箱涵计算书
钢筋混凝土箱涵结构计算书
钢筋混凝土箱涵结构计算书钢筋混凝土箱涵结构计算书1. 引言1.1 目的1.2 背景1.3 参考文献2. 施工条件2.1 工程地点2.2 地质条件2.3 设计标准3. 结构荷载3.1 车辆荷载3.2 流体压力3.3 水压力3.4 附加荷载4. 结构设计参数4.1 基本参数4.2 箱涵尺寸4.3 壁厚和筋筒4.4 强度设计4.5 钢筋数量和布置4.6 预应力设计5. 结构稳定性分析5.1 稳定性检查5.2 基准状态分析5.3 极限状态分析5.4 不均衡荷载分析6. 结构承载力分析6.1 截面抗弯承载力 6.2 截面抗剪承载力 6.3 截面承载力验算6.4 管道斜向荷载分析7. 结构变形与开裂分析7.1 变形分析7.2 开裂控制7.3 变位控制8. 结构施工图设计8.1 平面布置图8.2 纵断面图8.3 标准截面图8.4 细部结构图8.5 基础设计图9. 验证与检查9.1 工程验收标准 9.2 施工过程监控 9.3 结构验收测试9.4 结构完整性检查10. 附件附件A:结构计算表格附件B:设计图纸11. 法律名词及注释- 标准:为保证工程安全、可靠并推进工程质量合理提高,国家制定的统一、强制性要求。
- 设计标准:根据工程特点和设计要求制定的合用于该工程的技术规格和措施。
- 施工图设计:根据设计图纸和要求合理选定方案、编制图纸,为实施施工提供依据的过程。
- 结构验收测试:对已完工的结构进行力学性能、几何形态等各项检测,以证明其符合设计要求。
箱涵计算书(承载力及配筋计算)
箱涵计算书(承载力及配筋计算)范本一:一:引言本文档旨在详细介绍箱涵的承载力及配筋计算方法。
其中包括箱涵的基本概念、计算方法、示例等内容,以便读者对箱涵的设计和施工有更深入的理解。
二:箱涵的基本概念1.1 箱涵的定义箱涵是一种承载结构,常用于道路、铁路等交通工程中的桥梁建设。
它由桥盖、箱体、辅助构件等部分组成。
1.2 箱涵的分类根据构造形式和用途,箱涵可以分为预制混凝土箱涵、钢筋混凝土箱涵等。
1.3 箱涵设计的相关参数箱涵设计需要考虑的参数包括:车辆荷载、地基条件、施工工艺等。
三:箱涵的承载力计算2.1 桥盖的承载力计算桥盖承载力的计算需要考虑自重荷载、活载荷载、温度变形等因素,并通过强度、刚度和稳定性进行检验。
2.2 箱体的承载力计算箱体承载力的计算需要考虑土压力、水压力、地震力等因素,并通过强度、刚度和稳定性进行检验。
四:箱涵的配筋计算3.1 桥盖的配筋计算桥盖的配筋计算需要考虑受力状态、受力面积等因素,并根据相应的设计规范进行计算。
3.2 箱体的配筋计算箱体的配筋计算需要考虑受力状态、受力面积等因素,并根据相应的设计规范进行计算。
五:示例分析本节将通过一个具体的实例来演示箱涵的承载力及配筋计算方法,以便读者更好地理解和应用。
六:附件本文档相关的附件见附件目录。
七:法律名词及注释******************************************************* ***********************范本二:一:前言本文档的目的是详细介绍箱涵的承载力及配筋计算方法,以及相关的设计规范和标准。
通过阐述箱涵的基本概念、计算方法和实例分析,旨在为读者提供参考和指导。
二:箱涵的基本概念2.1 箱涵的定义箱涵是一种承载结构,常用于公路、铁路等交通工程中的桥梁建设。
它由桥盖、箱体、辅助构件等组成。
2.2 箱涵的分类根据结构特点和用途,箱涵可以分为预制混凝土箱涵、钢筋混凝土箱涵等。
箱涵结构计算书
L p 图1-1一、设计资料(一)概况:***道路工程经过水库溢洪道处设置箱涵,箱涵净跨L 0=8.0米,净高h 0=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度H=米,填土的内摩擦角φ为24°,土体密度γ1=m 3,设箱涵采用C25混凝土(f cd =)和HRB335钢筋(f sd =280MPa)。
桥涵设计荷载为城-A 级,用车辆荷载加载验算。
结构安全等级二级,结构重要性系数γ0=。
地基为泥质粉砂岩,[σ0]=380kPa ,本计算书主要内容为结构设计与地基应力验算。
(二)依据及规范 1、《城市桥梁设计荷载标准》(CJJ77-98) 2、《公路桥涵设计通用规范》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4、《公路桥涵地基与基础设计规范》(JTGD63-2007)二、设计计算(一)截面尺寸拟定(见图1-1) 箱涵过流断面尺寸由水利部门提供,拟定顶板、底板厚度δ=100cm (C 1=50cm ) 侧墙厚度 t =100cm (C 2=50cm )故 L P =L 0+t=8+1=9m h p =h 0+δ=+1=11.5m (二)荷载计算1、恒载恒载竖向压力P =γ1H+γ2δ=×+25×1=m 2恒载水平压力顶板处: e p1=γ1Htan 2(45o -φ/2)=××tan 2(45o -24o /2)= kN/m 2底板处:e p2=γ1(H +h )tan 2(45o -φ/2)=×(+)×tan 2(45o -24o /2) =m 2 2、活载城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土压力,车轮扩散角30o 。
1) 先考虑按六车道(7辆车)分布,横向折减系数 一个汽车后轮横向分布宽>1.3m/22+ tan30o =2.38m>1.8m/2故,两列车相邻车轴有荷载重叠,按如下计算横向分布宽度a=2+ tan30o ) ×2+22=26.76m 同理,纵向分布宽度2+ tan30o =2.2m >1.2m/2故,同列车相邻车轴有荷载重叠,纵向分布宽度按如下计算 b=2+ tan30o ) ×2+=5.6m 车辆荷载垂直压力q 车=(140×2×7)/× ×= kN/m 22) 考虑按两车道(2辆车)分布,横向折减系数 一个汽车后轮横向分布宽>1.3m/22+ tan30o =2.38m>1.8m/2故,两列车相邻车轴有荷载重叠,按如下计算横向分布宽度a=2+ tan30o ) ×2+=9.66m 同理,纵向分布宽度2+ tan30o =1.05m >1.2m/2故,同列车相邻车轴有荷载重叠,纵向分布宽度按如下计算 b=2+ tan30o ) ×2+=5.61m 车辆荷载垂直压力q 车=(140×2×2)/× ×= kN/m 2根据上述计算,车辆荷载垂直压力取大值按两车道布置计算取值 kN/m 2。
箱涵计算书
*******钢筋混凝土箱涵验算*******1. 设计依据:《公路桥涵设计通用规范》(JTG D60-2015) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路圬工桥涵设计规范》(JTG D61-2005) 《公路桥涵地基与基础设计规范》(JTGD63-2007)《公路涵洞设计细则》JTG/T D65-04-20072. 设计资料:设计荷载:公路-Ⅰ级涵洞净跨径l0=2.5 m涵洞净高h0=2.2 m 涵洞水平板厚δ=0.27 m涵洞侧板厚t=0.25 m涵洞倒角高度c1=0.05 m涵洞倒角宽度c2=0.05 m保护层厚度=0.03 m涵身砼标号=C40砼主受力钢筋级别=HRB400顶板钢筋直径=16 mm侧板钢筋直径=16 mm顶板钢筋间距=0.1 m涵顶填土高H=0.9 m土容重γ1=18 kN/m^3钢筋混凝土容重γ2=25 kN/m^3土的内摩擦角φ=30度基础襟边宽=0.2 m基础厚度=0.5 m基础级数=1基础容重=22 kN/m^3基底容许应力=350 kPa涵洞计算跨径lp=l0+t=2.75 m涵洞计算高度hp=h0+δ=2.47 m3. 恒载计算:填土垂直压力p1=K*γ1*H=18.144kN/m^2箱节自重p2=γ2*δ=6.75 kN/m^2恒载竖直压力p恒=24.894 kN/m^2土的侧压力系数λ=0.333恒载水平压力顶板处ep1=5.4 kN/m^2恒载水平压力底板处ep2=21.84 kN/m^24. 活载计算:纵向分布宽度a=1.239 m横向分布宽度b=2.939 m垂直压力q汽=38.436 kN/m^2水平压力eq汽=12.812 kN/m^25. 框架内力计算:1).构件刚度比杆件刚度比K=I1/I2*hp/lp=1.1312).节点弯矩与杆件轴向力计算6. 荷载组合:7. 构件截面内力计算:8. 