 灰色系统预测的基本原理2.1 灰色预测及其分类以灰色系统理论的GM(1,1)模型为基础的预测,叫灰色预测。
它可以分为以下7类:(1)数列预测:对某一事物发展变化趋势的预测。
(2)灾变预测:即灾变出现时间的预测,灾变有多种,如洪水、干旱、涝等灾害。
(3)季节灾变预测:指对灾害出现在一年内的某个特定时区的预测。
(4)拓朴预测:也叫波形预测、整体预测,是用GM(1,1)模型来预测未来发展变化的整个波形。
(5)系统预测:指对系统的综合研究所进行的综合预测。
(6)包络GM(1,1)灰色区间预测:参考数列分布趋势构造一个上、下包络线为边界的灰色预测带,建立上、下2个包络模型。
(7)激励——阻尼预测:将激励、阻尼因数以量化形式反映在GM(1,1)模型中的预测,叫激励——阻尼预测。
本文主要讨论GM(1,1)模型用于水文灾变预测的问题。
2.2 GM(1,1)模型GM(1,1)模型是适合于预测用的1个变量的一阶灰微分方程模型,它是利用生成后的数列进行建模的,预测时再通过反生成以恢复事物的原貌。
假定给定时间数据序列{x(0)(k),k=1,2,…,n},作相应的1阶累加序列{x(1)(k),k=1,2,…,n},则序列{x(1)(k),k=1,2,…,n}的GM(1,1)模型的白化微分方程为:dx(1)(t)/dt + ax(1)(t)=u (1)经过拉普拉斯变换和逆变换,可得到:x(1)(k十1)=(x(0)(1) –u/a)e (-k)+u/a (2)利用最小二乘法进行参数辨识,参数向量A的估计公式为:=(B T B) -1B T Y N (3)其中:式(3)即为GM(1,1)模型的一般数学表达式。
灰色预测模型GM(1_1)及其应用
灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。
在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。
数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。
即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。
(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。
灰色预测GM(1,1)
南昌市民用汽车保有量灰色GM(1,1)模型预测灰色预测是一种对含有不确定因素的系统进行预测的方法。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
灰色模型适合于小样本情况的预测,当然对于大样本数据,灰色模型也可以做,并且数据个数的选择有很大的灵活性。
原始序列X (0):表1 南昌市民用汽车保有量年份 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 南昌市民用汽车保有量(万辆)24.410926.730730.387836.380741.016143.7348.41615763.1第一步:构造累加生成序列X (1); 第二步:计算系数值;通过灰色关联分析软件GM 进行灰色模型拟合求解,得到:α= -0.101624 , μ=25.290111 , 平均相对误差为4.685749%第三步:得出时间响应预测函数模型为:()()858996.248269896.2731101624.01-=+⋅k e k X第四步:进行灰色关联度检验。
真实值:{24.4109,26.7307,30.3878,36.3807,41.0161,43.7300,48.4100,61.0000,57.0000,63.1000} 预测值:{24.4109,29.2310,32.3578,35.8190,39.6504,43.8917,48.5867,53.7839,59.5371,65.9056}计算得到关联系数为: {1,0.906683,0.444273,0.416579,0.82377,0.357133,0.715694,0.843178,0.333333,0.770986} 于是灰色关联度:r=0.661163关联度r=0.661163满足分辨率ρ=0.5时的检验准则r>0.60,关联性检验通过。
灰色系统预测GM(1,m)
灰色GM (1,1)模型及其原理1灰色GM (1,1)模型的构建GM (1,1)模型是将离散的随机数经过依次累加成算子,削弱其随机性,得到较有规律的生成数,然后建立微分方程、解方程进而建立模型。
