决策树例题分析及解答 (1)

合集下载

决策树习题练习(答案)

决策树习题练习(答案)

决策树习题练习(答案)决策树习题练习答案1.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。

两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。

试用决策树法选择最优方案。

表1 各年损益值及销售状态销售状态概率损益值(万元/年)大规模投资小规模投资销路好 0.7100 60 销路差 0.3 -2020【解】(1)绘制决策树,见图1;100×10 -20×10 60×1020×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 3202 31 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方。

(3)决策比较节点②与节点③的期望收益值可知,大规模投资方案优于小规模投资方案,故应选择大规模投资方案,用符号“//”在决策树上“剪去”被淘汰的方案。

2.某项目有两个备选方案A和B,两个方案的寿命期均为10年,生产的产品也完全相同,但投资额及年净收益均不相同。

A方案的投资额为500万元,其年净收益在产品销售好时为150万元,,销售差时为50万元;B方案的投资额为300万元,其年净收益在产品销路好时为100万元,销路差时为10万元,根据市场预测,在项目寿命期内,产品销路好时的可能性为70%,销路差的可能性为30%,试根据以上资料对方案进行比选。

已知标准折现率ic=10%。

【解】(1)首先画出决策树150 5010010 销路好0.7 销路差0.3 销路好0.7 销路差0.3 -500 -3002 31 图2 决策树结构图此题中有一个决策点,两个备用方案,每个方案又面临着两种状态,因此可以画出其决策树如图18。

(2)然后计算各个机会点的期望值机会点②的期望值=150(P/A,10%,10)×0.7+(-50)(P/A,10%,10)×0.3=533(万元) 机会点③的期望值=100(P/A,10%,10)×0.7+10(P/A,10%,10)×0.3=448.5(万元) 最后计算各个备选方案净现值的期望值。

决策树例题分析

决策树例题分析
• 建设大工厂需要投资600万元,可使用10年。销路好每年赢利200万元,销 路不好则亏损40万元。
• 建设小工厂投资280万元,如销路好,3年后扩建,扩建需要投资400万元, 可使用7年,每年赢利190万元。不扩建则每年赢利80万元。如销路不好则 每年赢利60万元。
• 试用决策树法选出合理的决策方案。 经过市场调查,市场销路好的概率为 0.7,销路不好的概率为0.3。
5
• 计算完毕后,开始对决策树进行剪枝,在每个决策结点删去除 了最高期望值以外的其他所有分枝,最后步步推进到第一个决 策结点,这时就找到了问题的最佳方案
• 方案的舍弃叫做修枝,被舍弃的方案用“≠”的记号来表示,最 后的决策点留下一条树枝,即为最优方案。
6
• A1、A2两方案投资分别为450万和240万,经营年限为5年,销 路好的概率为0.7,销路差的概率为0.3,A1方案销路好、差年 损益值分别为300万和负60万;A2方案分别为120万和30万。
1
例:设某茶厂计划创建精制茶厂,开始有两个方案,方案一是建年加工能力 为800担的小厂,方案二是建年加工能力为2000担的大厂。两个厂的使用期 均为10年,大厂投资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能(两种自然状态):一种为800担,另一种为2000担。两个方案每 年损益及两种自然状态的概率估计值见下表
自然状态
原料800担 原料2000担
概率 建大厂(投资25万元) 建小厂(投资10万元)
0.8
13.5
0.2
25.5
15.0 15.0
2
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状像树,所以被称为决 策树。

案例试题—决策树

案例试题—决策树

一、2002年案例考试试题——决策树某房地产开发公司对某一地块拟定两种开发方案。

A方案:一次性开发多层住宅45000平方米,需投入总成本费用9000万元,开发时间18个月。

B方案:将地块分两期开发,一期开发高层住宅36000平方米,需投入总成本费用8100万元,开发时间15个月。

如果一期销路好,则二期继续开发高层住宅36000平方米,投入总费用8100万元,如果一期销路差,或者暂停开发,或者开发多层住宅22000平方米,投入总费用4600万元,开发时间15个月。