截面设计计算:(1) 顶板跨中截面计算:受拉纵筋最小面积Ag1应为:8.565 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋5根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=29.163 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=18.789 kN作用长期效应组合Ml=1.0*M1+0.4*M2=22.191 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.38构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=67.701 MPa 钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.057 mmδfmax < 0.2,最大裂缝宽度满足要求(2) 顶板左结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(3) 顶板右结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(4) 底板跨中截面计算:受拉纵筋最小面积Ag1应为:7.867 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋4根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=28.705 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=37.004 kN作用长期效应组合Ml=1.0*M1+0.4*M2=21.733 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.379构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=65.254 MPa钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.055 mm δfmax < 0.2,最大裂缝宽度满足要求(5) 底板左结点处截面计算:受拉纵筋最小面积Ag1应为:6.37 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2 至少需钢筋4根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(6) 底板右结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2 至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(7) 左侧板跨中截面计算:受拉纵筋最小面积Ag1应为:4.4 cm^2 受拉纵筋实际面积Ag2为:10.055 cm^2 至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=-4.256 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=67.304 kN作用长期效应组合Ml=1.0*M1+0.4*M2=-2.638 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.31构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=21.826MPa钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.017 mmδfmax < 0.2,最大裂缝宽度满足要求(8) 左侧板上结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(9) 左侧板下结点处截面计算:受拉纵筋最小面积Ag1应为:5.928 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(10) 右侧板跨中截面计算:受拉纵筋最小面积Ag1应为:4.4 cm^2受拉纵筋实际面积Ag2为:10.055 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=-8.196 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=75.144 kN作用长期效应组合Ml=1.0*M1+0.4*M2=-4.889 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.298构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=39.289 MPa 钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.031 mmδfmax < 0.2,最大裂缝宽度满足要求(11)右侧板上结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(12) 右侧板下结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求9. 基底应力验算:填土重力P1=101.016 kN箱重力P2=68 kN基础重力P3=37.4 kN活载竖直力P=115.309 kN活载水平力E=41.511 kN活载弯矩M=67.248 kN.mΣP=321.725 kNΣM=67.248 kN.mA=3.4 m^2W=1.927δmax=ΣP/A + ΣM/W=129.529 kPaδmin=ΣP/A - ΣM/W=59.721 kPaδmax < 基底容许应力350.00kPa,满足要求!。
箱涵计算书
目录1 计算依据与基础资料 (1)1.1 工程概况 (1)1.1.1截面尺寸 (1)1.1.2填土情况 (1)1.2 标准与规范 (1)1.2.1 标准 (1)1.2.2 规范 (1)1.3 主要材料 (2)1.4 设计要点与参数 (2)1.5 计算软件 (2)2 计算模型简介 (3)2.1 计算模型 (3)2.2 荷载施加 (3)3 箱涵结构计算 (4)3.1 荷载组合 (4)3.2 箱涵受力计算 (4)3.2.1 箱涵弯矩 (4)3.2.2 箱涵剪力 (5)3.2.3 箱涵轴力 (6)3.2.4 箱涵配筋验算 (7)4地基承载力验算 (31)4.1荷载计算 (31)4.2地基应力 (32)1 计算依据与基础资料1.1 工程概况道路在桩号K1+000处设置两孔6x3.5m箱涵,箱涵结构中心线与道路中线的法线逆交13.5度,箱涵全长46m1.1.1截面尺寸净跨径:6m净高:3.5m顶板厚:0.6m底板厚:0.65m侧墙厚:0.6m倒角:0.15x0.15m基础:15cmC15素混凝土垫层;50cm浆砌片石垫层;基础宽度:14.8m1.1.2填土情况箱涵覆土厚度:1.729m土的内摩擦角:30°填土容重:18KN/m31.2 标准与规范1.2.1 标准桥梁结构安全等级为一级;设计荷载:汽车荷载:公路-I级,人群荷载:根据《桥梁设计准则》要求。
跨径:2孔6.0x3.5m钢筋砼箱涵;箱涵总长:46m;横坡:根据道路设计进行设置。
地震烈度:7度;环境条件Ⅰ类;地震荷载:地震基本烈度为7度,动荷载峰值加速度0.1g,Ⅱ类场地。
1.2.2 规范《公路桥涵设计通用规范》(JTG D60-2004);《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);《公路桥涵地基与基础设计规范》(JTG D63-2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路涵洞设计细则》(JTG/T D65-04-2007); 《公路桥梁抗震设计细则》(JTJ041-2000); 《城市道路设计规范》(CJJ 37-90); 1.2.3 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.03) 《公路小桥涵设计示例》(人民交通出版社2005.01)1.3 主要材料1)混凝土:箱涵采用C30混凝土。
箱涵设计计算书
一. 设计资料地下通道净跨径L0=6m ,净高h0=3.5m ,箱顶填土厚为3m ,土的内摩擦角φ为30°,填土的密度γ1=20KN/m3。
箱涵主体结构混凝土强度等级为C30,箱涵基础垫层混凝土强度等级为C15,纵向受力钢筋采用HRB335钢筋。
地基为强风化砂岩。
汽车荷载等级为城-A 级。
二. 设计计算 (一)尺寸拟定顶板、底板厚度δ=50cm 侧墙厚度t=50cm故计算长度 m t L l 5.65.060=+=+=m H h 0.45.05.30=+=+=δ(二)荷载计算 1.恒载竖向恒载标准值 221/5.725.025320m KN H q v =×+×=•+•=δγγ水平恒载标准值顶板处22121/20320)23045()245(m KN tg H tg q h =××−=••−=oooγφ底板处22122/50)5.43(20)23045()()245(m KN tg h H tg q h =+××−=++••−=oooδγφ2.活载一个汽车后轮荷载横向扩散长度28.103.230326.0fo =×+tg ,故两辆车相邻车轴由荷载重叠;一个汽车后轮荷载纵向扩散长度2.626.386.1303225.0p f o =×+tg 。
按两辆车相邻计算车轴荷载扩散面积横向分布长m tg a 96.83.12)8.130326.0(=+×+×+=o 。
纵向分布长分两种情况,第一种情况考虑1、2、3轴荷载重叠,此时纵向分布长m tg b 52.82.16.32)303225.0(=++××+=o ;第二种情况只考虑4轴荷载,此时纵向分布长m tg b 72.32)303225.0(=××+=o 。
车辆荷载垂直压力,按纵向分布第一种情况计算,2/91.852.896.8)14014060(2m KN q v =×++×=车;按纵向分布第二种情况计算,2/0.1272.396.82002m KN q v =××=车。
钢筋混凝土箱涵计算书(含裂缝计算)精选全文
