离散数学复习提纲(图论)1
离散图论知识点总结
![离散图论知识点总结](https://img.taocdn.com/s3/m/a5862806c950ad02de80d4d8d15abe23482f0322.png)
离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。
一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。
图分为有向图和无向图。
无向图中的边是无序的,有向图中的边是有序的。
图中存在一些特殊的图,比如完全图、树、路径、回路等。
二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。
对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。
对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。
对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。
2. 邻接表邻接表是另一种常见的图的表示方法。
它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。
对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。
邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。
三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。
对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。
2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。
对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。
3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。
路径的长度是指路径中边的数目。
4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。
一个无向图,若它不是连通图,则称为森林。
四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。
(完整版)图论复习提纲
![(完整版)图论复习提纲](https://img.taocdn.com/s3/m/7ec1b840aa00b52acfc7ca90.png)
复习课件 数学科学学院
1
本次课主要内容 期末复习
(一)、重点概念 (二)、重要结论 (三)、应用
2
(一)、重点概念
1、图、简单图、图的同构与自同构、度序列与图序列、 补图与自补图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
G1 G2
例1 指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。
5
(6) 补图与自补图
1) 对于一个简单图G =(V, E),令集合 E1 uv u v,u,vV
则图H =(V,E1\E)称为G的补图,记为 H G
2) 对于一个简单图G =(V, E),若 G G ,称G为自补图。
(5) 根树
一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶 点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根, 出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点 和树根统称为分支点。
9
(6) 完全m元树
对于根树T,若每个分支点至多m个儿子,称该根树为m元根树; 若每个分支点恰有m个儿子,称它为完全m元树。
(2) 森林
称无圈图G为森林。
8
(3) 生成树
图G的一个生成子图T如果是树,称它为G的一棵生成树;若T 为森林,称它为G的一个生成森林。
生成树的边称为树枝,G中非生成树的边称为弦。
(4) 最小生成树
在连通边赋权图G中求一棵总权值最小的生成树。该生成树称 为最小生成树或最小代价树。
离散数学图论(图、树)常考考点知识点总结
![离散数学图论(图、树)常考考点知识点总结](https://img.taocdn.com/s3/m/1391b0cf03d276a20029bd64783e0912a2167ca0.png)
离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/7dc012bdf605cc1755270722192e453610665b02.png)
离散数学复习提纲离散数学是一门关于离散对象的数学分支,它主要研究离散结构及其性质,广泛应用于计算机科学、信息技术、密码学等领域。
下面是一个离散数学的复习提纲,包括离散数学的基本概念、离散结构、图论、关系、逻辑以及集合论等内容。
一、离散数学的基本概念1.数学基础:集合、函数、关系、证明方法(数学归纳法、反证法、递归法等);2.命题逻辑:命题、命题连接词、真值表、逻辑运算、逻辑等价、推理规则等;3.谓词逻辑:谓词、量词、公式、合取范式和析取范式、蕴含、等价、量词的否定规则等;4.证明方法:直接证明、间接证明、归谬证明、证明策略等。
二、离散结构1.图论:图的基本概念、图的表示方法、连通性、路径和回路、图的着色、最小生成树等;2.代数结构:群、环、域的定义、性质及基本例子;3.组合数学:组合基本原理、二项式系数、排列组合、生成函数、递归关系、容斥原理等;4.有限状态自动机:确定性有限状态自动机、非确定性有限状态自动机、正则表达式等。
1.图的基本概念:顶点、边、路径、回路、度等;2.图的表示:邻接矩阵、邻接表、关联矩阵等;3.图的遍历:深度优先、广度优先;4. 最短路径问题:Dijkstra算法、Floyd-Warshall算法;5. 最小生成树问题:Prim算法、Kruskal算法;6.匹配问题:最大匹配、二分图匹配等。
四、关系1.关系的基本概念:关系矩阵、关系的性质(反自反性、对称性、传递性等);2.等价关系:等价关系的性质、等价类等;3.偏序关系:偏序关系的性质、偏序集合、哈斯图等;4.传递闭包:传递闭包的定义、传递闭包的计算方法等。
五、逻辑1.命题逻辑:命题的定义、逻辑运算、真值表、逻辑等价、推理规则等;2.谓词逻辑:量词的定义、公式的定义、量词的否定规则、等价变换等;3.命题逻辑与谓词逻辑的转换;4.形式化推理:前向链式推理、后向链式推理、消解法等。
1.集合的基本概念:子集、并集、交集、差集、补集等;2.集合运算:集合的并、交、差、补等运算的性质;3.集合的关系:包含关系、相等关系、等价关系等;4.集合的表示方法:列举法、描述法、元祖法等;5.集合的基数:有限集合的基数、无穷集合的基数、基数的性质。
电大离散数学图论部分期末复习辅导Word版
![电大离散数学图论部分期末复习辅导Word版](https://img.taocdn.com/s3/m/0cec62caa2161479161128af.png)
离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
离散数学复习提纲(完整版)解析
![离散数学复习提纲(完整版)解析](https://img.taocdn.com/s3/m/fa7a7168be1e650e52ea99a4.png)
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/5207887558fafab069dc0231.png)