设所要预测的某项指标的原始数据序列为:()()()()()()()()(){}n X X X X X 00000,,3,2,1 =对原始数据序列作一次累加生成处理,获得新的数据序列: ()()()()()()(){}n X X X X1111,,2,1 = 式中:()()()()∑==i k k X i X 101 n i 3,2,1=经过累加处理,新生成的数据序列与原始的数据序列相比,具有平稳性增强而波动性减弱的特点。
对生成数列建立GM (1,1)白化形式的微式方程[4]:()()()u aX dt t dX =+11式中:a 称为发展系数,u 称为内控发展灰数。
利用最小二乘法拟合求得估计参数:()n TT X B BB u a 1-=⎥⎦⎤⎢⎣⎡ 式中:()()()()[]()()()()[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=1121121211111n X n X X X B()()()()()()[]n X X X X n 000,,3,2 =将B 带入公式,最终确定GM (1,1)预测模型()()()()a e a X t X at μμ+⎥⎦⎤⎢⎣⎡-=-∧∧100 n t 2,1,0= 将值代入离散模型公式求()()t X ∧1,预测的累加值还原为预测值:()()()()()()1110--=∧∧∧t X t X t X2模型精度的检验2.1残差检验计算残差()()t 0ε及其相对残差()()t q 0,即:()()()()()()1000--=∧t x t x t ε,()()()()()()%100000⨯=t x t t q ε n t ,,2,1 =相对残差()0q 越小,表示模型精度越高。
GM(1_1)模型的应用
GM(1,1)预测模型的应用灰色预测是基于GM(1,1)预测模型的预测,按其应用的对象可有四种类型: (1)数列预测。
这类预测是针对系统行为特征值的发展变化所进行的预测。
(2)灾变预测。
这类预测是针对系统行为的特征值超过某个阙值的异常值将在何时出现的预测。
(3)季节灾变预测。
若系统行为的特征有异常值出现或某种事件的发生是在一年中的某个特定的时区,则该预测为季节性灾变预测。
(4)拓扑预测。
这类预测是对一段时间内系统行为特征数据波形的预测。
例1(数列预测):设原始序列)679.3,390.3,337.3,278.3,874.2())5(),4(),3(),2(),1(()0()0()0()0()0()0(==x x x x x X 试用GM(1,1)模型对)0(X 进行模拟和预测,并计算模拟精度。
解:第一步:对)0(X 进行一次累加,得)558.16,897.12,489.9,152.6,874.2()1(=X 第二步:对)0(X 作准光滑性检验。
由)1()()()1()0(-=k x k x k ρ得5.029.0)5(,5.036.0)4(,54.0)3(<≈<≈≈ρρρ。
当k>3时准光滑条件满足。
第三步:检验)1(X 是否具有准指数规律。
由)(1)1()()()1()1()1(k k x k x k ρσ+=-=得29.1)5(,36.1)4(,54.1)3()1()1()1(≈≈≈σσσ当k>3时,5.0],5.1,1[)k ()1(<=∈ρσ,准指数规律满足,故可对)1(X 建立GM(1,1)模型。
第四步:对)1(X 作紧邻均值生成,得)718.14,184.11,820.7,513.4()1(=Z于是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=679.3390.3337.3278.3)5()4()3()2(,1718.141184.111820.71513.41)5(1)4(1)3(1)2()0()0()0()0()1()1()1()1(x x x x Y z z z z B 第五步:对参数列T b a ],[ˆ=α进行最小二乘估计。
灰色预测GM(1,1)模型分析
SPSS分析SPSS教程SPSSAU 灰色预测模型GM11 灰色模型灰色预测GM(1,1)模型分析Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。
但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。
灰色预测模型有很多,GM(1,1)模型使用最为广泛,第1个数字表示进行一阶微分,第2个数字1表示只包含1个数据序列。
特别提示:GM(1,1)模型仅适用于中短期预测,不建议进行长期预测;GM(1,1)模型适用于数量少(比如20个以内)时使用,大量数据时不适合。
灰色预测模型案例Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)1背景当前某城市1986~1992共7年的道路交通噪声平均声级数据,现希望预测出往后一期器械声平均声级数据。
