超大规模集成电路2017年秋段成华老师第四次作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.Shown below are buffer-chain designs.
(1) Calculate the minimum delay of a chain of inverters for the overall
effective fan-out of 64/1.
(2) Using HSPICE and TSMC 0.18 um CMOS technology model with 1.8 V power
supply, design a circuit simulation scheme to verify them with their
.
correspondent parameters of N, f, and t
p
N=3.6 ∴N=3.246
(1)γ=1 F=64∴f=√F
所以最佳反相器数目约为3
通过仿真可以得到tphl=1.3568E-11 tplh=1.7498E-11 tp0=1.5533E-11
(2)N=1时,tphl= 5.2735E-10 tplh= 8.1605E-10 tpd= 6.7170E-10
N=2时,tplh=2.2478E-10 tphl=2.5567E-10 tpd=2.4023E-10
N=3时,tphl=2.0574E-10 tplh=2.1781E-10 tpd=2.1178E-10
N=4时,tplh=2.1579E-10 tphl=2.2189E-10 tpd=2.1884E-10
从仿真结果可以看出N=3或者N=4时延迟时间最优,且N=2、3、4得到的仿真延迟时间与理论推导的时间比较接近,比例基本上是18、15、15.3,而N=1时仿真得到的延迟时间远小于理论推导的时间,但是最优结果依旧是N=3,f=4,tp=15。* SPICE INPUT FILE: Bsim3demo1.sp--a chain of inverters
.param Supply=1.8
.lib 'C:\synopsys\Hspice_A-2007.09\tsmc018\mm018.l' TT
.option captab
.option list node post measout
.tran 10p 6000p
************************************************************
.param tdval=10p
.meas tran tplh trig v(in) val=0.9 td=tdval rise=2
+targ v(out) val=0.9 rise=2
.meas tran tphl trig v(in) val=0.9 td=tdval fall=2
+targ v(out) val=0.9 fall=2
.meas tpd param='(tphl+tplh)/2'
*macro definitions
************************************************************
*
*nmos1
.subckt nmos1 n1 n2 n3
mn n1 n2 n3 Gnd nch l=0.2u w=0.4u ad=0.2p^2 pd=0.4u as=0.2p^2 ps=0.4u .ends nmos1
*
*pmos1
*
.subckt pmos1 p1 p2 p3
mp p1 p2 p3 Vcc pch l=0.2u w=0.8u ad=0.4p^2 pd=0.8u as=0.4p^2 ps=0.8u .ends pmos1
*
.subckt inv1 in out
xmn out in Gnd nmos1
xmp out in Vcc pmos1
vcc Vcc Gnd Supply
.ends inv1
*
*nmos2
*
.subckt nmos2 n1 n2 n3
mn n1 n2 n3 Gnd nch l=0.2u w=1.12u ad=0.56p^2 pd=1.12u as=0.56p^2 ps=1.12u .ends nmos2
*
*pmos2
*
.subckt pmos2 p1 p2 p3
mp p1 p2 p3 Vcc pch l=0.2u w=2.24u ad=1.12p^2 pd=2.24u as=1.12p^2 ps=2.24u .ends pmos2
*
.subckt inv2 in out
xmn out in Gnd nmos2
xmp out in Vcc pmos2
vcc Vcc Gnd Supply
.ends inv2
*
*nmos3
*
.subckt nmos3 n1 n2 n3
mn n1 n2 n3 Gnd nch l=0.2u w=3.2u ad=1.6p^2 pd=3.2u as=1.6p^2 ps=3.2u .ends nmos3
*
*pmos3
.subckt pmos3 p1 p2 p3
mp p1 p2 p3 Vcc pch l=0.2u w=6.4u ad=3.2p^2 pd=6.4u as=3.2p^2 ps=6.4u .ends pmos3
*
.subckt inv3 in out
xmn out in Gnd nmos3
xmp out in Vcc pmos3
vcc Vcc Gnd Supply
.ends inv3
*
*nmos4
*
.subckt nmos4 n1 n2 n3
mn n1 n2 n3 Gnd nch l=0.2u w=9.04u ad=4.52p^2 pd=9.04u as=4.52p^2 ps=9.04u .ends nmos4
*
*pmos4
*
.subckt pmos4 p1 p2 p3
mp p1 p2 p3 Vcc pch l=0.2u w=18.08u ad=9.04p^2 pd=18.08u as=9.04p^2 ps=18.08u
.ends pmos4
*
.subckt inv4 in out
xmn out in Gnd nmos4
xmp out in Vcc pmos4
vcc Vcc Gnd Supply
.ends inv4
*main circuit netlist
xinv1 in out1 inv1
xinv2 out1 out2 inv2
xinv3 out2 out3 inv3
xinv4 out3 out inv4
cl out Gnd 154.24f
Vin in Gnd 0.9 pulse(0.0 1.8 219p 40p 40p 1100p 2400p)
.print tran v(in) v(out)
.end
2.Consider the logic network below, which may represent the critical path
of a more complex logic block. The output of the。 network is loaded with a capacitance which is 5 times larger than the input capacitance