(一)孔径及净空净跨径L 0 = 6.00m 净高h 0 = 3.00m(二)设计安全等一级结构重要性系数r 0 =1.1(三)汽车荷载荷载等级公路 —Ⅰ级(四)填土情况涵顶填土高度H = 1.5m 土的内摩擦角Φ =35°填土容重γ1 =19kN/m 3地基容许承载力[σ0] =260kPa(五)建筑材料普通钢筋种类HRB335主钢筋直径22mm 钢筋抗拉强度设计值f sd =280MPa 钢筋弹性模量E s =200000MPa涵身混凝土强度等级C30涵身混凝土抗压强度设f cd =13.8MPa 涵身混凝土抗拉强度设f td = 1.39MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C20混凝土重力密度γ3 =24kN/m 3(一)、截面尺寸拟顶板、底板厚度δ =0.5m C 1 =0.15m 侧墙厚度t =0.5m C 2 =0.15m 横梁计算跨径L P = L 0+t= 6.5m L = L 0+2t=7m 侧墙计算高度h P = h 0+δ= 3.5m h = h 0+2δ =4m 基础襟边 c =0.1m 基础高度 d =0.1m 基础宽度B =7.2m图 L-01(一)恒载恒载竖向压力p 恒 = γ1H+γ2δ =41.00kN/m 2恒载水平压力顶板处e P1 = γ1Htan 2(457.72kN/m 2底板处e P2 = γ1(H+h)tan228.32kN/m 2钢 筋 混 凝 土 箱 涵 结 构 设 计一 、 设 计 资 料二 、 设 计 计 算三 、 荷 载 计 算(二)活载汽车后轮着地宽度一个汽车后轮横向分布> 1.3/2 m > 1.8/2 m故车轮压力扩散线相重 a =(0.6/2+Ht3.100m同理,纵向,汽车后0.2/2+Htan30°=0.966 m > 1.4/2 m故 b =(0.2/2+Ht 1.400m ∑G =140kN 车辆荷载垂直压力q 车 = ∑G/(a×b)32.26kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°8.74kN/m 2(一)构件刚度比K =(I 1/I 2)×0.54(二)节点弯矩和1、a种荷载作用下 (图涵洞四角节点弯矩M aA = M aB = M aC =-1/(K+1)·pL P 2/12横梁内法向力N a1 = N a2=0侧墙内法向力N a3 = N a4=pL P /2恒载p = p 恒 =41.00kN/m 2M aA = M aB= M aC =-93.83kN ·m N a3 = N a4=133.25kN 车辆荷载p = q 车 =32.26kN/m 2M aA = M aB= M aC =-73.82kN ·m 图 L-02N a3 = N a4=104.84kN2、b种荷载作用下 (图M bA = M bB = M bC =-K/(K+1)·ph P 2/12N b1= Nb2=ph P/2N b3 = N b4=0恒载p = e P1 =7.72kN/m 2M bA = M bB= M bC =-2.76kN ·m N b1 = N b2=13.52kN3、c种荷载作用下 (图图 L-03M cA = M cD =-K(3K+8)/[M cB = M cC =-K(2K+7)/[N c1 =ph P/6+(McA-M cB )/h P N c2 =ph P /3-(M cA -N c3 = N c4=0恒载p = e P2-e P1 =20.60kN/m 2M cA = M cD =-4.00kN ·m M cB= M cC=-3.36kN ·m N c1 =11.83kN N c2 =24.21kN图 L-044、d种荷载作用下 (图1.17 m0.6/2+Htan30°=四 、 内 力 计 算M dA =-[K(K+3)/[M dB =-[K(K+3)/[M dC =-[K(K+3)/[M dD =-[K(K+3)/[N d1 =(M dD-M dC )/h P N d2 =ph P -(M dD -M dC )/h P N d3 = N d4=-(M dB -M dC )/L P车辆荷载p = e 车 =8.74kN/m 2M dA =-16.68kN ·m M dB =10.09kN ·m M dC =-13.21kN ·m M dD =13.56kN ·m 图 L-05N d1 =7.65kN N d2 =22.95kN N d3 = N d4=-3.59kN5、节点弯矩、轴力计算(1)按《公路桥涵设计(2)按《公路桥涵设计(3)按《公件内力计1、顶板 (图L-06)x =L P /2P = 1.2p 恒+1.4q 车 =94.36kN N x = N 1 =46.19kN M x=M B +N 3x-271.64kN·m V x = Px-N 3=5.02kN2、底板 (图L-07)ω1 =1.2p 恒+1.4(q 车-=83.72kN/m 2ω2 =1.2p 恒+1.4(q 车=105.01kN/m 2x =L P /2N x = N 2 =84.94kN M x =M A +N 3x-ω1·x 2/2-=270.75kN ·m V x =ω1x+x 2(ω2-ω=-12.28kN3、左侧墙(图L-08)ω1 =1.4e P1+1.4e 车=23.05kN/m 2ω2 =1.4e P2+1.4e 车51.88kN/m 2x =h P /2N x = N 3 =301.65kNM x =M B +N 1x-ω1·x 2/2-=-172.20kN ·m V x =ω1x+x 2(ω2-ω=6.76kN 4、右侧墙(图L-09)ω1 =1.4e P1 =10.81kN/m 2ω2=1.4e P2 =39.65kN/m 2x =h P /2N x = N 4 =301.65kN图 L-08图 L-09图 L-06图 L-07M x =M C +N 1x-ω1·x 2/2-=-186.09kN ·m V x =ω1x+x 2(ω2-ω=-14.66kN5、构件内力汇总表(1)承载能(一)承载能力极1、顶板 (B-C)钢筋按左、右对称,用(1)跨中l 0 =6.50mh =0.50ma =0.05m h 0 =0.45mb =1.00mM d =271.64 kN ·m ,N d =46.19 kN , V d=5.02 kNe 0 = M d /N d=5.881i =h/121/2=0.144m五 、 截 面 设 计(3)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下长期组合如下表:(2)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下短期组合如下表:长细比l 0/i =45.03> 17.5由《公路钢筋混凝土及ξ1 =0.2+2.7e 035.483> 1.0 ,取ξ1 =1.00ξ2=1.15- 1.020> 1.0 ,取ξ2 =1.00η =1+(l 0/h)2ξ1ξη = 1.009由《公路钢筋混凝土及e = ηe 0+h/2-a 6.135mr 0N d e =f cd bx(h 0-x/2)311.73 =13800x(0.45-x/2)解得x =0.053 m≤ξb h 0 =0.56×0.45 =0.252 m 故为大偏心受压构件。
箱涵结构计算书
L p 图1-1一、设计资料(一)概况:***道路工程经过水库溢洪道处设置箱涵,箱涵净跨L 0=8.0米,净高h 0=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度H=3、6米,填土的内摩擦角φ为24°,土体密度γ1=20、2KN/m 3,设箱涵采用C25混凝土(f cd =11、5MPa)与HRB335钢筋(f sd =280MPa)。
桥涵设计荷载为城-A 级,用车辆荷载加载验算。
结构安全等级二级,结构重要性系数γ0=1、0。
地基为泥质粉砂岩,[σ0]=380kPa,本计算书主要内容为结构设计与地基应力验算。
(二)依据及规范 1、《城市桥梁设计荷载标准》(CJJ77-98) 2、《公路桥涵设计通用规范》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4、《公路桥涵地基与基础设计规范》(JTGD63-2007)二、设计计算(一)截面尺寸拟定(见图1-1) 箱涵过流断面尺寸由水利部门提供,拟定顶板、底板厚度δ=100cm(C 1=50cm) 侧墙厚度 t =100cm (C 2=50cm)故 L P =L 0+t=8+1=9mh p =h 0+δ=10、5+1=11.5m (二)荷载计算1、恒载恒载竖向压力P =γ1H+γ2δ=20、2×3、6+25×1=97、72kN/m 2恒载水平压力顶板处: e p1=γ1Htan 2(45o -φ/2)=20、2×3、6×tan 2(45o -24o /2)=30、67 kN/m 2底板处:e p2=γ1(H +h)tan 2(45o -φ/2)=20、2×(3、6+12、5)×tan 2(45o -24o /2) =137、15kN/m 2 2、活载城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土压力,车轮扩散角30o。
箱涵计算书
2孔-5m×2.2m箱涵计算书一、设计资料1.结构:(净宽⨯涵高)2孔-5m⨯2.2m;2.涵顶填土高度H:2.5m;3.荷重:车辆荷载,公路-I级(城-A车辆荷载复算);4.设计安全等级:Ⅱ级;5. 环境作用等级:C级;6.主要材料:涵身采用C40砼,钢筋采用HPB300、HRB400;环境条件:I类;7.其他参数:1)混凝土容重=25kN/m3,钢筋混凝土容重=26kN/m3。