离散数学复习提纲第一章1、集合的三种表示法:①穷举列表法;例A={a,b,c};B={1,2,3,……,200};②特性刻划法;例A={x|x∈I并且I<0};③由计算规则定义;例设a1=1,a2=2,ai+1=ai+ai-1 S={ak|k>0}。
2、没有元素的的集合称为空集。
3、设A和B是两个集合,A B,表示A中的每个元素都可以在B中找到,称A是B 的一个子集(A被B包含),如果A中至少有一个元素不属于B,则A B。
4、幂集ρ(s)就是S的所有子集组成的集合(共2S个),例:S={1,{2,3}},则ρ(s)={{1},{{2,3}},{1,{2,3}},φ}5、文氏图是一种集合的图形表示。
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 第二章1、笛卡尔积A×B={(a,b)|a∈A,b∈B},即A到B的所有有序偶构成的集合。
2、(a,b)称为有序偶,若(a,b)= (c,d),当且仅当a=c,b=d,通常(a,b)≠(b,a),除非a=b。
3、A到B的二元关系R是A×B的一个子集,R A×B,若R= A×B,称R为全关系,R=φ称为空关系。
4、两个元素的有序偶(x,y)∈R,称x和y具有关系R,例:A上的小于关系定义为:L={(a1,a2)| a1,a2∈A∩a1<a2}。
5、对于每个x∈A,有(x,x)∈R,称R是A上的自反关系;对于每个x,y∈A,如有(x,y)∈R,有(y,x)∈R,则称R是A上的对称关系;对于每个x,y,z∈A,如有(x,y)∈R,并且(y,z)∈R,便有(x,z)∈R,则称R是A上的传递关系;例:A={1,2,3},R1={(1,1),(2,2),(3,3),…},R2={(1,2),(2,1),(3,3)},R3={(1,2),(2,3),(1,3)},则R1是自反的,R2是对称的,R3是传递的。
(完整word版)离散数学复习提纲(完整版)
![(完整word版)离散数学复习提纲(完整版)](https://img.taocdn.com/s3/m/83d2a0c35a8102d277a22fa1.png)
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/8c0f84a431b765ce050814fe.png)
离散数学复习提纲一、基本内容数理逻辑部分1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定、析取、合取、条件、和双条件及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A 有n 个命题变元,A 的主析取范式有k 个极小项,有m 个极大项,则 n m k 2=+ 求命题公式A 的析取(合取)范式的步骤.求命题公式A 的主析取(合取)范式的步骤.5.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.6.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词,存在量词.命题符号化注意:使用全称量词,特性谓词后用;使用存在量词,特性谓词后用.7.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题. 在谓词公式中,会区分约束变元和自由变元.在非空集合D(个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={n a a a ,...,21},则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃ 会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等.掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.8.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式.前束范式仍然是谓词公式.9.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.集合论部分1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素.集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,空集与所有集合的关系:空集是惟一的,它是任何集合的子集.集合A 的幂集P(A)=}{A x x ⊆, A 的所有子集构成的集合.若|A|=n ,则|P(A)|=2n .2.熟练掌握集合A 和B 的并、交,补集A 补集总相对于一个全集).差集A -B ,对称差等运算,并会用文氏图表示.掌握集合运算律(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明. 证明方法有二:(1)要证明A =B ,只需证明A 是B 的子集,又B 是A 的子集;(2)通过运算律进行等式推导.4.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x, y>,x, y 的位置是确定的,不能随意放置.注意:有序对<a ,b><b, a>,以a, b 为元素的集合{a, b}={b, a};有序对(a, a)有意义,而集合{a, a}是单元素集合,应记作{a}.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x,y>xA,yB},是有序对的集合.笛卡儿积也可以多个集合合成,A1×A2×…×An .5.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法. 二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:RA ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<ai, bj>R ,由结点ai 画有向弧到bj 构成的图形.空关系是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵MI 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=•=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(RS)T =R(ST),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;6.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的;②R 是反自反的;③R 是对称的 ;④R 是反对称的;⑤R 是传递的.(2)IA 具有自反性,对称性、反对称性和传递性.EA 具有自反性,对称性和传递性.故IA ,EA 是等价关系.具有反自反性、对称性、反对称性和传递性.IA 也是偏序关系.7.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系.⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.8.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同. 函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f(A)=B 或,,A x B y ∈∃∈∀使得y=f(x);双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=. 