两方案销路好和销路差时的售价和销量情况见下表。

根据经验,多层住宅销路好的概率为0.7,高层住宅销路好的概率为0.6,暂停开发每季损失10万元,季利率2%。

问题:1、两方案销路好和销路差时季平均销售收入各为多少万元(假定销售收入在开发时间内均摊)2、用决策树做出决策,应采用哪个方案(计算结果保留两位小数)答案:1、A方案开发多层住宅:销路好4.5×4800×100%÷6=3600(万元)销路差4.5×4300×80%÷6=2580(万元)B方案一期开发高层住宅:销路好3.6×5500×100%÷5=3960(万元)销路差3.6×5000×70%÷5=2520(万元)B方案二期开发高层住宅:3.6×5500×100%÷5=3960(万元)开发多层住宅:销路好2.2×4800×100%÷5=2112(万元)销路差2.2×4300×80%÷5=1513.6(万元)2、机会点①净现值的期望值:(3600×0.7+2580×0.3)×(P/A,2%,6)-9000=(3600×0.7+2580×0.3)×5.601-9000=9449.69(万元)等额年金:9449.69×(A/P,2%,6)=9449.69×1/5.601=1687.14(万元)机会点③净现值的期望值:3960×(P/A,2%,5)×1.0-8100=3960×4.713×1.0-8100=10563.48(万元)等额年金:10563.48×(A/P,2%,5)=10563.48×1/4.713=2241.35(万元)机会点④净现值的期望值:-10×(P/A,2%,5)=-10×4.713=-47.13(万元)等额年金:-47.13×(A/P,2%,5)=-47.13×1/4.713=-10.00(万元)机会点⑤净现值的期望值:(2112×0.7+1513.6×0.3)×(P/A,2%,5)-4600=(2112×0.7+1513.6×0.3)×4.713-4600=4507.78(万元)等额年金:4507.78×(A/P,2%,5)=4507.78×1/4.713=956.46(万元)根据计算结果判断,B方案在一期开发高层住宅销路差的情况下,二期应改为开发多层住宅。

决策树习题练习(答案)

决策树习题练习(答案)

决策树习题练习(答案)决策树习题练习答案1.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。

两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。

试用决策树法选择最优方案。

表1 各年损益值及销售状态销售状态概率损益值(万元/年)大规模投资小规模投资销路好 0.7100 60 销路差 0.3 -2020【解】(1)绘制决策树,见图1;100×10 -20×10 60×1020×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 3202 31 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方。

(3)决策比较节点②与节点③的期望收益值可知,大规模投资方案优于小规模投资方案,故应选择大规模投资方案,用符号“//”在决策树上“剪去”被淘汰的方案。

2.某项目有两个备选方案A和B,两个方案的寿命期均为10年,生产的产品也完全相同,但投资额及年净收益均不相同。

A方案的投资额为500万元,其年净收益在产品销售好时为150万元,,销售差时为50万元;B方案的投资额为300万元,其年净收益在产品销路好时为100万元,销路差时为10万元,根据市场预测,在项目寿命期内,产品销路好时的可能性为70%,销路差的可能性为30%,试根据以上资料对方案进行比选。

已知标准折现率ic=10%。

【解】(1)首先画出决策树150 5010010 销路好0.7 销路差0.3 销路好0.7 销路差0.3 -500 -3002 31 图2 决策树结构图此题中有一个决策点,两个备用方案,每个方案又面临着两种状态,因此可以画出其决策树如图18。

(2)然后计算各个机会点的期望值机会点②的期望值=150(P/A,10%,10)×0.7+(-50)(P/A,10%,10)×0.3=533(万元) 机会点③的期望值=100(P/A,10%,10)×0.7+10(P/A,10%,10)×0.3=448.5(万元) 最后计算各个备选方案净现值的期望值。

决策树例题(详细分析“决策树”共10张)