2)土容重=19kN/m3、土内摩擦角φ=35度;土的侧压力系数λ=tan2(45°-35°/2)=0.271。
3)HRB400钢筋抗拉、抗压强度设计值(f sd、f’sd)为330MPa。
C40素砼抗拉强度设计值f tmd为1.65MPa、抗压强度设计值f cd为18.4MPa。
8.安全等级:Ⅱ级,γ0=1.0。
图1 2孔-5m×2.2m箱涵截面尺寸(cm)二、设计计算1.荷载计算1)恒载计算:填土竖向压力强度:H/D=2.05/(5×2+0.45×3)=0.18,K=1.07;q土=KγH=1.07⨯19⨯2.5=50.83kN/m2顶板自重竖向压力强度:q自=γH Z=26⨯0.45=11.7kN/m2恒载竖向压力强度合计q恒=q土+q自=62.53kN/m2恒载水平压力顶板处e p1=γ1Hλ=19⨯2.5⨯0.271=12.87kN/m2底板处e p2=γ1(H+h)λ=19⨯(2.5+3.2)⨯0.271=29.35 kN/m22)活载计算由于涵顶填土高度等于2.5m,故不计汽车冲击力。
按《公路桥涵设计通用规范》(JTG-2004)第4.3.5条规定计算荷载分布宽度:(1)一个后轮单边荷载横向分布宽度=0.6+2.5x tan30°=2.04m >1.8/2m,故后轮垂直荷载分布宽度重叠,荷载横向分布宽度a为:a=2.04×2+(1.3×3+1.8×4)=15.18m(2)一个车轮的纵向分布宽度=0.2+2.5⨯tan30°=1.64 >1.4/2m故纵向前后轮垂直荷载分布宽度重叠,荷载纵向分布宽度b为:b=1.64⨯2+1.4=4.68mq汽=4×2×280/(a⨯b)= 4×2×280/(15.18⨯4.68)=31.53kN/m2(3)作用城-A级车辆荷载时,a车=a=15.18mb车=(0.25+2.5⨯tan30°)⨯2+1.2=4.12m垂直压力:q汽车= 4×2×280/ (a城⨯b城)= 4×2×280/ (15.18⨯4.12)=35.82kN/m2水平压力:e汽车= q汽车⨯λ=35.82⨯0.271=9.71 kN/m2故计算采用值为城-A级荷载。
1孔(5-2.5)m箱涵计算书
1-(5-2.5)m箱涵计算书已知计算条件:涵洞的设计安全等级为三级,取其结构重要性系数:.9涵洞桩号= K1+384.00箱涵净跨径= 5米箱涵净高= 2.5米箱涵顶板厚= .4米箱涵侧板厚= .4米板顶填土高= .27米填土容重= 18千牛/立方米钢筋砼容重= 25千牛/立方米混凝土容重= 22千牛/立方米水平角点加厚= .3米竖直角点加厚= .3米涵身混凝土强度等级= C25钢筋等级= II级钢筋填土内摩擦角= 35度基底允许应力= 250千牛/立方米顶板拟定钢筋直径= 20毫米每米涵身顶板采用钢筋根数= 11根底板拟定钢筋直径= 20毫米每米涵身底板采用钢筋根数= 11根侧板拟定钢筋直径= 20毫米每米涵身侧板采用钢筋根数= 6根荷载基本资料:土系数 K = 1.04恒载产生竖直荷载p恒=17.55千牛/平方米恒载产生水平荷载ep1=1.99千牛/平方米恒载产生水平荷载ep2=18.09千牛/平方米汽车产生竖直荷载q汽=150.02千牛/平方米汽车产生水平荷载eq汽=18.4千牛/平方米计算过程重要说明:角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:涵洞四角节点弯矩和构件轴力:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -27.75287kN.mNa1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 47.39688kNa种荷载(汽车荷载)作用下:MaA = MaB = MaC = MaD = -1 / (K + 1) * M顶板端部 = -40.01875kN.mNa1 = Na2 = 0kNNa3 = Na4 = V顶板端部 = 91kNb种荷载(侧向均布土压力)作用下:涵洞四角节点弯矩和构件轴力:MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -.488389kN.mNb1 = Nb2 = P * Lp / 2 = 2.892006kNNb3 = Nb4 = 0kNc种荷载(侧向三角形土压力)作用下:涵洞四角节点弯矩和构件轴力:McA = McD = K *(3K + 8) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -2.142094kN.m McB = McC = K *(2K + 7) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -1.799524kN.m Nc1 = P * hp / 6 + (McA - McB) / hp = 7.661997kNNc2 = P * hp / 3 - (McA - McB) / hp = 15.67838kNNc3 = Nc4 = 0kNd种荷载(侧向汽车压力)作用下:涵洞四角节点弯矩和构件轴力:MdA = -(K * (K + 3) / 6(K^2 + 4K +3) + (10K + 2) / (15K + 5)) * P * hp^2 / 4 = -24.09762kN.mMdB = -(K * (K + 3) / 6(K^2 + 4K +3) - (5K + 3) / (15K + 5)) * P * hp^2 / 4 = 14.59651kN.mMdC = -(K * (K + 3) / 6(K^2 + 4K +3) + (5K + 3) / (15K + 5)) * P * hp^2 / 4 = -19.10306kN.mMdD = -(K * (K + 3) / 6(K^2 + 4K +3) - (10K + 2) / (15K + 5)) * P * hp^2 / 4 = 19.59108kN.mNd1 = (MdD - MdC) / hp = 13.3428kNNd2 = P * hp - (MdD - MdC) / hp = 40.02841kNNd3 = Nc4 = -(MdB - MdC) / Lp = -6.240662kN角点(1)在恒载作用下的的总弯矩为:-30.38角点(1)在汽车作用下的的总弯矩为:-64.12角点(1)在混凝土收缩下的的弯矩为:28.77角点(1)在温度变化下的的总弯矩为:28.77构件(1)在恒载作用下的的总轴力为:10.55构件(1)在汽车作用下的的总轴力为:13.34构件(1)在混凝土收缩下的的轴力为:0构件(1)在温度变化下的的总轴力为:0角点(2)在恒载作用下的的总弯矩为:-30.04角点(2)在汽车作用下的的总弯矩为:-25.42角点(2)在混凝土收缩下的的弯矩为:-28.77角点(2)在温度变化下的的总弯矩为:-28.77构件(2)在恒载作用下的的总轴力为:18.57构件(2)在汽车作用下的的总轴力为:40.03构件(2)在混凝土收缩下的的轴力为:0构件(2)在温度变化下的的总轴力为:0角点(3)在恒载作用下的的总弯矩为:-30.04角点(3)在汽车作用下的的总弯矩为:-59.12角点(3)在混凝土收缩下的的弯矩为:-28.77角点(3)在温度变化下的的总弯矩为:-28.77构件(3)在恒载作用下的的总轴力为:47.4构件(3)在汽车作用下的的总轴力为:84.76构件(3)在混凝土收缩下的的轴力为:0构件(3)在温度变化下的的总轴力为:0角点(4)在恒载作用下的的总弯矩为:-30.38角点(4)在汽车作用下的的总弯矩为:-20.43角点(4)在混凝土收缩下的的弯矩为:28.77角点(4)在温度变化下的的总弯矩为:28.77构件(4)在恒载作用下的的总轴力为:47.4构件(4)在汽车作用下的的总轴力为:97.24构件(4)在混凝土收缩下的的轴力为:0构件(4)在温度变化下的的总轴力为:02>荷载组合计算角点(1) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -75.26482 角点(1) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -56.02991 角点(1) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -126.223角点(2) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -47.83635 角点(2) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -40.20968 角点(2) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -71.64008角点(3) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -71.42605角点(3) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -53.68951角点(3) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -118.8195角点(4) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -44.68273角点(4) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -38.55442角点(4) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -65.05877构件(1) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 