数据如下:年份城市交通噪声/dB(A)198671.10198772.40198872.40198972.10199071.40199172.00199271.602理论灰色预测GM(1,1)模型一般针对数据量少,有一定指数增长趋势的数据。
在进行模型构建时,通常包括以下步骤:第一步:级比值检验;此步骤目的在于数据序列是否有着适合的规律性,是否可得到满意的模型等,该步骤仅为初步检验,意义相对较小。
级比值=当期值/上一期值。
一般情况下级比值介于[0.982,1.0098]之间则说明很可能会得到满意的模型,但并不绝对。
第二步:后验差比检验;在进行模型构建后,会得到后验差比C值,该值为残差方差/ 数据方差;其用于衡量模型的拟合精度情况,C值越小越好,一般小于0.65即可。
灰色系统GM(1,1)模型
ε=
1 ε 0 ( k ), ∑ n k =1
2 S2 =
1 ε 0 (k ) − ε ∑ n k =1
(
)
分别为残差的均值、方差。
s2 1. C = 称为均方差比值,对于给定 s1
的 C0 > 0 ,当 C < C0 时,称模型为均方差比合 格模型。 p = p ( ε 0 ( k ) − ε < 0.6745S1 ) 称为小误差概率,对 2. 于给定的 p0 > 0 ,当 p > p0 差概率合格模型。 ,称模型为小误
则 ε0 (k ) △ 1.对于 k ≤ n ,称,k = x ( k ) 为 k 点的模拟相
0
对误差,称 为平均相对误差。 2.称1− ∆ 为平均相对精度,1 − ∆ k 为 k点的模拟 精度。 3.给定α ,当 ∆ < α 且∆ n < α 成立时,称模型 为残差合格模型
,均方差比值为一
计算小误差概率: 0.6745S1 = 4116.80
ε (1) − ε = 18.75, ε ( 3) − ε = 55.25, ε ( 2 ) − ε = 24.75 ε ( 4 ) − ε = 11.75
所以p = p ( ε ( k ) − ε < 0.6745S1 ) = 1>0.95,小误差概率 为一级,故可用
精度检验等级参照表
指标精度 等级
相对误 差α 0.01 0.05 0.10 0.20
关联度
ε0
0.90 0.80 0.70 0.60
均方差比 小误差概 值 C 率 p
0
0
一级 二级 三级 四级
灰色预测与GM(1,1)
(k )
ˆ 0 k X 0 k max max X ˆ 0 k X 0 k min min X ˆ 0 k X 0 k max max X ˆ 0 k X 0 k X
1 1 X X k z 1 X k 1 k 1 2
从而有:
1 1 X X 0 k 1 k X k 1 a 2
0 令: y X
X k11 X k1 ,x , 利用最小二乘拟合直线: 2
联系来加以观测研究。
• 灰色系统内的一部分信息是已知的,另一
部分信息是未知 的,系统内各因素间有不
确定的关系。
(2)灰色预测法 • 灰色预测法是一种对含有不确定因素的系 统进行预测的方法。
• 灰色预测是对既含有已知信息又含有不确定
信息的系统进行预测,就是对在一定范围内
变化的、与时间有关的灰色过程进行预测。
累加的规则: 将原始序列的第一个数据作为生成列的第一个数据, 将原始序列的第二个数据加到原始序列的第一个数
据上,其和作为生成列的第二个数据,将原始序列
的第三个数据加到生成列的第二个数据上,其和作
为生成列的第三个数据,按此规则进行下去,便可
得到生成列。
记原始时间序列为:
X 0 X 0 1, X 0 2, X 0 3,... X 0 n
1,1.063,1.1227,1.1483 X2
1,.097,1.0294,1.0294 X3
1,1.0149,0.805,0.7 X4
第二步:求序列差。
2 0,0.1155,0.1992,0.2335
3 0,0.0225,0.1059,0.1146
《灰色GM(1,1)模型的优化及其应用》范文
《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。
其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。
该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。
然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。
因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。
本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。