决策树例题(详细分析“决策树”共10张)
• 一般按反向的时间程序逐步计算,将各方案的几 种可能结果的数值和它们各自的概率相乘,并汇 总所得之和,其和就是该方案的期望值。
• 第四步:确定决策方案:在比较方案考虑的是收益值 时,那么取最大期望值;假设考虑的是损失时,那么 取最小期望值。
• 根据计算出的期望值分析,此题采取开工方案较 好。
第7页,共10页。
决策树例题
第1页,共10页。
决策树的画法
• A、先画一个方框作为出发点,又称决策节点; • B、从出发点向右引出假设干条直线,这些直线叫做方案
枝;
• C、在每个方案枝的末端画一个圆圈,这个圆圈称为 概率分叉点,或自然状态点;
• D、从自然状态点引出代表各自然状态的分枝,称 为概率分枝;
• E、如果问题只需要一级决策,那么概率分枝末端画 三角形,表示终点 。
第四步:确定决策方案:在比较方案考虑的是收益值时,那么取最大期望值;
B、从出发点向右引出假设干条直线,这些直线叫做方案枝;
天气好 0.3 根据计算出的期望值分析,此题采取开工方案较好。
假设考虑的是损失时,那么取最小期望值。 A、先画一个方框作为出发点,又称决策节点;
40000
-1000
天气坏
0.7
-10000
第8页,共10页。
【例题9】
方案 A高 A低 B高 B低
效果
优 一般 赔 优 一般 赔 优 一般 赔 优 一般 赔
可能的利润(万元)
5000 1000 -3000 4000 500 -4000 7000 2000 -3000 6000 1000 -1000
概率
0.3 0.5 0.2 0.2 0.6 0.2 0.3 0.5 0.2 0.3 0.6 0.1

决策树习题练习(答案)

决策树习题练习(答案)

决策树习题练习(答案)决策树题练答案题目1:某投资者预计投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。

两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15.试用决策树法选择最优方案。

解答:首先绘制决策树,如图1所示。

然后计算各状态点的期望收益值,并将其标在圆圈上方。

最后比较节点②与节点③的期望收益值,选择期望收益值更高的方案,即大规模投资方案。

题目2:某项目有两个备选方案A和B,两个方案的寿命期均为10年,生产的产品也完全相同,但投资额及年净收益均不相同。

A方案的投资额为500万元,其年净收益在产品销售好时为150万元,在销售差时为50万元;B方案的投资额为300万元,其年净收益在产品销路好时为100万元,在销路差时为10万元。

根据市场预测,在项目寿命期内,产品销路好时的可能性为70%,销路差的可能性为30%,试根据以上资料对方案进行比选。

已知标准折现率ic10%。

解答:首先画出决策树,如图2所示。

然后计算各个机会点的期望值,最后计算各个备选方案净现值的期望值,选择期望净现值更高的方案,即方案A。

根据计算,方案A的净现值期望值为33万元,方案B的净现值期望值为148.5万元。

因此,选择方案B为优先方案。

接着,投资者提出了第三个方案,先进行小规模投资160万元,生产3年后根据销售情况再决定是否进行大规模投资。

根据表2的销售概率表,绘制出决策树,计算各节点的期望收益值。

经过计算,节点④的期望收益值为616万元,节点⑤的期望收益值为-140万元,节点②的期望收益值为281.20万元,节点⑧的期望收益值为476万元,节点⑨的期望收益值为392万元,因此选择扩建方案。

节点⑥的期望损益值取扩建方案的期望损益值476万元。

节点⑦的期望收益值为140万元。

某建筑公司计划建一预制构件厂,方案一为建大厂,需投资300万元,每年可盈利100万元,若销路差则每年亏损20万元,使用期为10年;方案二为建小厂,需投资170万元,每年可盈利40万元,若销路差则每年盈利30万元。