19.89397构件(1) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 15.89112构件(1) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 31.34473构件(2) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 46.59027构件(2) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 34.58175构件(2) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 78.32423构件(3) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 106.7284构件(3) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 81.30061构件(3) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 175.5393构件(4) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 115.4653构件(4) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 86.29314构件(4) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 193.01323>将箱涵框架分解为四根独立构件,求其跨中内力并进行效应组合。
钢筋混凝土箱涵结构计算书
钢筋混凝土箱涵结构计算书一、工程概况本次设计的钢筋混凝土箱涵位于_____道路,主要用于排水和通行。
箱涵的设计尺寸为长_____m、宽_____m、高_____m。
设计荷载为公路I 级,设计使用年限为_____年。
二、设计依据1、《公路桥涵设计通用规范》(JTG D60-2015)2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)3、《公路桥涵地基与基础设计规范》(JTG 3363-2019)4、工程地质勘察报告三、材料参数1、混凝土:C30 混凝土,轴心抗压强度设计值 fcd = 138 MPa,轴心抗拉强度设计值 ftd = 139 MPa,弹性模量 Ec = 30×10^4 MPa。
2、钢筋:HRB400 钢筋,抗拉强度设计值 fsd = 330 MPa,弹性模量 Es = 20×10^5 MPa。
四、荷载计算1、恒载结构自重:根据箱涵的尺寸和材料容重计算。
填土自重:按照填土高度和土的容重计算。
2、活载公路I 级车辆荷载,按照规范进行折减和分布计算。
3、偶然荷载不考虑地震作用等偶然荷载。
五、内力计算1、顶板内力计算按照单向板或双向板进行计算,考虑车辆荷载和填土压力的作用。
计算跨中弯矩和支座弯矩。
2、底板内力计算计算方法与顶板类似,考虑车辆荷载、填土压力和地下水浮力的作用。
3、侧墙内力计算侧墙按悬臂梁计算,考虑填土压力和水平土压力的作用。
六、配筋计算1、顶板配筋根据顶板跨中弯矩和支座弯矩,计算所需的钢筋面积。
配置受力钢筋和分布钢筋。
2、底板配筋同顶板配筋计算方法。
3、侧墙配筋根据侧墙内力计算结果,配置竖向和水平钢筋。
七、裂缝宽度验算1、按照规范要求,计算钢筋混凝土构件在正常使用极限状态下的裂缝宽度。
2、裂缝宽度应满足规范限值要求。
八、挠度验算1、计算顶板和底板在正常使用极限状态下的挠度。
2、挠度应满足规范限值要求。
九、地基承载力验算1、计算箱涵基础底面的平均压力和最大压力。
箱涵结构计算书
一、设计资料(一) 概况:***道路工程经过水库溢洪道处设置箱涵, 箱涵净跨L o =8.O 米, 净高h °=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度 H=3.6米,填 土的内摩擦角 ©为24°, 土体密度丫 1 = 20.2KN/m 3,设箱涵采用 C25混凝土(f cd =11.5MPa 和HRB335I 冈筋(f sd =280MPa 。
桥涵设计荷载为城-A 级,用车辆 荷载加载验算。
结构安全等级二级,结构重要性系数 丫 0= 1.0。
地基为泥质粉砂 岩,[c 380kPa,本计算书主要内容为结构设计与地基应力验算。
(二) 依据及规范1、 《城市桥梁设计荷载标准》(CJJ77-98)2、 《公路桥涵设计通用规范》(JTG D60-2004)3、 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004)4、 《公路桥涵地基与基础设计规范》(JTGD63-2007(一)截面尺寸拟定(见图1-1 箱涵过流断面尺寸由水利部门提供,拟定 顶板、底板厚度S = 100cm (C=50cm ) 侧墙厚度 t = 100cm (G=50cn ) 故 L P =L )+t=8+1=9mh p =h )+S =10.5+1=11.5m(二)荷载计算 1、恒载恒载竖向压力P = 丫 1H+丫 2 S = 20.2 X 3.6+25 X 1=97.72kN/m 2恒载水平压力 图1-1顶板处:e p1 = 丫 1Htan%45°- ©/2)=20.2 X 3.6 X tan 2 (45°-24 72 ) = 30.67 kN/m 2底板处:e p2= 丫(H+ h ) tan 2(45°-以2) = 20.2 X (3.6+12.5 ) X tan 2(45°-24°/2)=137.15kN/m 22、活载城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》 4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土 压力,车轮扩散角30°。
箱涵设计计算书
公路桥涵设计计算书一,设计资料公路上箱涵,净跨径L 0为2.5m ,净高h 0为3.0m ,箱涵顶平均为2.0m 夯填砂砾石,顶为300mm 沥青混凝土路面铺装层,两侧边为砂砾石夯填,土的内摩擦角ϕ为40o ,砂砾石密度γ=23KN/m 3,箱涵选用C25混凝土和HRB335钢筋。
本设计安全等级为二级,荷载为公路-Ⅱ级。
二 设计计算 (一)截面尺寸 顶板、底板厚度 δ=40cm(C1=30cm) 侧墙厚度 t=40cm(C2=30cm) 故横梁计算跨径L p =L 0+t=2.5+0.4=2.9m 侧墙计算高度hp=h0+δ=3.0+0.4=3.4m (二) 荷载计算 1.恒载 恒载竖向压力221/0.56m KN H P =+=δγγ恒载水平压力 顶板处200211/00.1024045tan m KN H e p =⎪⎪⎭⎫ ⎝⎛-=γ 底板处200212/01.2934045tan )(m KN h H e p =⎪⎪⎭⎫ ⎝⎛-+=γ 2.活载汽车后轮地宽度0.6m ,公路-Ⅱ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条计算一个汽车后轮横向分布宽,按30。
角向下分布。
m m H 23.145.0130tan 26.00〉=+ m m H 28.145.0130tan 26.00〉=+ 故,横向分布宽度为029.43.1230tan 1.026.00=+⨯⎪⎭⎫⎝⎛+=a m 同理,纵向,汽车后轮招地长度0.2m :m H o 24.1255.130tan 22.0〉=+ 故,m H b 509.2230tan 22.00=⨯⎪⎭⎫⎝⎛⨯= ∑G=140KN 车辆荷载垂直压力2m /25.13509.2029.4140KN b a G q =⨯=⨯∑=车 车辆荷载水平压力2002m /2.8820445tan KN q e =⎪⎪⎭⎫ ⎝⎛-⨯=车车 (三)内力计算 1.构件刚度比1.17121=⨯=PL h I I K 2.