二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。
该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。
其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。
三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。
其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。
1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。
2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。
3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。
四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。
下面以几个典型领域为例,介绍其应用。
1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。
2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。
3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。
《灰色GM(1,1)模型的优化及其应用》
《灰色GM(1,1)模型的优化及其应用》篇一一、引言随着科技进步与现实问题复杂性提升,数据分析在各领域中的应用愈显重要。
而作为现代统计学的重要工具之一,灰色预测模型不仅可有效应对小样本、非线性、不完整数据的预测问题,而且其计算过程相对简便。
其中,灰色GM(1,1)模型作为最常用的灰色预测模型之一,具有广泛的应用前景。
然而,该模型在应用过程中仍存在一些不足,如模型参数的优化、预测精度的提升等。
本文旨在探讨灰色GM(1,1)模型的优化方法及其在各领域的应用。
二、灰色GM(1,1)模型概述灰色GM(1,1)模型是灰色预测模型的一种,具有小样本、不完整数据的预测优势。
该模型基于一次累加和累减生成的数据序列进行建模,通过微分方程来描述原始数据序列的变化趋势。
然而,由于原始数据序列的随机性和不完整性,灰色GM(1,1)模型在应用过程中可能存在预测精度不高的问题。
三、灰色GM(1,1)模型的优化为了提升灰色GM(1,1)模型的预测精度,本文提出以下优化方法:(一)引入新参数以改善模型精度。
新参数如平均增长趋势系数等可通过特定方法对数据进行计算后获得,这些参数能够更准确地反映数据的变化趋势。
(二)引入误差校正机制。
根据历史数据的误差进行实时调整,以提高模型的预测精度。
误差校正机制能够有效地纠正模型的预测误差,使模型更符合实际数据的趋势。
(三)使用其他算法进行辅助优化。
如使用神经网络算法、遗传算法等对灰色GM(1,1)模型的参数进行优化,以获得更优的预测结果。
四、灰色GM(1,1)模型的应用经过优化的灰色GM(1,1)模型在各领域具有广泛的应用价值。
例如:(一)在经济学领域,该模型可用于预测经济增长、股票价格等经济指标的变化趋势,为政策制定和投资决策提供参考依据。
(二)在农业领域,该模型可用于预测农作物产量、病虫害发生等农业信息,为农业生产提供科学指导。
(三)在医学领域,该模型可用于预测疾病发病率、死亡率等健康指标的变化趋势,为疾病防控和公共卫生政策制定提供支持。
GM(1,1)灰度模型预测方法
GM(1,1)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。
灰数的生成,就是从杂乱中寻找出规律。
同时,灰色理论建立的是生成数据模型,不是原始数据模型,因此,灰色预测是一种对含有不确定因素的系统进行预测的方法。
灰色预测是一种对含有不确定因素的系统进行预测的方法。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
1.GM(1,1)模型预测方法已知参考数据列()(0)(0)(0)(0)(1),(2),,()x x x x n =⋅⋅⋅,1次累加生成序列(1AGO)- ()()(1)(1)(1)(1)(0)(0)(0)(0)(0)(1),(2),,()(1),(1)(2),,(1)()x x x x n x x x x x n =⋅⋅⋅=+⋅⋅⋅+⋅⋅⋅+其中:(1)(0)1()(),1,2,,ki x k x i k n ===⋅⋅⋅∑。