反函数——若f :AB 是双射,则有反函数f -1:BA ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)(重点:关系概念与其性质,等价关系和偏序关系,函数.图论部分1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E>,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v(V)关联的边数为结点度数deg (v);在有向图中,以v(V)为终点的边的条数为入度deg -(v),以v(V)为起点的边的条数为出度deg +(v),deg(v)=deg+(v) +deg -(v).无向完全图Kn 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V, E>,若EE ,则图<V, E>是<V, E>的生成子图.知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G=<V ,E>,有∑∈=V v E v 2)deg(; (2) 在有向图D =<V, E>中,∑∑∈+∈-=V v V v v v )(deg )(deg ;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E>,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u, v 存在通路,u, v 是连通的,G 中任意结点u, v 连通,G 是连通图.P(G)表示图G 连通分支的个数.在无向图中,结点集VV ,使得P(G -V)>P(G),而任意VV,有P (G -V )=P(G),V 为点割集. 若V 是单元集,该结点v 叫割点;边集EE ,使得P(G -V)>P(G),而任意EE ,有P (G -E )=P(G),E 为边割集.若E 是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.4.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u)-deg +(v)=1.5.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G=<V ,E>中,V3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E>, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G=<V ,E>,任意V1V ,则W(G -V1)V1(必要条件)若此条件不满足,即存在V1V ,使得P(G -V!)>V1,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).6.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用. 平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念.重要结论:(1)平面图e r e E v V E V G r i i2)deg(,,,,1===>=<∑=则. (2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.7.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法. 给定平面图G =〈V ,E 〉,它有面F1,F2,…,Fn ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面Fi ,内部有且仅有一个结点vi*∈V*;⑵对于图G的面Fi,Fj的公共边ek,存在且仅存在一条边ek*∈E*,使ek*=(vi*,vj*),且ek*和ek相交;⑶当且仅当ek只是一个面Fi的边界时,vi*存在一个环ek*和ek相交;则图G*是图G的对偶图.若G*是G的对偶图,则G也是G*的对偶图.一个连通平面图的对偶图也必是平面图.8.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.9.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.10.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.代数结构部分1. 二元运算(定义,封闭性)、运算表2.各种定律(交换、结合、幂等、分配、吸收、消去、幺元、零元、逆元)3·代数系统、子代数、积代数(定义、特殊元素、代数常数)4·同态与同构(同态等式、证明)5·半群、独异点6·群、子群、阿贝尔群、生成子群、元素的阶(周期)、循环群(定义与证明)·环、含幺环、零因子、无零因子环、整环、除环与域7·格(两种定义)、分配格、有界格、布尔格(判断)练习题数理逻辑部分(一)1.填空题(1) 公式(p∧⌝q)∨(⌝p∧q)的成真赋值为__________________;(2) 设p, r为真命题,q, s为假命题,则复合命题(p→q)↔(⌝r→s)的真值为________;(3) 设p, q均为命题,在_________________________条件下,p与q的排斥或也可以写成p与q的相容或;(4) 公式⌝(p↔q)与(p∧⌝q)∨(⌝p∧q)共同的成真赋值为____________;(5) 设A为任意的公式,B为重言式,则A∨B的类型为______________.2.将下列命题或语句符号化(1) 7不是无理数是不对的;(2) 小刘既不怕吃苦,又很钻研;(3) 只有不怕困难,才能战胜困难;(4) 只要别人有困难,老王就帮助别人,除非困难解决了;(5) 整数n是偶数当且仅当n能被2整除.3.求复合命题的真值p:2能整除5,q:旧金山是美国的首都,r:一年分四季.(1) ((p∨q)→r)∧(r→(p∧q));(2) ((⌝q↔p)→(r∨p))∨((⌝p∧⌝q)∧r).4.判断推理是否正确设y=2|x|,x为实数. 推理如下:若y在x=0可导,则y在x=0连续. y在x=0连续. 所以,y在x=0可导.5.判断公式的类型(1) (⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨r;(2) (p∧⌝(q→p))∧(r∧q);(3) (p↔⌝r)→(q↔r).(二)1.填空题.(1)设A为含命题变项p、q、r的重言式,则公式A∨ ((p∧q)→r)的类型为___________;(2)设B为含命题变项p、q、r的矛盾式,则公式B∧((p↔q)→r)的类型为___________;(3)设p、q为命题变项,则(⌝p↔q)的成真赋值为________________;(4)设p、q为真命题,r、s为假命题,则复合命题(p↔r)↔(⌝q→s)的真值为___________;(5)矛盾式的主析取范式为_________________;(6)设公式A含命题变项p、q、r,又已知A的主合取范式为M0∧M2∧M3 ∧M5,则A的主析取范式为_______________________________.2.用等值演算法求公式的主析取范式或主合取范式(1)求公式p→((q∧r)∧(p∨(⌝q∧⌝r)))的主析取范式;(2)求公式⌝(⌝(p→q))∨(⌝q→⌝p)的主合取范式;(3)求公式((p∨q)∧(p→q))↔(q→p)的主析取范式,再由主析取范式求出主合取范式.3.用真值表求公式(p→q)↔r的主析取范式4.将公式p→(q→r)化成与之等值且仅含{⌝, ∧}中联结词的公式.5.用主析取范式判断⌝ (p↔q) 与((p∨q)∧(⌝(p∧q))是否等值.6. 用消解原理证明p∧(⌝p∨q)∧(⌝r) ∧(⌝p∨⌝q∨r)是矛盾式.(三)1.