节点弯矩和轴向力计算 (1)a 种荷载作用下(图1)涵洞四角节点弯矩:()12112P aDaC aB aA l P K M M M M ⋅+-==== =-18.07KN .m横梁内法向力021==a a N N ,侧墙内法向力()243Pa a l P N N ===81.2KN 车辆荷载(车q p ==13.25KN/m 2)()m KN l P K M M M M P aDaC aB ⋅-=⋅+-====28.412112aA()N l P N N Pa a 22.19243===(2)b 种荷载作用下(图2)2m KN Ph K KM M M M p bDbC bB bA ⋅-=⋅+-====2.51212KN Ph N N p b b 00.17221===,043==b b N N恒载(P=ep1=10.00kN/m 2) (3)c 种荷载作用下3()()()m KN Ph K K K K M M p cDcA ⋅-=⋅+++==45.56031832()()()m KN Ph K K K K M M p cCcB ⋅-=⋅+++==43.46031722p cBcA p c h M M Ph N -+=61=10.47KN pcBcA p c h M M Ph N -+=32=21.84KN 043==c c N N恒载(KN e e P p p 01.191001.2912=-=-=) (4)d 种荷载作用下()()m KN Ph K K K K K K M p dA⋅-=⋅⎥⎦⎤⎢⎣⎡++++++-=81.54515210346322=()()m KN Ph K K K K K K M p dB⋅=⋅⎥⎦⎤⎢⎣⎡++-+++-=52.2451535346322()()m KN Ph K K K K K K M pdC⋅-=⋅⎥⎦⎤⎢⎣⎡++++++-=02.4451535346322()()m KN Ph K K K K K K M p dA⋅=⋅⎥⎦⎤⎢⎣⎡++-+++-=31.44515210346322KN h M M N pdCdD d 54.21=-=KN h M M ph N pdCdD p d 35.72=--=KN L M M N N PdCdB d d 25.243-=--=-=车辆荷载()2/88.2m KN e p ==车 (5)节点弯矩和轴力计算汇总表按《公路桥涵设计通用规范》(JTG D60——2004)第4.1.6条进行承载力极限状态效应组合节点弯矩和轴力计算汇总表3.构件内力计算(跨中截面内力) (1)顶板(图a )x=2p lKN q p p 76.854.12.1=⨯+⨯=车恒N x =N 1=41.89KNM x = M B +N 3x-P 22x =47.96KN ·mV x =P ·x-N 3=3.16KN (2)底板[图b]ω1=1.2p 恒+1.4(q 车-23PL e 车2p h )=69.12KN/m 2 ω2=1.2p 恒+1.4(q 车+23PL e 车2p h )=102.39KN/m 2 x=2p lN x =N 3=121.19KNM x = M A +N 3x-ω122x -pL x 63(ω2-ω1)=45.52KN ·mV x =ω1x +p L x 22(ω2-ω1)-N 3=-8.91KN(3)左侧墙[图c]图cω1=1.4e 1p +1.4e 车=18.04KN/m 2 ω2=1.4(e 2p +e 车)=44.64KN/m 2 x=2p hN x =N 3=121.19KNM x = M B +N 1x-ω122x -ph x 63(ω2-ω1)=1.12KN·mV x =ω1x +ph x 22(ω2-ω1)-N 1=0.08KNω1=1.4e 1p =14.00 KN·m ω2=1.4e 2p =40.61 KN·m (3)右侧墙[图d]x=2p hω1=1.4e 1p =14.00ω2=e 2p =40.61 N x =N 4=127.50KNM x = M C +N 1x-ω122x -ph x 63(ω2-ω1)=-2.2KN·mV x =ω1x +p h x 22(ω2-ω1)-N 1=-6.87KN(5)构件内力汇总表(四)截面设计 1,顶板(B-C)钢筋按左右对称,用最不利荷载计算 (1)跨中kN Vd KN Nd m KN Md m b m h m a m h m l 16.3,89.41,96.471,37.0,03.0,4.0,9.200==⋅======m N M e dd145.10==115.0124.01222===bh i m长细比5.1711.25115.09.20>==i l由《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第5.3.10条。
箱涵结构计算书
L p 图1-1一、设计资料(一)概况:***道路工程经过水库溢洪道处设置箱涵,箱涵净跨L 0=8.0米,净高h 0=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度H=3.6米,填土的内摩擦角φ为24°,土体密度γ1=20.2KN/m 3,设箱涵采用C25混凝土(f cd =11.5MPa )和HRB335钢筋(f sd =280MPa)。
桥涵设计荷载为城-A 级,用车辆荷载加载验算。
结构安全等级二级,结构重要性系数γ0=1.0。
地基为泥质粉砂岩,[σ0]=380kPa ,本计算书主要内容为结构设计与地基应力验算。
(二)依据及规范 1、《城市桥梁设计荷载标准》(CJJ77-98) 2、《公路桥涵设计通用规范》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4、《公路桥涵地基与基础设计规范》(JTGD63-2007)二、设计计算(一)截面尺寸拟定(见图1-1) 箱涵过流断面尺寸由水利部门提供,拟定顶板、底板厚度δ=100cm (C 1=50cm ) 侧墙厚度 t =100cm (C 2=50cm )故 L P =L 0+t=8+1=9mh p =h 0+δ=10.5+1=11.5m (二)荷载计算1、恒载恒载竖向压力P =γ1H+γ2δ=20.2×3.6+25×1=97.72kN/m 2恒载水平压力顶板处: e p1=γ1Htan 2(45o -φ/2)=20.2×3.6×tan 2(45o -24o /2)=30.67 kN/m 2底板处:e p2=γ1(H +h )tan 2(45o -φ/2)=20.2×(3.6+12.5)×tan 2(45o -24o /2) =137.15kN/m 2 2、活载城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土压力,车轮扩散角30o 。
箱涵结构计算书三篇
箱涵结构计算书三篇篇一:箱涵结构计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本设计资料1.依据规范及参考书目:《水工混凝土结构设计规范》(SL 191-20XX),以下简称《规范》《建筑地基基础设计规范》(GB 50007—20XX)《水工钢筋混凝土结构学》(中国水利水电出版社)《公路桥涵设计通用规范》JTJ D60-20XX,以下简称《通规》《涵洞》(中国水利水电出版社出版,XX编著)中国建筑工业出版社《高层建筑基础分析与设计》2.几何信息:箱涵孔数n = 1孔净宽B = 2.900 m孔净高H = 2.500 m底板厚d1 = 0.500 m顶板厚d2 = 0.500 m侧墙厚d3 = 0.400 m加腋尺寸t = 0.250 m3.荷载信息:埋管方式:上埋式填土高Hd = 3.200 m填土种类:密实砂类土、硬塑粘性土内摩擦角φ = 36.0 度水下内摩擦角φ = 32.0 度填土容重γ = 22.000 kN/m3填土浮容重γs = 18.000 kN/m3汽车荷载等级:公路-Ⅱ级4.荷载系数:可变荷载的分项系数γ= 1.20Q1k= 1.10可变荷载的分项系数γQ2k= 1.05永久荷载的分项系数γG1k永久荷载的分项系数γ= 1.20G2k构件的承载力安全系数K = 1.355.材料信息:混凝土强度等级: C15纵向受力钢筋种类: HRB335纵筋合力点至近边距离as = 0.040 m= 0.250 mm最大裂缝宽度允许值ωmax6.荷载组合:7.荷载组合下附加荷载信息:8.约束信息:第1跨左侧支座约束:铰支第1跨右侧支座约束:铰支9.地基土参数:按弹性地基上的框架进行箱涵内力计算。
地基模型:弹性半空间模型地基土的泊松比μo = 0.200地基土的变形模量Eo = 20.00 MPa 三、荷载计算1.垂直压力计算顶板自重q v2 = d2×25 = 12.500kN/m 垂直土压力计算公式如下: q v1 = K s ×γ×H d工况:正常使用,顶板上的垂直土压力q v1 = 84.053kN/m 作用于顶板上的垂直压力qt = q v1+q v2 = 96.553kN/m 2.侧向水平土压力计算 水平土压力计算公式如下: q h = γ×H×tan 2(45°-φ/2) 3.汽车荷载由《通规》第4.3.1条规定并考虑车辆荷载的相互作用得到: q q = 8.676 kN/m ,顶板承受汽车荷载汽车荷载产生的对称作用于侧墙两侧水平土压力为: q qh = q q ×tan 2(45°-φ/2) = 2.25 kN/m 4.荷载单位及方向规定 垂直、平行集中荷载单位:kN 弯矩单位:kN ·m均布荷载、三角形、倒三角形等线性分布荷载单位:kN/m 垂直集中荷载及线性分布荷载垂直单元轴线,以向上或者向左为正 平行集中荷载平行于单元轴线,以向上或者向右为正 弯矩以逆时针为正。
箱涵结构计算书