决策树例题分析及解答分解课件

决策树例题分析及解答分解课件
决策树例题分析及解 答分解课件
目录
CONTENTS
• 决策树与其他机器学习算法的比 • 决策树未来发展方向
01
决策树简 介
决策树的定义
决策树是一种监督学习算法,用于解决分类和回归问题。
它通过递归地将数据集划分成更纯的子集来构建决策树,每个内部节点表示一个 特征属性上的判断条件,每个分支代表一个可能的属性值,每个叶子节点表示一 个类别。
03
决策树例题分析
题目描述
题目
预测一个学生是否能够被大学录 取
数据集
包含学生的个人信息、成绩、活动 参与情况等
目标变量
是否被大学录取(0表示未录取,1 表示录取)
数据预处理
01
02
03
数据清洗
处理缺失值、异常值和重 复值
数据转换
将分类变量转换为虚拟变 量,将连续变量进行分箱 处理
数据归一化
将特征值缩放到0-1之间, 以便更好地进行模型训练
结果解读与优化建议
结果解读
根据模型输出的结果,分析决策树 的构建情况,理解各节点的划分依据。
优化建议
根据模型评估结果和业务需求,提出 针对性的优化建议,如调整特征选择、 调整模型参数等。
05
决策树与其他机器
学习算法的比 较
与逻辑回归的比较
总结词
逻辑回归适用于连续和二元分类问题,而决策树适用于多元分类问题。
建立决策树模型
选择合适的决策树算 法:ID3、C4.5、 CART等
构建决策树模型并进 行训练
确定决策树的深度和 分裂准则
模型评估与优化
使用准确率、召回率、F1分数等指标 评估模型性能
对模型进行优化:剪枝、调整参数等
进行交叉验证,评估模型的泛化能力

管理学决策树习题及答案

管理学决策树习题及答案

注意答卷要求:1.统一代号:P 为利润,C 为成本,Q 为收入,EP 为期望利润 2.画决策树时一定按照标准的决策树图形画,不要自创图形 3.决策点和状态点做好数字编号 4.决策树上要标出损益值某企业似开发新产品,现在有两个可行性方案需要决策。

I 开发新产品A ,需要追加投资180万元,经营期限为5年。

此间,产品销路好可获利170万元;销路一般可获利90万元;销路差可获利-6万元。

三种情况的概率分别为30%,50%,20%。

II.开发新产品B ,需要追加投资60万元,经营期限为4年。

此间,产品销路好可获利100万元;销路一般可获利50万元;销路差可获利20万元。

三种情况的概率分别为60%,30%,10%。

(1)画出决策树销路好 0.317090 -61005020(2)计算各点的期望值,并做出最优决策求出各方案的期望值:方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元)方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元)求出各方案的净收益值:方案A=770-180=590(万元)方案B=308-60=248(万元)因为590大于248大于0所以方案A最优。

某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。

预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。

如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。

相关的收益数据如表所示。

(1)画出决策树(2)计算各点的期望值,并做出最优决策投资收益表单位:万元解(1)画出决策树,R为总决策,R1为二级决策。

决策树例题分析及解答_(1)

决策树例题分析及解答_(1)
27

益损值 态
方案
需求 需求 量较 量一
高般

600 400

800 350

350 220

400 250
需求 量较

-150
-350
50
需求量 很低
max
min
-350 -700 -100
600 -350 800 -700 350 -100
a=0.7
315 350 215
90 -50 400 -50 265
自然状态 概率 建大厂(投资25 建小厂(投资10
万元)
万元)
原料800担 0.8 原料2000担 0.2
13.5 25.5
15.0 15.0
4
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状 像树,所以被称为决策树。
• 决策树的结构如下图所示。图中的方块代表决策节点, 从它引出的分枝叫方案分枝。每条分枝代表一个方案, 分枝数就是可能的相当方案数。圆圈代表方案的节点, 从它引出的概率分枝,每条概率分枝上标明了自然状态 及其发生的概率。概率分枝数反映了该方案面对的可能 的状态数。末端的三角形叫结果点,注有各方案在相应 状态下的结果值。
600×0.7+(--350 ×0.3)=315
28
决策准则小结
不同决策者甚至同一决策者在不同决 策环境下对同一个问题的决策可能截 然不同,并没有所谓的“正确答案” 。决策准则的选取主要取决于决策者 对于决策的性格和态度,以及制定决 策时的环境
所有的准则都不能保证所选择的方案 在实际情况发生时会成为最佳方案
• 试用决策树法选出合理的决策方案。 经过市场调查, 市场销路好的概率为0.7,销路不好的概率为0.3。

决策树习题练习(答案)

决策树习题练习(答案)

决策树习题练习(答案)决策树习题练习答案1.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。

两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。

试用决策树法选择最优方案。

表1 各年损益值及销售状态销售状态概率损益值(万元/年)大规模投资小规模投资销路好 0.7100 60 销路差 0.3 -2020【解】(1)绘制决策树,见图1;100×10 -20×10 60×1020×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 3202 31 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方。