填空题(1)(A→B)∧⌝B⇒_____________为拒取式推理定律;(2) (A∨⌝B)∧B⇒______________为析取三段论推理定律;(3) (⌝A→B)∧(B→⌝C)⇒_________________为假言三段论推理定律;(4) (⌝A→⌝B)∧⌝A⇒________________为假言推理定律.2.判断推理是否正确,并证明之(方法不限)(1)如果王红学过英语和法语,则她也学过日语.可她没有过日语,但学过法语. 所以,她也没学过英语;(2)若小李是文科学生,则他爱看电影.小李不是文科学生. 所以, 他不爱看电影.(3)设y=2|x|,x为实数. 推理如下:若y在x=0可导,则y在x=0连续. y在x=0连续. 所以,y在x=0可导.3.在自然推理系统P中,用直接证明法构造下面推理的证明(1)前提:⌝(p∧⌝q), q→⌝r, r结论:⌝p(2)前提:p→r, q→s, p,q结论:r∧s4.在自然推理系统P中,用附加前提证明法证明下面推理.(1)前提:⌝p∨ (q→r), s→p, q结论:⌝r→⌝s(2)前提:⌝p→q, ⌝p∨r, q→s结论:⌝s→r5.在自然推理系统P中,用归谬法证明下面推理.前提:p→(q→r), p∧q结论:r∨s6.在自然推理系统P中,构造下面用自然语言给出的推理.若小张喜欢数学,则小李或小赵也喜欢数学.若小李喜欢数学,则他也喜欢物理.小张确实喜欢数学,可小李不喜欢物理. 所以, 小赵喜欢数学.(四)1.填空题2.(1) 设F(x):x具有性质F,G(x):x具有性质G. 命题“对所有的x而言,若x有性质F,则x就有性质G”的符号化形式为__________________________;(2) 设F(x):x具有性质F,G(x):x具有性质G. 命题“有的x既有性质F、又有性质G”的符号化形式为__________________________;(3) 设F(x):x具有性质F,G(y):y具有性质G. 命题“若所有的x都有性质F,则所有的y都有性质G”的符号化形式为__________________________;(4) 设F(x):x具有性质F,G(y):y具有性质G. 命题“若存在x具有性质F,则所有的y都没有性质G”的符号化性质为__________________________;(5) 设A为任意的一阶逻辑公式,若A中_________________,则称A为封闭的公式;(6) 在一阶逻辑中将命题符号化时,若没指明个体域,则使用________________个体域.2. 用0元谓词将下列命题符号化(1) 只要4不是素数,3就是素数;(2) 只有2是偶数,4才是偶数;(3) 5是奇数当且仅当5不能被2整除.3. 在一阶逻辑中将下列命题符号化(1) 所有的整数,不是负整数,就是正整数,或者是0;(2) 有的实数是有理数,有的实数是无理数;(3) 发明家都是聪明的并且是勤劳的.王前进是发明家. 所以, 王前进是聪明的并且是勤劳的.4.在一阶逻辑中,将下列命题符号化(1) 实数不都是有理数;(2) 不存在能表示成分数的无理数.5.在一阶逻辑中,将下列命题符号化(1) 若x与y都是实数且x>y,则x+2>y+2;(2) 不存在最大的自然数.6.证明题(1) 证明∀x(F(x)→G(x))∧∃y(H(y)∧⌝R(y))为可满足式、但不是永真式;(2) 证明(∀xF(x)∨∃yG(y))∧⌝∃yG(y) →∀xF(x)为永真式.(五)1.填空题.(1) ⌝∃x∀yF(x,y)的前束范式为_______________________;(2)由量词量词分配等值式,∃x(A(x)∨B(x))⇔________________;(3) 缩小量词的辖域, ∀x(F(x)→B)⇔ ________________;(4)公式((∀y⌝G(x)∧∀xF(x))∧∃yG(y))→∀xF(x)的类型为_____________________;(5)取解释I为:个体域为D={a},F(x):x具有性质F,在I下∀xF(x)↔∃xF(x)的真值为_________;(6)前提:∀x∃yF(x,y)结论:∃yF(y,y)以上推理是错误的,某学生却给出了如下证明:①∀x∃yF(x,y) 前提引入②∃yF(y,y) ①∀-此证明错在_____________________.2.在有限个体域内消去量词.(1)个体域D={1,2,3},公式为∀x∀y(F(x)→G(y))(2)个体域D={a,b},公式为∀x∃y(F(x,y)→G(y,x))3.求前束范式.(1)∀x(F(x,y)→∀y(G(x,y)→∃zH(x,y,z)));(2) (∃xF(x,y)→∀yG(x,y,z))→∃zH(z).4.在自然推理系统N L中,构造下面推理的证明.(1)前提:∀x∀y(F(x)→G(y)), F(a)结论:∃xG(x)(2)前提:∀x(F(x)→∀y(G(y)∧H(x))), ∃xF(x)结论:∃x(F(x)∧G(x)∧H(x))5.在自然推理系统F中,构造下面用自然语言描述的推理.火车都比汽车快,汽车都比轮船快,a是火车,b是汽车,c是轮船.所以,a比b快,b比c快.(六)1. 填空题(1) 设A={2,a,{3},4}, B={∅, 4,{a},3},则A⊕B=______________________________;(2) 设A={{{1,2}},{1}},则P(A)=__________________________________________;(3) 设X,Y,Z为任意集合,且X⊕Y={1,2,3}, X⊕Z={2,3,4},若2∈Y, 则一定有_______;A. 1∈ZB. 2∈ZC. 3∈ZD. 4∈Z(4) 下列命题中为真的是________________________________________________;A. {a,{b}}∈{{a,{b}}}B. ∅∈P(⋃{∅,{∅}})C.{a}⊆X⇔a∈XD. X⋃Y=Y⇔X=∅E. X-Y=X⇔X⊆~Y(5) 设[0,1]和(0,1)分别表示实数集上的闭区间和开区间,则下列命题中为真的是_____________________________________;A. {0,1}⊆ (0,1)B. {0,1}⊆ [0,1]C. (0,1)⊆[0,1]D. [0,1]⊆QE. {0,1}⊆Z(6) 设[a,b], (c,d)代表实数区间,那么([0,4]⋂[2,6])-(1,3)=_________________________.2. 简答题(1) 设E={1,2,...,12},A={1,3,5,7,9,11}, B={2,3,5,7,11},C={2,3,6,12}, D={2,4,8},计算:A⋃B, A⋂C, C-(A⋃B), A-B, C-D, B⊕D.(2) 设A={{a},{a,b}}, 求⋃A, ⋂A, ⋃⋃A-⋂⋃A.(3) 设A, B, C为集合,判断下列集合等式是否为恒等式,并说明理由.(A⋃B⋃C)-(A⋃B) = C, A-(B-C) = (A-B) - (A-C)(4) 找出下列集合等式成立的充分必要条件, 并简单说明理由.(A-B)⊕(A-C)=∅3. 证明题(1) A⊆B⇒C-B⊆C-A;(2) A⋃B=E⇔~A⊆B⇔~B⊆A.4. 应用题(1)一个学校有507, 292, 312和344个学生分别选了微积分、离散数学、数据结构或程序设计语言课,且有14人选了微积分和数据结构课,213人选了微积分和程序设计语言课,211人选了离散数学和数据结构课,43人选了离散数学和程序设计语言课,没有学生同时选微积分和离散数学课,也没有学生同时选数据结构和程序设计语言课。
离散数学-复习提纲
![离散数学-复习提纲](https://img.taocdn.com/s3/m/2a82919fdd88d0d233d46a70.png)
第4.1节 代数系统
定义:设(A,*)是代数系统,如果对于A中任意 元素a和b,都有a*b = c∈A,则称二元运算*对 于A是封闭的,简称*为封闭运算。 例:
(R,+)、(R,-)、(R,×)、(R,÷)是封闭 的 (Z,+)、(Z,-)、(Z,×)是封闭的
(Z,÷)是不封闭的
第4.1节 代数系统
<R, × >, <Q, × > 是群?