钢筋混凝土箱涵结构设计一、设计资料1、孔径及净空净跨径Lo=4 m净高Ho=3 m2、设计安全等级一级结构重要性系数ro=1.13、汽车荷载荷载等级公路-Ⅰ级4、填土情况涵顶填土高度H=1.8 m土的内摩擦角φ=30 °填土容重γ1=18 KN/m^3地基容许承载力[σo]=200 KPa5、建筑材料普通钢筋种类HRB335主钢筋直径12 mm钢筋抗拉强度设计值fsd=280涵身砼强度等级C20涵身砼抗压强度设计值fcd=9.2 MPa涵身砼抗拉强度设计值ftd=1.06 MPa钢筋砼重力密度γ2=25 KN/m^3基础砼强度等级C15混凝土重力密度γ3=24 KN/m^3二、设计计算(一)截面尺寸拟定(见图01)顶板、底板厚度δ=0.3 mC1=0.3 m侧墙厚度t =0.28 mC2=0.5 m横梁计算跨径Lp=Lo+t=4.28 mL =Lo+2t=4.56 m侧墙计算高度hp=ho+δ=3.3 mh =ho+2δ=3.6 m基础襟边c=0.2 m基础高度d=0.4 m基础高度B=4.96 m(二)荷载计算1、恒载恒载竖向压力p恒=39.9 kN/m^2恒载水平压力顶板处:ep1=10.8 kN/m^2底板处:ep2=32.4 kN/m^22、活载汽车后轮着地宽度0.6 m,由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条规定,按30°角方向分布。
一个后轮横向分布宽度a=3.1 m同理,纵箱,汽车后轮着地宽度0.2 m,则b=1.4 m∑G=140 kN车辆荷载垂直压力q车=32.3 kN/m^2车辆荷载水平压力e车=10.8 kN/m^2(三)内力计算1、构件刚度比K=0.952、节点弯矩和轴向力计算计算结果见《荷载效应组合汇总表》,相关图示见图02~图053、构件内力计算(跨中截面内力)(1)顶板(见图06)x=Lp/2P=1.2P恒+1.4q车=93.1kNNx=N1=53.64kNMx=124.25kN.mVx=7.74kN(2)底板(见图07)ω1=66.13kN/m^2ω2=120.07kN/m^2x=2.14Nx=N3=191.49kNMx=122.93kN.mVx=-21.11kN(3)左侧墙(图08)ω1=30.24kN/m^2ω2=60.48kN/m^2x=1.65Nx=N3=191.49kNMx=-31.88kN.mVx=8.73kN(4)右侧墙(见图09)ω1=15.12kN/m^2ω2=45.36kN/m^2x=1.65Nx=N4=206.97kNMx=-44.43kN.mVx=-16.22kN(5)构件内力见《构件内力汇总表》(四)截面设计1、顶板(B-C)钢筋按左右对称,用最不利荷载计算。
双孔箱涵计算书
注:弯矩符号以洞壁内侧受拉为正,外侧受拉为负;轴向力以压力为正,拉为负。
四、截面设计 (1)顶板(A-C) 钢筋按左、右对称,用最不利荷载计算。
a) 跨4m h0=0.36m
由《公路钢筋混凝土及预应力砼桥涵设计规范》(JTG D62-2004)第 5.3.10条 由《公路钢筋混凝土及预应力砼桥涵设计规范》(JTG D62-2004)第 5.3.5条 解得为大偏心受压构件。 用Φ20@100mm,实际As=3141mm2,偏安全。 满足《公路钢筋混凝土及预应力砼桥涵设计规范》(JTG D62-2004)第 9.1.12条规定。 抗剪配筋按构造设置。
-0.14 -0.28 -0.12 -0.06
0.01
0.02 0.41
恒载弯 -44.44 矩合计
M1
26.68
-26.68
16.89
活载弯矩分配计算表
结点
D
B
-16.89 A
C CA
24.65 2.96 0.9 0.21 28.53
C
杆端
DB BD
BA
AB
AC CA
劲度K
0.005 0.00225 0.00225 0.005
分配系数
0.69 0.31 0.31 0.69
固端弯矩MF -192.36 192.36 -55.48 55.48 -192.36 192.36
21.22 42.43 94.45 47.22
-54.54 -109.09 -49.01 -24.51
3.80 7.60 16.91 8.46
-1.31 -2.62 -1.18 -0.59
0.09 0.18 0.41 0.21
-0.03 -0.06 -0.03 -0.015
箱涵计算书
已知计算条件:涵洞的设计安全等级为三级,取其结构重要性系数:.9涵洞桩号= K0+123.00箱涵净跨径= 3米箱涵净高= 2米箱涵顶板厚= .3米箱涵侧板厚= .25米板顶填土高= .42米填土容重= 18千牛/立方米钢筋砼容重= 25千牛/立方米混凝土容重= 22千牛/立方米水平角点加厚= .6米竖直角点加厚= .6米涵身混凝土强度等级= C30钢筋等级= II级钢筋填土内摩擦角= 30度基底允许应力= 250千牛/立方米顶板拟定钢筋直径= 20毫米每米涵身顶板采用钢筋根数= 9根底板拟定钢筋直径= 20毫米每米涵身底板采用钢筋根数= 9根侧板拟定钢筋直径= 20毫米每米涵身侧板采用钢筋根数= 5根荷载基本资料:土系数 K = 1.047776恒载产生竖直荷载p恒=20.18千牛/平方米恒载产生水平荷载ep1=4.11千牛/平方米恒载产生水平荷载ep2=19.71千牛/平方米汽车产生竖直荷载q汽=94.7千牛/平方米汽车产生水平荷载eq汽=31.57千牛/平方米计算过程重要说明:角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:涵洞四角节点弯矩和构件轴力:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -7.992409kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 32.79926kNa种荷载(汽车荷载)作用下:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -37.49901kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 153.8885kNb种荷载(侧向均布土压力)作用下:涵洞四角节点弯矩和构件轴力:MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -.996318kN.m Nb1 = Nb2 = P * Lp / 2 = 4.724453kNNb3 = Nb4 = 0kNc种荷载(侧向三角形土压力)作用下:涵洞四角节点弯矩和构件轴力:McA = McD = K *(3K + 8) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -2.09079kN.mMcB = McC = K *(2K + 7) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -1.692493kN.mNc1 = P * hp / 6 + (McA - McB) / hp = 5.806827kNNc2 = P * hp / 3 - (McA - McB) / hp = 12.13317kNNc3 = Nc4 = 0kNd种荷载(侧向汽车压力)作用下:涵洞四角节点弯矩和构件轴力:MdA = -(K * (K + 3) / 6(K^2 + 4K +3) + (10K + 2) / (15K + 5)) * P * hp^2 / 4 = -29.27469kN.mMdB = -(K * (K + 3) / 6(K^2 + 4K +3) - (5K + 3) / (15K + 5)) * P * hp^2 / 4 = 12.47248kN.mMdC = -(K * (K + 3) / 6(K^2 + 4K +3) + (5K + 3) / (15K + 5)) * P * hp^2 / 4 = -20.12802kN.mMdD = -(K * (K + 3) / 6(K^2 + 4K +3) - (10K + 2) / (15K + 5)) * P * hp^2 / 4 = 21.61916kN.mNd1 = (MdD - MdC) / hp = 18.15095kNNd2 = P * hp - (MdD - MdC) / hp = 54.45284kNNd3 = Nc4 = -(MdB - MdC) / Lp = -10.03092kN角点(1)在恒载作用下的的总弯矩为:-11.08角点(1)在汽车作用下的的总弯矩为:-66.77角点(1)在混凝土收缩下的的弯矩为:7.2角点(1)在温度变化下的的总弯矩为:7.2构件(1)在恒载作用下的的总轴力为:10.53构件(1)在汽车作用下的的总轴力为:18.15构件(1)在混凝土收缩下的的轴力为:0构件(1)在温度变化下的的总轴力为:0角点(2)在恒载作用下的的总弯矩为:-10.68角点(2)在汽车作用下的的总弯矩为:-25.03角点(2)在混凝土收缩下的的弯矩为:-7.2角点(2)在温度变化下的的总弯矩为:-7.2构件(2)在恒载作用下的的总轴力为:16.86构件(2)在汽车作用下的的总轴力为:54.45构件(2)在混凝土收缩下的的轴力为:0构件(2)在温度变化下的的总轴力为:0角点(3)在恒载作用下的的总弯矩为:-10.68角点(3)在汽车作用下的的总弯矩为:-57.63角点(3)在混凝土收缩下的的弯矩为:-7.2角点(3)在温度变化下的的总弯矩为:-7.2构件(3)在恒载作用下的的总轴力为:32.8构件(3)在汽车作用下的的总轴力为:143.86构件(3)在混凝土收缩下的的轴力为:0构件(3)在温度变化下的的总轴力为:0角点(4)在恒载作用下的的总弯矩为:-11.08角点(4)在汽车作用下的的总弯矩为:-15.88角点(4)在混凝土收缩下的的弯矩为:7.2角点(4)在温度变化下的的总弯矩为:7.2构件(4)在恒载作用下的的总轴力为:32.8构件(4)在汽车作用下的的总轴力为:163.92构件(4)在混凝土收缩下的的轴力为:0构件(4)在温度变化下的的总轴力为:02>荷载组合计算角点(1) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -57.82111 