(3)决策比较节点②与节点③的期望收益值可知,大规模投资方案优于小规模投资方案,故应选择大规模投资方案,用符号“//”在决策树上“剪去”被淘汰的方案。

2.某项目有两个备选方案A和B,两个方案的寿命期均为10年,生产的产品也完全相同,但投资额及年净收益均不相同。

A方案的投资额为500万元,其年净收益在产品销售好时为150万元,,销售差时为50万元;B方案的投资额为300万元,其年净收益在产品销路好时为100万元,销路差时为10万元,根据市场预测,在项目寿命期内,产品销路好时的可能性为70%,销路差的可能性为30%,试根据以上资料对方案进行比选。

已知标准折现率ic=10%。

【解】(1)首先画出决策树150 5010010 销路好0.7 销路差0.3 销路好0.7 销路差0.3 -500 -3002 31 图2 决策树结构图此题中有一个决策点,两个备用方案,每个方案又面临着两种状态,因此可以画出其决策树如图18。

(2)然后计算各个机会点的期望值机会点②的期望值=150(P/A,10%,10)×0.7+(-50)(P/A,10%,10)×0.3=533(万元) 机会点③的期望值=100(P/A,10%,10)×0.7+10(P/A,10%,10)×0.3=448.5(万元) 最后计算各个备选方案净现值的期望值。

回归问题的决策树题目和解答

回归问题的决策树题目和解答

回归问题的决策树题目和解答摘要:一、回归问题的概念1.回归问题的定义2.回归问题的应用场景二、决策树的介绍1.决策树的基本概念2.决策树在回归问题中的应用三、回归问题的决策树题目及解答1.题目一:某公司想了解广告投入对销售收入的影响2.题目二:房价与房屋面积的关系3.题目三:空气质量指数与市民健康状况的关系4.题目四:教育投入与经济增长的关系四、决策树在回归问题中的优势与局限1.优势:易于理解和解释2.局限:容易受到噪声数据的影响正文:一、回归问题的概念回归问题是指在数据集中寻找两个或多个变量之间的关系。