第4.3节 群
对于(Nk,k),情况特别。 ⑴(Nk,k)不是群。因为1是幺元,0没有逆 元。 ⑵k为偶数时,(Nk-{0},k)不一定是群。如 k=6,364=0。 ⑶k为奇数时,(Nk-{0},k)不一定是群。如 k=9,396=0。 ⑷k为素数时,(Nk-{0},k)一定是群。
第3.2节 特殊函数
定义:设f是A到B的映射, 若对任意的x,y∈A,x≠y时, 均有 f(x)≠ f(y),则称f为A到B的单射。 若f(A)=B,则称f是A到B上的满射。 若f既是满射又是单射,则称f为A到B的双射, 或1––1映射,或一一对应。
例:设集合A={1,2,3},B={1,2,3,4},那么在A 到B中,可以定义多少种不同的单射函数? 1 2 3 1 2 3 1 2 3 1 2 4 第一行固定, 第二行从B中4个元素取3个做排列,P34。
第4.2节 半群与独异点
定义:设(A,*)是代数系统,且*满足: ⑴运算*对于A是封闭的 ⑵运算*是可结合的 ⑶(A,*)含有幺元 则称(A,*)为独异点。
例:代数系统(R,+)、(Q,+)、(Z,+)都是独 异点,即含幺元0的半群。
第4.2节 半群与独异点
定义:设(A,*)是独异点,B是A的子集,如果 (B,*)也是独异点,且(A,*)中的幺元也属于 (B,*)。则称(B,*)为(A,*)的子独异点。
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/4c8f8d5dff4733687e21af45b307e87101f6f8f2.png)
离散数学复习提纲2010-2011-1《离散数学》复习提纲第⼀部分数理逻辑第⼀章命题逻辑基本概念§1.1 命题与联结词1. 命题与真值命题,命题的真值,真命题,假命题,简单命题(原⼦命题),复合命题2. 命题与真值的符号化⽤p,q,r等⼩写英⽂字母表⽰命题,⽤数字1代表真,0代表假。
3. 常⽤联结词及其符号化否定,合取,析取,蕴涵,等价4. 基本复合命题设p,q为命题否定式┐p合取式p∧q析取式p∨q蕴涵式p→q分清逻辑关系、真值以及在⾃然语⾔中对“p→q”的不同的描述⽅法。
等价式p?q5. 复合命题基本复合命题以及多次使⽤常⽤联结词复合⽽成的命题统称为复合命题。
深刻理解5种常⽤联结词的涵义,并能准确地应⽤它们将复合命题符号化。
§1.2 命题公式及其赋值1. 命题常项与命题变项命题常项(简单命题),命题变项(取值为1或0的变量p,q,r……)2. 命题公式与赋值合式公式(也称命题公式或公式),公式的层次,公式的赋值,成真赋值,成假赋值,真值表3. 命题公式的类型重⾔式(永真式),⽭盾式(永假式),可满⾜式4. 判断公式类型的⽅法在本章内主要⽤真值表判断命题公式的类型,进⽽求公式的成真赋值和成假赋值。
理解命题的赋值、成真赋值,成假赋值,重⾔式、⽭盾式、可满⾜式第⼆章命题逻辑等值演算§2.1 等值式1. 等值式若A?B为重⾔式,则称A与B是等值的。
记为A?B2. 基本等值式3. 等值演算由已知等值式推演除新的等值式的过程。
4. 重⾔式与⽭盾式的判别法A为重⾔式当且仅当A?1,A为⽭盾式当且仅当A?0。
§2.2 析取范式与合取范式1. 基本概念⽂字,简单析取式,简单合取式,极⼩项,极⼤项,析取范式,合取范式,主析取范式,主合取范式深刻理解极⼩项、极⼤项的定义、名称、下脚标与成真赋值的关系。
2. 主要定理在命题逻辑中,任何公式都存在与之等值的主析取范式和主合取范式,并且是唯⼀的。
离散数学期末复习大纲
![离散数学期末复习大纲](https://img.taocdn.com/s3/m/1f6d006f80eb6294dc886c3e.png)
证:上式(R(QR)(PQ))P(PQPQ)
(R(QR) (PQ))P
(公式的否定公式)
((R(QR)) ((PQ)P)
(结合律)
((RQ)(RR))((PP)(QP) (分配律)
(RQ)(QP) R高校Q教育精品QPPTP T (互补,同一律) 12
4.永真蕴涵式的证明, 记住常用的公式. A B
离散数学
期末总复习
高校教育精品PPT
1
复习时注意
准确掌握每个概念 灵活应用所学定理 注意解题思路清晰 证明问题时,先用反向思维(从结 论入手)分析问题,再按正向思维
写出证明过程.
高校教育精品PPT
2
全书知识网络: 命题逻辑 谓词逻辑 数理逻辑篇
图 论 集合初步 篇
二元关系
函数
集合论篇
<{T,F},,,,,> <p(E),~,∩,∪,-,>
4.掌握等价关系的判断,证明,求等价类和商集.
*4.掌握相容关系定义,简化图和简化矩阵,相容类,最大相 容类,完全覆盖.
5.偏序关系的判断,会画Hasse图,会求一个子集的极小(大)
元,最小(大)元,上界与下界,最小上界及最大下界.
第六章 函数
1.函数的定义.
2.函数的类型, 会判断,会证明.
3.会计算函数的复合(左复合),求逆函数.知道有关性质.
• ∨:析取 表示“或者-可兼取的或”
• :异或 表示“或者-不可兼取的或”
• :蕴涵 表示“如果…,则...”