(1)x 的均值生成序列 ()(1)(1)(1)(1)(2),(3),,()z z z z n =⋅⋅⋅其中:(1)(1)(1)()0.5()0.5(1),2,3,,z k x k x k k n =+-=⋅⋅⋅。
建立灰微分方程(0)(1)()(),2,3,,,x k az k b k n +==⋅⋅⋅相应的白化微分方程为(1)(1)()dx ax t b dt+= 记T [,]u a b =,T (0)(0)(0)(2),(3),,()Y x x x n ⎡⎤=⋅⋅⋅⎣⎦,(1)(1)(1)(2)1(3)1()1z z B z n ⎡⎤-⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦,则由最小二乘法,求得使T ()()()J u Y Bu Y Bu =--达到最小值的u 的估计值为()T1T T ˆˆˆ,u a b B B B Y -⎡⎤==⎣⎦于是求解其白化微分方程得ˆ(1)(0)ˆˆ(1)(1),0,1,,1,ˆˆak b b x k x e k n a a -⎛⎫+=-+=⋅⋅⋅-⋅⋅⋅ ⎪ ⎪⎝⎭2. GM(1,1)模型预测步骤(1)数据的检验与处理首先,为了保证建模方法的可行性,需要对已知数据列作必要的检验处理。
灰色预测模型GM
灰色预测模型GM (1,1)§1 预备知识灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
平面上有数据序列()()(){}n n y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y +=,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和()∑=--=ni i i b ax y J 12最小。
J 是关于a , b的二元函数。
由()()()()⎪⎪⎩⎪⎪⎨⎧=-⋅--⋅=∂∂=-⋅--⋅=∂∂∑∑==0120211ni ii i ni i i i i b x a y b J x b x a y a J()()⎪⎪⎩⎪⎪⎨⎧=--=--⇒∑∑==00112ni i i n i i i i i b a y bx ax y x 则得使J 取极小的必要条件为:⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=i iii n i i i y nb x a y x x b x a 12(*)()()()()()()()⎪⎪⎩⎪⎪⎨⎧--=--=∑∑∑∑∑∑∑∑∑∑∑22222i i i i i i i i i i i i i x x n y x x x y b x x n y x y x n a (1) 以上是我们熟悉的最小二乘计算过程。
灰色预测法GM(1,1)总结
灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
GM(1,1)
7.3 灰色预测模型7.3.1 GM (1,1) 模型符号含义为G M (1, 1)Grey Model 1阶方程 1个变量1.GM(1,1)模型令为GM(1,1)建模序列,,为的一次累加序列,,,令为的紧邻均值(MEAN )生成序列=0.5+0.5则GM(1,1)的定义型,即GM(1,1)的灰微分方程模型为(7.3.2)式中称为发展系数,为灰色作用量。
设为待估参数向量,即,则灰微分方程(7.3.2)的最小二乘估计参数列满足= 其中=,=称(7.3.3)为灰色微分方程的白化方程,也叫影子方程。
如上所述,则有1) 白化方程的解也称时间响应函数为2) GM(1,1)灰色微分方程的时间响应序列为(0)X(0)(0)(0)(0)((1),(2),...,())X x x x n =(1)X (0)X (1)(1)(1)(1)((1),(2),...,())X x x x n =(1)(0)1()()ki x k x i ==∑1,2,...,k n =(1)Z(1)X(1)(1)(1)(1)((2),(3),...,())Z z z z n =)()1(k z )()1(k x )1()1(-k x b k az k x =+)()()1()0(a b ˆαˆ(,)Ta b α=∧αn TT Y B B B 1)(-B (1)(1)(1)(2)1(3)1......()1z z z n ⎡⎤-⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦n Y (0)(0)(0)(2)(3)...()x x x n ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)(1)dx ax b dt +=b k az k x =+)()()1()0((1)(1)dx ax bdt +=(1)(1)ˆ()((0))at b bxt x e a a -=-+b k az k x =+)()()1()0([]+, 3) 取,则 []+,4) 还原值上式即为预测方程。