这种关系可以用来预测一个变量的值,或者解释另一个变量的变化原因。

回归问题的应用场景广泛,例如经济学、市场营销、医学研究等领域。

二、决策树的介绍决策树是一种基于树结构的分类与回归模型。

它通过一系列的问题对数据进行递归划分,最终得到一个叶子节点,每个叶子节点代表一个分类或回归结果。

决策树在回归问题中的应用可以帮助我们快速找到变量之间的关系,从而进行预测或解释。

三、回归问题的决策树题目及解答1.题目一:某公司想了解广告投入对销售收入的影响解答:通过构建决策树,我们可以分析广告投入与销售收入之间的关系。

首先,将广告投入作为自变量,销售收入作为因变量。

然后,通过递归划分数据集,找到广告投入与销售收入之间的关系。

最后,根据决策树预测在不同广告投入下的销售收入。

2.题目二:房价与房屋面积的关系解答:同样地,我们可以通过构建决策树分析房价与房屋面积之间的关系。

首先,将房价作为因变量,房屋面积作为自变量。

然后,通过递归划分数据集,找到房价与房屋面积之间的关系。

最后,根据决策树预测在不同房屋面积下的房价。

3.题目三:空气质量指数与市民健康状况的关系解答:针对这个问题,我们可以构建一个决策树,以空气质量指数作为自变量,市民健康状况作为因变量。

通过递归划分数据集,找到空气质量指数与市民健康状况之间的关系。

最后,根据决策树预测在不同空气质量指数下的市民健康状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各点效益值计算过程是: 点2:13.5×0.8×3+172.9×0.8+25.5×0.2×3+ 206.5×0.2-25(投资)=202.3万元 点3:15×0.8×3+105×0.8+15×0.2×3+105×0.2- 10(投资)=140万元 点4:21.5×0.6×7年+29.5×0.4×7年=172.9万元 点5:29.5×1.0×7=206.5 点6:15×0.6×7+15×0.4×7=105万元 通过以上计算。可知建小厂的效益期望值为140万元,而 建大厂的效益期望值为202.3万元,所以应选择建大厂的 方案。
11
销路好(0.7) 680万元 2 建大厂 销路差(0.3) 200万元
-40万元
1
719万元
扩建 建小厂 930万元 销路好(0.7) 4 不扩建 销路好(0.7) 6 930万元 3 719万元 前3年,第一次决策 560万元 销路差(0.3) 后7年,第二次决策
5
销路好(0.7)
190万元
29
投资决策评价指标
非贴现现金流量指标
7
• 计算完毕后,开始对决策树进行剪枝, 在每个决策结点删去除了最高期望值以 外的其他所有分枝,最后步步推进到第 一个决策结点,这时就找到了问题的最 佳方案 • 方案的舍弃叫做修枝,被舍弃的方案用 “≠”的记号来表示,最后的决策点留 下一条树枝,即为最优方案。
8
• A1、A2两方案投资分别为450万和240 万,经营年限为5年,销路好的概率为 0.7,销路差的概率为0.3,A1方案销 路好、差年损益值分别为300万和负60 万;A2方案分别为120万和30万。
玉米 棉花 花生 合计 资源供给量 资源余缺量
在生产出16.5万公顷玉米的前提下,将获得 5.28万元的利润,在忙劳动力资源尚剩余680 个工日可用于其他产品生产。
3
例:设某茶厂计划创建精制茶厂,开始有两个方案,方案 一是建年加工能力为800担的小厂,方案二是建年加工能 力为2000担的大厂。两个厂的使用期均为10年,大厂投 资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能(两种自然状态):一种为800担,另一种为 2000担。两个方案每年损益及两种自然状态的概率估计值 见下表
25
益损值 方案
状态 需求量较 需求量一 高 般
需求量 较低
需求量很低
甲 乙
600 800
400 350
-150 -350
-350 -700


益损值 方案
350
400
状态 需求
220
250
需求量 一般
50
90
需求量 较低
-100
-50
需求量 很低 最大后 悔值
量较 高
甲 乙 丙 丁
200 0 450 400
9
决策过程如下:画图,即绘制决策树
• A1的净收益值=[300×0.7+(-60)×0.3] ×5-450=510 万 • A2的净收益值=(120×0.7+30×0.3)×5-240=225万 • 选择:因为A1大于A2,所以选择A1方案。 • 剪枝:在A2方案枝上打杠,表明舍弃。
10
例 题
• 为了适应市场的需要,某地提出了扩大电视机生产的 两个方案。一个方案是建设大工厂,第二个方案是建 设小工厂。 • 建设大工厂需要投资600万元,可使用10年。销路好 每年赢利200万元,销路不好则亏损40万元。 • 建设小工厂投资280万元,如销路好,3年后扩建,扩 建需要投资400万元,可使用7年,每年赢利190万元。 不扩建则每年赢利80万元。如销路不好则每年赢利60 万元。 • 试用决策树法选出合理的决策方案。 经过市场调查, 市场销路好的概率为0.7,销路不好的概率为0.3。
先将各个方案可能带来的最大遗憾计算出来。
遗憾值的计算方法:将每一种自然状态下各个方案可 能取得的最大收益值找出来,其遗憾值为0,其余各方 案的收益值与找出的该状态下的最大收益值相减,即 为该方案在该状态下的遗憾值;然后再从各方案在各 种自然状态下的遗憾值中,找出最大遗憾值;最后从 各方案最大遗憾值中找出遗憾值最小的方案。
玉米 棉花 花生
60 105 45
2250 2250 750
8250 750 1500
1500 1800 1650
1
解:玉米、棉花、花生和种植面积分别为X1,X2,X3公顷,依 题意列出线性规划模型。 目标函数:S=1500X1+1800X2+1650X3——极大值 约束条件:X1+X2+X3≤33.333 60X1+105X2+45X3≤2800 2250X1+2250X2+750X3≤63000 8250X1≤165000 X1,X2,X3≥0 采用单纯形法求出决策变量值: X1=20公顷 X2=5.333公顷 X3=8公顷
自然状态 原料800担 原料2000担 概率 0.8 0.2 建大厂(投资25 万元) 13.5 25.5 建小厂(投资10 万元) 15.0 15.0
4
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状 像树,所以被称为决策树。
• 决策树的结构如下图所示。图中的方块代表决策节点, 从它引出的分枝叫方案分枝。每条分枝代表一个方案, 分枝数就是可能的相当方案数。圆圈代表方案的节点, 从它引出的概率分枝,每条概率分枝上标明了自然状态 及其发生的概率。概率分枝数反映了该方案面对的可能 的状态数。末端的三角形叫结果点,注有各方案在相应 状态下的结果值。
乙 800 350 -350 -700
丙 350 220 50 -100
丁 400 250 90 -50
21
损益值 方案
状态 需求量 需求量 需求量较 需求量 max
较高 一般 低 很低