• : 等价 表示“当且仅当”“充分且必要”
• 可以将这六个联结词看成六种“运算”。
高校教育精品PPT
10
联结词的定义(包括真值表和含义).
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/1791720d2bf90242a8956bec0975f46527d3a791.png)
离散数学复习提纲集合论一、基本概念集合(set):做为整体识别的、确定的、互相区别的一些对象的总体。
规定集合的三种方式:列举法、描述法、归纳法集合论的三大基本原理外延公理:两个集合A和B相等当且仅当它们具有相同的元素(无序性)概括公理:对于任意个体域U,任一谓词公式P都确定一个以该域中的对象为元素的集合S(确定性)正规公理:不存在集合A1,A2,A3,…使得…∈A3∈A2∈A1(有限可分,集合不能是自己的元素)注意:隶属、包含的判断(有时两者兼有)定理1:对于任意集合A和B,A=B当且仅当A ? B且B ? A传递性,对全集、空集的?关系等定理5:空集是唯一的子集、真子集、子集个数等运算:并、交、补、差、幂集,及一些运算性质、公式幂集:对任意集合A,ρ(A)称作A的幂集,定义为:ρ(A)={x|x?A},所有子集的集合设A,B为任意集合,A A B当且仅当ρ(A) ?ρ(B)集合族:如果集合C中的每个元素都是集合,称C为集合族集合族的标志集:如果集合族C可以表示为某种下标的形,C={Sd|d∈D},那么这些下标组成的集合称作集合族C的标志集广义并、广义交,及相关运算性质、公式归纳定义:基础条款:规定某些元素为待定义集合成员,集合其它元素可以从基本元素出发逐步确定归纳条款:规定由已确定的集合元素去进一步确定其它元素的规则终极条款:规定待定义集合只含有基础条款和归纳条款所确定的成员基础条款和归纳条款称作“完备性条款”,必须保证毫无遗漏产生集合中所有成员终极条款又称“纯粹性条款”,保证集合中仅包含满足完备性条款的那些对象例:自然数的归纳定义、数学归纳法等……(建议看一下课件例子了解一下思路)二、关系有序组(二元):设a,b为任意对象,称集合族{{a},{a,b}}为二元有序组,简记为称a为的第一分量,b为第二分量递归定义:n=2时,={{a1},{a1,a2}}n>2时,=<< a1,…,an-1>, an>集合的笛卡儿积:对任意集合A,A2,…,A,A1×A2称作集合A1,A2的笛卡儿积,定义如下:A1×A2 = { | u∈A1,v∈A2}A1×A2×…×An =(A1×A2×…×An-1) ×An定理:对于任意有限集合A1,…,An,有|A1×…×An|=|A1|*…*|An|一些运算性质关系是各个对象之间的联系和对应R称为集合A1,A2,…,An-1到An的n元关系,如果R是A1×A2×…×An的一个子集。
离散数学复习提纲
![离散数学复习提纲](https://img.taocdn.com/s3/m/809be1a90c22590103029d00.png)
一、数理逻辑(第1章、第2章)·命题定义、联结词(与、或、非、单条件、双条件)·命题公式、真值、真值表、符号化·谓词、量词(全称、存在)、谓词公式·一阶逻辑符号化(所有的。
是。
,、和有些。
是。
特性谓词)·谓词公式求真值(在某种解释下)·命题公式的等值(等价)演算(十大定律)·命题公式的主范式·谓词公式的前束范式·命题逻辑应用·命题逻辑推理(推理定律、推理规则:P,T,CP)·谓词逻辑推理(推理定律、推理规则:P,T,CP,UI,EI,UG,EG)····························二、集合论(第3章)·集合的定义与表示方法(解析法、枚举法、文氏图法)·集合间的相互关系(定义,符号:⊆⊂ =)·集合的运算定义与图示(⋂⋃ - ~⊕⨯ P / )——入集条件·集合定律(十大定律)·集合恒等式的证明法一:直接利用定律及已证等式法二:利用集合相等的定义(①左⊆右∧右⊆左②x∈左⇔ x∈右)·集合的元素计数与应用(包容排斥原理)·································三、关系论(第4章)·二元关系的定义及其表示(解析法、集合法、图示法、矩阵法)·关系的运算(集合的所有运算+左复合、求逆、求闭包)·关系的性质(定义、关系图特点、矩阵的特点、证明)·等价关系(定义、等价类、上集、划分)·偏序关系与偏序集(定义、哈斯图)·全序集(线序集、定义、最元、极元、界元、确界)·································四、函数论(第4章)·定义(唯一性)·A到B的函数(唯一性、良定性)·特殊函数(常、恒等、单增、单减、特征、自然映射)·BA的计数·函数的性质(单、满、双,判断)·函数的复合(左复合)·反函数(只有双设才有)·······························五、代数系统(第5章、第6章)·二元运算(定义,封闭性)、运算表·各种定律(交换、结合、幂等、分配、吸收、消去、幺元、零元、逆元)·代数系统、子代数、积代数(定义、特殊元素、代数常数)·同态与同构(同态等式、证明)·半群、独异点·群、子群、阿贝尔群、生成子群、元素的阶(周期)、循环群(定义与证明)·环、含幺环、零因子、无零因子环、整环、除环与域·格(两种定义)、分配格、有界格、布尔格(判断)·······························六、图论(第7张、第8张、第9张)·无向图、有向图、零图、平凡图、完全图、子图、生成子图、补图·第一握手定理、度数序列·通路、回路、简单。
离散数学重点难点复习提纲
![离散数学重点难点复习提纲](https://img.taocdn.com/s3/m/70dad572a417866fb84a8efa.png)