GM(1,1)
x (k 1)
( 0)
再在(1)式中 x
(1)
1 (1) (1) [ x ( k 1 ) x (k )] 取时刻k和k+1的平均值,即 2
则(1)式的离散形式为
1 (1) x (k 1) a[ ( x (k 1) x (1) (k ))] b 2
(0)
(2)
记
x ( 0 ) ( 2) (0) x (3) Y (0) x (n)
0
(1)
1)
b
三、GM(1,1)模型的有效性检验
1、灰色模型的建模优劣精度通常用后验差C和小误差概率P综合评定 预测等级精度 优 合格 P >0.95 >0.8 C <0.35 <0.5
勉强
不合格 2、a的取值决定模型的预测效果 -a <0.3 0.3~0.5 0.5~0.8
dx(1) (1) ax b dt
解之可得
b b x (t ) [ x 1 1 ]e at a a
1
(3)
(1) ( 0) 令 x (1) x (1) ,将(3)式写成离散形式,得下式
x
(1)
b a k k 1 [ x 0 1 b ] e
灰色预测技术
——GM(1,1)模型
张元磊 2014年4月1日
一、GM(1,1)模型的建模原理
灰色理论将无规律的历史数据列经累加生成后,使其变为具有
指数增长规律的上升形状数列,由于一阶微分方程解的形式是
指数增长形式,所以可以对生成后数列建立微分方程模型。即 灰色模型实际上是对生成数列建模。 GM模型所得数据必须经历过逆生成,即累减生成做还原后才能 应用。
(整理)灰色预测法
灰色预测理论在数学建模中的应用作者:胡金杭摘要:灰色系统理论在自动控制领域中已取得了广泛的应用,本文针对灰色预测理论的特点,分析了它在数学建模中的具体应用。
首先,本文对如何将实际问题转化为灰色GM(1,1)预测模型给了具体的步骤,同时针对模型的特点,可以对其的预测精度进行后验差检验,随后,针对基本灰色GM(1,1)预测模型单调性的特点,我们可以采用改进的等维灰数递补模型,这样可以大大的提高模型对实际问题的预测精度。
关键字:GM(1,1)预测模型后验差检验等维灰数递补模型引言现实中的很多实际问题,都需要通过分析现有的数据,对该问题未来的发展趋势进行预测,随后决策者参考预测得到的结果,就可以制定合理的解决方案。
在预测分析中,最基本的预测模型为线性回归方程,针对一些规律性较强的数据,该模型能作出精确的预测,但在实际中,我们得到的常是一些离散的,规律性不强的数据,为解决此类问题,线性的方法就不适用了,此时,就需要采用灰色预测的方法。
灰色预测理论是将看似离散的数据序列经数据变换后形成有规律的生成数列( 如累加生成、累减生成) ,然后对生成数列建立微分方程,得到模型的计算值后,再与实测值比较获得残差,用残差再对模型作修正,然后便可用建立的灰色模型对该问题进行预测。
一、具体的灰色GM(1,1)预测模型的建立:我们设已知数据变量组成序列,则我们可得到数据序列,用1-AGO生成一阶累加生成序列为:其中 (1-1) 由于序列具有指数增长规律,而一阶微分方程的解恰是指数增长形式的解,因此我们可以认为序列满足下述一阶线性微分方程模型(1-2)我们利用离散差分方程的形式对上微分方程可以得到下矩阵形式:(1-3)简记为: (1-4)式中;;上述方程组中,和B 为已知量,A 为待定参数。
可用最小二乘法得到最小二乘近似值。
因此,式(1-4)可改写为式中,E —误差项。
利用矩阵求导公式,可得(1-5)解得结果代入(2-2)中,我们可以得到(1-6)写成离散形式(令),得到GM(1,1)模型的时间响应函数(K =1,2,…)(1-7) 我们对其做累减还原,即可得到原始数列的灰色预测模型为:(K =1,2,…) (1-8) 将相关数据代入公式中进行运算,我们得到系数的具体值,即得到了具体的预测公式。
灰色预测GM(1,1)方法
灰色预测法一、相关知识1、灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。
2、灰数简介: (1)灰数的定义:是指未明确指定的数,即处在某一范围内的数,灰数是区间数的一种推广。
灰数实际上指在某一个区间或某个一般的数集内取值的不确定数,通常用记号“⊗”表示灰数。
(2)灰数的分类:(Ⅰ)有下界而无上界的灰数[)∞∈⊗,a 或()a ⊗,如大树的重量必大于零,但不可能用一般手段知道其准确的重量,所以其重量为灰数[)∞∈⊗,0。