乙 丙 丁
600
800 350 400
400
350 220 250
-150
-350 50 90
-350
-700 -100 -50
23
悲观原则
需求量 较高 需求量 一般 需求量 较低 需求量 很低
min -350 -700
甲 乙
600 800
400 350
-150 -350
-350 -700


350
400
220
250
50
90
-100
-50
-100
-50
24
3、最小后悔准则(最小机会损失准则) 用益损值表计算出后悔值(同一状态下各 方案的最大益损值与已采用方案的益损 值之差),取后悔值最小的方案
27
状 益损值 态
方案
需求 量较 高
需求 量一 般
需求 量较 低
需求量 很低
max min
600 800 350
400
a=0.7
315 350 215
265
甲 乙 丙

600 800 350
400
400 350 220
250
-150 -350 50
90
-350 -700 -100
-50
-350 -700 -100
-50
600×0.7+(--350 ×0.3)=315
28
决策准则小结
不同决策者甚至同一决策者在不同决 策环境下对同一个问题的决策可能截 然不同,并没有所谓的“正确答案”。 决策准则的选取主要取决于决策者对 于决策的性格和态度,以及制定决策 时的环境 所有的准则都不能保证所选择的方案 在实际情况发生时会成为最佳方案
• 例: 某农业企业有耕地面积33.333公顷,可供灌水量 6300立方米,在生产忙季可供工作日2800个,用于 种植玉米、棉花和花生三种作物。预计三种作物每公 顷在用水忙季用工日数、灌水量和利润见表,在完成 16.5万公斤玉米生产任务的前提下,如何安排三种作 物的种植面积,以获得最大的利润。
作物 类别 忙季需 工作日数 灌水需要量 (立方米) 产量 (公斤) 利润 (元)
20
例: 假设某场办工厂准备生产一种新产品,但是对市
场需求量的预测只能大致估计为较高、一般、较低、 很低四种情况,而对每一种情况出现的概率无法估计。 工厂为生产这种产品设计了四个方案,并计划生产五 年,根据计算,各个方案五年损益值如表所示。
甲 需求量较高 需求量一般 需求量较低 需求量很低 600 400 -150 -350
80万元
60万元
12
计算各点的期望值: • 点②:0.7×200×10+0.3×(-40)×10-600(投资) =680(万元) • 点⑤:1.0×190×7-400=930(万元) • 点⑥:1.0×80×7=560(万元) 比较决策点4的情况可以看到,由于点⑤(930万元) 与点⑥(560万元)相比,点⑤的期望利润值较大, 因此应采用扩建的方案,而舍弃不扩建的方案。 把点⑤的930万元移到点4来,可计算出点③的期望利 润值: • 点③:0.7×80×3+0.7×930+0.3×60×(3+7)-280 = 719(万元)
15
建小厂的方案在经济上是比较合理的
16

例:随着茶叶生产的发展,三年后的原 料供应可望增加,两个行动方案每年损益及 两种自然状态的概率估计如表
三年后两种收益估计值 单位: 0.4
建大厂 21.5 29.5
建小厂 15.0 15.0
17
18
0 50 180 150
240 440 40 0
300 650 50 0
300 650 450 400
26
平均主义决策(折衷决策)
在悲观与乐观中取折中值,既不过于冒险, 也不过于保守,先确定折中系数a。 a在0~1之间,a=0则为悲观决策,a =1则为乐观决策。将各个方案在各种自然 状态下可能取得的最大收益值找出,用它 乘以a,再加上最小收益值乘以1-a,即为 各方案折中后的收益值,从中找折中后收 益值最大的方案。
相关文档
最新文档