第一部分数理逻辑第一章命题逻辑重点:●熟练掌握联结词的定义;●掌握数理逻辑中命题的翻译及命题公式的定义;●熟记基本的等价公式和蕴涵公式;●利用真值表技术和公式法求公式的主析取范式和主合取范式;●熟练掌握应用基本推理方法完成命题逻辑推理:1.直接证法2.反证法3.CP规则难点:●如何正确地掌握对语言的翻译;●如何利用推理方法正确的完成命题推理。
第二章谓词逻辑重点:●谓词、量词、个体域的概念;●谓词逻辑中带量词命题的符号化;●熟记基本的谓词等价公式;●求公式的前束范式;●掌握谓词逻辑的推理规则以及能够熟练地完成一阶逻辑推理;难点:●谓词逻辑中带量词命题的符号化;●如何利用推理方法正确地完成一阶逻辑推理。
第二部分集合论第三章集合与关系重点:●掌握集合的五种基本运算和集合相等的证明方法;●幂集的概念以及和子集的关系;●序偶和笛卡尔积的概念;●关系定义及其和笛卡尔积之间的联系;●关系的复合;●关系的五种性质及其判断和证明;●关系的闭包;●等价关系定义、证明及其与等价类、集合的划分间的关系;●偏序关系的定义和证明,哈斯图;●偏序关系中的特殊元素;难点:●如何正确证明集合之间包含和相等关系;●如何正确地理解和判断关系的性质;●非常重要的关系性质的证明方法——按定义证明法;●如何正确地掌握等价关系及相应的等价类与集合划分之间的关系;●如何正确地理解和判断偏序关系中的八种特殊元素。
第四章函数重点:●能够判定某个二元关系是否是函数;●几种特殊的函数:满射,单射,双射;难点:●如何正确地判断三种特殊函数。
第三部分代数结构重点:●理解代数结构的构成和研究方法;●代数结构中运算的性质以及特殊元素;●广群⇒半群⇒独异点⇒群;●群的定义与性质;●环与域的判断和证明;●格的两种定义;●特殊格:分配格、有界格、有补格、有补分配格;●有补分配格与布尔代数之间的联系;难点:●循环群的判断和证明;●如何正确理解由偏序关系定义的格与由代数系统定义格之间的关系和区别;●如何正确理解布尔代数的概念。
离散数学复习要点
![离散数学复习要点](https://img.taocdn.com/s3/m/3737ddca4028915f804dc213.png)
《离散数学》复习大纲本说明包括以下部分:考核说明及实施要求考核内容和要求第一部分集合论第二部分数理逻辑第三部分图论第四部分代数结构第一部分集合论(集合和二元关系)一、集合[考核知识点]集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan律等),文氏(Venn)图序偶与迪卡尔积[考核要求]理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
掌握集合的表示法和集合的交、并、差、补等基本运算。
掌握集合运算基本规律,证明集合等式的方法。
了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
二、二元关系[考核知识点]关系、关系矩阵与关系图复合关系与逆关系关系的性质(自反性、对称性、反对称性、传递性)关系的闭包(自反闭包、对称闭包、传递闭包)等价关系与等价类[考核要求]理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
掌握求复合关系与逆关系的方法。
理解关系的性质(自反性、对称性、反对称性、传递性),掌握其判别方法(定义、矩阵、图) 掌握求关系的闭包 (自反闭包、对称闭包、传递闭包)的方法。
理解等价关系的概念,掌握等价类的求法。
理解单射、满射、双射等概念,掌握其判别方法。
三、 典型题第一章 集合1. 设A=∅, B={∅,a,{a}},求P(A)和P(B).2. 设A={1,2,3,4} , B={a,b,c}, 求A ⨯B 和B ⨯A.3. P21: 84. P22: 125.证明:B A B A =-6.思考题 P29: 15, 16第二章 关系1. 设A={1,2,3,4},A 上的关系R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),(3,4)}, S=={(2,1), (1,2), (2,3), (1,4), (2,2), (2,4),(4,4)}, 求(1) R 和S 的关系图和关系矩阵(2) R-S(3) S R 1-(4) S R ⊕(5) A 上的恒等关系I A2. 设A={a ,b ,c },R 是A 上的关系R={(a,a),(a,c),(c,b)}, 求 ∞=1n n R3. 设R 是A 上的关系,请叙述R 具有自反性,反自反性,对称性,反对称性和传递性的含义4. 设A={1,2,3,4,5},A 上的关系R={(a,b)|a-b 是偶数},求R ,判断R 具有的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学复习提纲(图论)
1. 判别图6-1的两幅图是否可以一笔画出?
解 在图6-1(a ) 中,
deg(v 1)=deg(v 2)=deg(v 3)=3
有两个以上的结点的度为3. 故在(a )中不存在欧拉通路,不能一笔画出.
在图6-1(b ) 中,deg(A )=2, deg(B ) =deg(C )= deg(D )=4,deg(E ) =deg(F )=3
只有两个奇数度的结点,所以存在欧拉通路,可以一笔画出. 一条欧拉通路,如EDBEFCABCDF .
2. 画出具有下列条件的有5个结点的无向图.
(1) 不是哈密顿图,也不是欧拉图; (2) 有哈密顿回路,没有欧拉回路; (3) 没有哈密顿回路,有欧拉回路; (4) 是哈密顿图,也是欧拉图. 解 作图如图6-3(不唯一).