(Ⅱ)有上界而无下界的灰数(,]a ⊗∈-∞或()a ⊗,如一项投资工程,要有个最高投资限额,一件电器设备要有个承受电压或通过电流的最高临界值。
(Ⅲ)既有下界a 又有上界a 的灰数称为区间灰数,记为[]a a ,∈⊗。
如海豹的重量在20--25公斤之间,某人的身高在1.8-1.9米之间,可分别记为[]25,201∈⊗,[]9.1,8.12∈⊗(Ⅳ)黑数:当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都是灰数时,称⊗为黑数。
(Ⅴ)白数:当[,]a a ⊗∈且a a =时,称⊗为白数。
(3)本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。
非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。
我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。
如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。
例:(1)气温不超过36℃,[]36,0∈⊗。
(2)预计某地区今年夏粮产量在100万吨以上,[)∞∈⊗,100;(3)估计某储蓄所年底居民存款总额将达7000万到9000万,[]9000,7000∈⊗; (4)如某人希望至少获得1万元科研经费,并且越多越好,[)∞∈⊗,10000;(5)有的数,从系统的高层次,即宏观层次、整体层次或认识的概括层次上看是白的,可到低层次上,即到系统的微观层次、分部层次或认识的深化层次则可能是灰的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点三、GM( 1,1)模型的建立1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设x0i・x 01 ,X 02 ,X 03 ,...X 0n 1是所要预测的某项指标的原始数据,计算数列的级比'(t)二学才,t =2,3,L ,n。
如果绝大部分的级比-2 2都落在可容覆盖区间(e^’e百)内,则可以建立GM(1,1)模型且可以进行灰色1预测。
否则,对数据做适当的预处理。
方法目前主要有 数据开n 方、数据取 对数、数据平滑。
预处理的数据平滑设计为三点平滑,具体可以按照下式处 理X 0 (t)二[X 0 t-1 2X 0 t X 0 t 1/4X 0 ⑴=3X 0 1 X 0 2/4X 0 (n) J X 0 n 一1 3X 0 n /4ii.预处理后对数据作一次累加生成处理,即:将原始序列的第一个数据作为生 成列的第一个数据,将原始序列的第二个数据加到原始序列的第一个数据 上,其和作为生成列的第二个数据。
按此规则进行下去,便可得到生成列。
k根据X (1)(k) X (0)(n),得到一个新的数列X 1 -「X 1 1 ,X 1 2 ,X 1 3 ,...X 1 n /这个新的数列与原始数列相比,其随机性程度大大弱化,平稳性大大增加。
2. 新数列的变化趋势近似地用下面的微分方程描述。
(1)dX (1)aX () =udt其中:a 称为发展灰数;u 称为内生控制灰数。
3. 模型求解。
令乂 二[X (0)(2),X (0)(3),…,X (0)(n)]T ,:?为待估参数向量,[-1(X ⑴(1) + X ⑴(2)) -2(X ⑴(2) + X ⑴⑶) 2” (n 「) X ⑴(n))于是模型可表示为Y n -B :?通过最小二乘法得到:T 4 T:? h[B TBB T Y n求解微分方程,即可得灰色预测的离散时间响应函数:)?1 t 1* 1 一寸/存心-2^?1 t 1为所得的累加的预测值,将预测值还原即为:00)(t 1) = )?(1)(t 1)-)?(1)(t)注:若数据经过预处理,则还需经过相应变换才能得到实际预测值4、模型检验灰色预测检验一般有残差检验、关联度检验和后验差检验1) 残差检验X?(o)(t )= ^(t)-X ⑴(t-1)小t )=|/)(t )—x C )(d绝对误差值和相对误差值,计算出平均相对误差判断精度2) 关联度检验 i.定义关联系数(t)min *t )+Pmax 人(° g t ) (t)= 也)(t )+ max 也(° X t )其中:①厶0 t 为第t 个点x 0与的绝对误差;② 「称为分辨率,Ov 「<1,一般取=0.5;③ 对单位不一,初值不同的序列,在计算相关系数前应首先进行初始化,即将该序列所有数据分别除以第一个数据n;(t )二 心U t ) x (0)(t ),t = 1,2,L , n 分别求出预测值、 是否理想。