(1) (2) (3) (4) 在图(1)中,可以走遍5个点,但不是回路,无哈密顿回路,故不是哈密顿图。
无论指定怎样的方向,可以走遍所有边,但不是回路,不能构成欧拉路。
在图(2)中,容易找出走遍5个点的回路,即有哈密顿回路,故是哈密顿图。
但是构成
回路,要么出现重复边,要么漏掉边,即不存在欧拉回路,因此不是欧拉图。
在图(3)中,不重复地走遍5个点是不可能的,故不是哈密顿图。
如指定右边垂直边方
向向上,就可以画出一个走遍所有的边,又不重复的回路,所以有欧拉回路,故是哈欧拉图。
v 4 v 5 E F
A
v 2 v 3 B C v 1 D (a ) (b ) 图6-1
第1个面,边界为a b e a ,次数为3;第2个面,边界为b d e b ,次数为3; 第3个面,边界为a b c a ,次数为3;第4个面,边界为a d e a ,次数为3; 第5个面,边界为a c b d a ,次数为4。
(b )图中共有两个面,第1个面,边界为 g f c d e f g ,次数为6; 第2个面,边界为 a b c d e f c b a ,次数为8。
4.在具有n 个结点的完全图K n 中,需要删去多少条边才能得到树?
解 n 个结点的完全图共有2
)
1(2
-=
n n C n 条边,而n 个结点的树共有n -1条边. 因此需要删去2
)2)(1()1(2
--=--n n n C n 条边后方可得到树.
5.设G 是图,无回路,但若外加任意一条边于G 后,就形成一回路. 试证明G 必为树.
证明 由树的定义可知,只需证G 连通即可. 任取不相邻两点u ,v , 由题设,加上边<u ,v >就形成一回路,于是去掉边<u ,v >,从u 到v 仍有路u ,…,v ,即u ,v 连通,由u ,v 的任意性可知,G 是连通的,故G 必是树.
6.如图6-5是有6个结点a ,b ,c ,d ,e ,f
的带权无向图,各边的权如图所示. 试求 其最小生成树.
解 构造连通无圈的图,即最小生成树,
b ∙ 23 1 15
c ∙ 25 ∙ a 4 ∙ f 28 9 16 3
d ∙ 15 ∙
e 图6-5
用克鲁斯克尔算法:
第一步: 取ab =1;第二步: 取af =4;第三步: 取fe =3;第四步: 取ad =9; 第五步: 取bc =23.
如图6-6。
权为1+4+3+9+23=30
7.试画出一棵带权1,2,2,3,4,5,5,6,7,8,10的最优二叉树。
解:最优二叉树如下:
9.试证明下图中两个无向图是不同构的。
10.一个简单无向图同构于它的补图,称为自补图,证明其结点必是4k 或者4k+1.
11.非平凡的树至少有两个叶子。
12.证明: 在任何n (n ≥2)个顶点的简单图G 中,至少有两个顶点具有相同的度。
证 如果G 有两个孤立顶点,那么它们便是具有相同的度的两个顶点。
如果G 恰有一个孤立顶点,那么我们可对有n – 1 个顶点但没有孤立顶点的G’(它由G 删除孤立顶点后得到)作下列讨论。
不妨设G 没有孤立顶点,那么G 的n 个顶点的度数应是:1,2,3,…,n –1 这n –1种
b ∙ 23 1
c ∙ ∙ a 4 ∙ f 9 3
d ∙ ∙
e 图6-6
可能之一,因此必定有两个顶点具有相同的度。
13.n 个城市间有m 条相互连接的直达公路。
证明:当2)
2)(1(-->
n n m 时,人们便能通
过这些公路在任何两个城市间旅行。
证 用n 个顶点表示n 个城市,顶点间的边表示直达公路,据题意需证这n 个城市的公路网络所构成的图G 是连通的。
反设G 不连通,那么可设G 由两个不相关的子图(没有任何边关联分别在两个子图中的顶点)G1,G2组成,分别有n 1,n 2个顶点,从而,n = n 1+n 2,n 1 ≥1,n 2 ≥1。
由于各子图的边数不超过2)
1(-i i n n ,因此G 的边数m 满足: ))
1()1((21
)1(2122111-+-=-≤∑=n n n n n n m k i i i
))
1)(1()1)(1((21
21--+--=n n n n
)
2)(1(21
)2)(1(21
21--=-+-=n n n n n
与已知2)2)(1(-->
n n m 矛盾,故图G 是连通的。
14.有7人a ,b ,c ,d ,e ,f ,g 分别精通下列语言,问他们7人是否可以自由交谈(必要时借助他人作翻译)。
a 精通英语。
b 精通汉语和英语。
c 精通英语、俄语和意大利语。
d 精通日语和英语。
e 精通德语和意大利语。
f 精通法语、日语和俄语。
g 精通法语和德语。
解 下图中7个顶点表示7个人,关联两个顶点的边表示两个人同时精通某一种语言:
由于该图是连通的,因此他们7人是可以自由交谈(必要时借助他人作翻译)。
15.证明:恰有两个奇数度顶点u,v 的无向图G 是连通的,当且仅当在G 上添加边(u ,v )后所得的图G*是连通的。
证 必要性是显然的。
a
b d
c e g f
设G*是恰有两个奇数度顶点u,v的无向图G添加边(u,v)后所得,且是连通的,那么图G*是一个欧拉图(每一个顶点都是偶数度的连通图),因此G*中删除边(u,v)后所得的图G仍是连通的。
判别图8.31中各图是否为哈密顿图,若不是,请说明理由,并回答它是否有哈密顿通路。
图8.31
解(a),(b) 是为哈密顿图。
(c) 不是哈密顿图,也没有哈密顿通路。
在图(c)中增加顶点k ,并对其顶点做二着色,构成图(d)(如下)。
图(d) 不是哈密顿图,也没有哈密顿通路。
因为图中白色顶点比黑色顶点多两个。
故(c) 不是哈密顿图,
课后习题:
p279: 1,2,3,5
p287: 3,4,5,7,8
p300: 1,2,3,4
p311: 1,2,3,6
p317: 1,2,4
p321: 1,3,5
p327: 1,2,6
p337: 1,3,6,8。