ii.定义关联度r — t ,称为X 0t与>?0t的关联度n t 二根据上述方法算出X° k与原始序列X0k的关联系数,然后计算出关联度,根据经验,当=0.5时,关联度大于0.6便满足检验标准。
3) 后验差检验计算原始序列标准差和绝对误差序列的标准差分别为计算方差比,小误差概率P = t -A0 <0.6745S^?,令Sq =卜卩址)-原0],S0 =0.6745S i,则p = p{e vS。
}检验指标P和C与灰色预测精度检验等级标准如下表所示:四、残差模型修正若用原始经济时间序列X 0建立的GM( 1,1)模型检验不合格或精度不理想时,要对建立的GM( 1,1)模型进行残差修正或提高模型的预测精度。
修正的方法是建立GM( 1,1)的残差模型。
设;(0)=(;(0)(1), ;(0"2),…,;(0)( n))其中,;(k)=x(0)(k)-0)(k)为X ⑴的残差序列。
若存在k°,满足1. -k _k°, ;(0)(k)的符号一致;2. n- k。
—4,则称(| ;(0)(k°)|,| ;(0)(k° 1)|,…;(0)( n) |)为可建模残差尾段,仍记为;(0) =C(0)(k°), ;(0)(k°1),...,^(0)(n))设;(0)=( ;(0)(«), ;(0)(k°1),..., ;(0)(n))为可建模残差尾段,其一次累加序列;(1)=(;⑴(k°), ;(1)(k°1),..., A1)(n))的GM(1,1)模型的时间响应式为尹(k 1) = (;%)- e【-a (k 也)]a z a z则残差尾段的模拟序列为严=(?(0)(k。
),?(0)(k。
1),…,严(n))其中严(k 1) =(-a )C(0)(k o) 一里)e心(k如,k_k。
% 若用70)修正刃⑴则称修正后的时间响应式(x(0)(i)_b)e」k* k<k°)?(1)(k 十1) = < b b a a b(x(0)(1)+b±a<s£(ko)-a)eW5, k* a a a£为残差修正GM(1,1)模型,简称残差GM(1,1)。
其中残差修正值严(k 1) =(-a .)(;(0)(k。
)-匕)訂20)]的符号应与残差尾段;(0)的符号保持一致。
若?(0)(k)二?⑴(k) -?⑴(k -1)二(1 -e a)(x(0)(1) -?)e以z则相应的残差修正时a间响应式“ a、/ (0) "、b _ak . .(1—e)(x ⑴一一)e , kvk o只0)代1)二〒a b(1 -e a)(x(0)(1) -匕)/ ±a“(0)(k0) -虽)e%(k“0)], k Ak0 I a%称为累减还原式的残差修正模型。
残差修正模型的模拟精度得到了明显提高。
若对残差精度仍不满意,就只有考虑采用其它模型或对原始数据序列进行适当取舍再用P和C检验预测效果。
五、GM(1,1)模型的适用范围灰色GM(1,1)模型评价推广(1) 灰色GM(1,1 )模型优点灰色GM(1,1)预测模型在计算过程中主要以矩阵为主,它与MATLAB的结合解决了它在计算中的问题•由MATLAB编制的灰色预测程序简单实用,容易操作,预测精度较高•(2) 灰色GM(1,1)模型的缺点该模型是指运用曲线拟合和灰色系统理论对我国人口发展进行预测的方法,因此它对历史数据有很强的依赖性,而且GM (1,1)的模型没有考虑各个因素之 间的联系.因此,误差偏大,尤其是对中长期预测,例如对中国人口总数变化情 况做长期预测时,误差偏大,脱离实际•下面我们来讨论 GM(1,1)模型的适用范 围•GM(1,1)模型的白化微分方程:其中a 为发展系数,可以证明,当 GM(1,1)的发展系数|a|_2时,GM(1,1)模型无意义。
因此,(-::,-2] 一 [2, •::)是GM(1,1)发展系数a 的禁区。
在此区间,GM(1,1)模型失去意 义。
一般地,当|a|:::2时,GM(1,1)模型有意义。
但是,随着 a 的不同取值,预 测效果也不同。
通过数值分析,有如下结论:(1) 当<0.3时,GM(1,1)的1步预测精度在98%以上,2步和5步预测精度 都在97%以上,可用于中长期预测;(2) 当0.3 ::: -a 乞0.5时,GM(1,1)的1步和2步预测精度都在90%以上,10步 预测精度也高于80%,可用于短期预测,中长期预测慎用;(3) 当 0.5 ::: -a 乞0.8时,GM(1,1)用作短期预测应十分慎重;(4) 当0.8:::-a 乞1时,GM(1,1)的1步预测精度已低于70%,应采用残差修正 模型;(5) 当-a 1时,不宜采用GM(1,1)模型。
如果要考虑到多因素的联系和影响,此时我们不妨建立 GM( 1, n)模型.GM( 1, N)模型能模拟系统发展的动态过程,不但吸收了传统的灰色模型的建立 而且建立了多中改进的灰色模型,提高了预测精度.dX(1)dtaX ⑴。