角点(1) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -37.789 角点(1) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -106.7786角点(2) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -28.19979 角点(2) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -20.69183 角点(2) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -47.8546角点(3) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -51.02014 角点(3) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -33.73203 角点(3) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -93.4953角点(4) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -22.19541 角点(4) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -17.43146 角点(4) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -35.52721构件(1) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 23.23694 构件(1) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 17.79166 构件(1) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 38.04886构件(2) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 54.97461 构件(2) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 38.63876构件(2) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 96.46313构件(3) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 133.4995构件(3) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 90.34227构件(3) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 240.7597构件(4) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 147.5428构件(4) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 98.36702构件(4) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 268.84633>将箱涵框架分解为四根独立构件,求其跨中内力并进行效应组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
箱涵结构计算书目录1 计算依据与基础资料 (1)1.1 工程概况 (1)1.1.1截面尺寸 (1)1.1.2填土情况 (1)1.2 标准与规范 (1)1.2.1 标准 (1)1.2.2 规范 (1)1.3 主要材料 (2)1.4 设计要点与参数 (2)1.5 计算软件 (2)2 计算模型简介 (3)2.1 计算模型 (3)2.2 荷载施加 (3)3 箱涵结构计算 (4)3.1 荷载组合 (4)3.2 箱涵受力计算 (4)3.2.1 箱涵弯矩 (4)3.2.2 箱涵剪力 (5)3.2.3 箱涵轴力 (6)3.2.4 箱涵配筋验算 (7)4地基承载力验算 (27)4.1荷载计算 (27)4.2地基应力 (27)1 计算依据与基础资料1.1 工程概况道路在桩号K1+000处设置两孔6x3.5m箱涵,箱涵结构中心线与道路中线的法线逆交13.5度,箱涵全长46m1.1.1截面尺寸净跨径:6m净高:3.5m顶板厚:0.6m底板厚:0.65m侧墙厚:0.6m倒角:0.15x0.15m基础: 15cmC15素混凝土垫层;50cm浆砌片石垫层;基础宽度:14.8m1.1.2填土情况箱涵覆土厚度:1.729m土的内摩擦角:30°填土容重:18KN/m31.2 标准与规范1.2.1 标准桥梁结构安全等级为一级;设计荷载:汽车荷载:公路-I级,人群荷载:根据《桥梁设计准则》要求。
跨径:2孔6.0x3.5m钢筋砼箱涵;箱涵总长:46m;横坡:根据道路设计进行设置。
地震烈度:7度;环境条件Ⅰ类;地震荷载:地震基本烈度为7度,动荷载峰值加速度0.1g,Ⅱ类场地。
1.2.2 规范《公路桥涵设计通用规范》(JTG D60-2004);《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);《公路桥涵地基与基础设计规范》(JTG D63-2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路涵洞设计细则》(JTG/T D65-04-2007); 《公路桥梁抗震设计细则》(JTJ041-2000); 《城市道路设计规范》(CJJ 37-90); 1.2.3 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.03) 《公路小桥涵设计示例》(人民交通出版社2005.01)1.3 主要材料1)混凝土:箱涵采用C30混凝土。
2)普通钢筋:R235,235sk f Mpa =,52.110S E Mpa =⨯;HRB335,335sk f Mpa =,52.010S E Mpa =⨯。
1.4 设计要点与参数1)箱涵按钢筋混凝土构件设计;2)根据本箱涵特点,利用有限元软件,建立空间模型,对箱涵进行整体计算; 3)冲击系数:不计冲击效应。
1.5 计算软件采用Midas 软件建立空间模型,对箱涵进行整体受力分析,并对箱涵截面抗弯、抗扭、抗剪、裂缝宽度进行验算。
2 计算模型简介2.1 计算模型根据本箱涵的特点,利用Midas软件,建立空间模型,箱涵采用梁单元模拟,具体模型如下图2.1:图2.1 箱涵有限元计算模型2.2 荷载施加1)自重:考虑1.05的增大系数。
2)土压力:36.0kN/m2。
3)土侧压力:顶板处:18.0 kN/m2,底板处:53.0kN/m2。
3)车道荷载:无。
4)人群荷载:按照5m宽人行道施加。
43 箱涵结构计算3.1 荷载组合基本组合1: 1.2恒载+1.0收缩+1.0徐变基本组合2: 1.2恒载+1.0收缩+1.0徐变+1.4移动荷载 基本组合3: 1.0恒载+1.0收缩+1.0徐变基本组合4: 1.0恒载+1.0收缩+1.0徐变+1.4移动荷载 短期组合: 1.0恒载+1.0收缩+1.0徐变+0.7移动荷载 长期组合: 1.0恒载+1.0收缩+1.0徐变+0.4移动荷载弹性阶段应力验算组合: 1.0恒载+1.0收缩+1.0徐变+1.0移动荷载3.2 箱涵受力计算3.2.1 箱涵弯矩在基本效应组合作用下,箱涵弯矩如下图所示:图3.1:箱涵弯矩(基本效应组合)在短期效应组合作用下,箱涵弯矩如下图所示:5图3.2:箱涵弯矩(短期效应组合)在长期效应组合作用下,箱涵弯矩如下图所示:图3.3:箱涵弯矩(长期效应组合)3.2.2 箱涵剪力在基本效应组合作用下,箱涵剪力如下图所示:图3.4:箱涵剪力(基本效应组合)在短期效应组合作用下,箱涵剪力如下图所示:图3.5:箱涵剪力(短期效应组合)6在长期效应组合作用下,箱涵剪力如下图所示:图3.6:箱涵剪力(长期效应组合)3.2.3 箱涵轴力在基本效应组合作用下,箱涵的轴力如下图所示:图3.7:箱涵轴力(基本效应组合)在短期效应组合作用下,箱涵的轴力如下图所示:图3.8:箱涵轴力(短期效应组合)在长期效应组合作用下,箱涵的轴力如下图所示:图3.9:箱涵轴力(长期效应组合)3.2.4 箱涵配筋验算在基本组合、短期组合、长期组合作用下,箱涵弯矩、剪力、轴力汇总如下:面示出箱涵的验算结果。
1782344地基承载力验算4.1荷载计算 1)恒载箱涵重力:P 箱=329.56KN 基础重力:P 基=482.44KN 填土重力:P 土=229.39KN 水重力:P 水=237.5KN 2)车辆荷载汽车后轮着地宽度0.6m ,由《公路桥涵通用设计规范》(JTG D60-2004)第4.3.4条规定,按30°角方向分布。
一个后轮横向分布宽度a=7.07m同理,纵向,汽车后轮着地宽度0.2m , 一个后轮纵向分布宽度b=3.17m 轮重∑G=560KN车辆垂直荷载q 车=24.94KN/m 2 车辆水平荷载e 车=8.31KN/m 2 车辆垂直力:P 车=233.19KN 弯矩:M 车=64.85KN 〃m 4.2地基应力N= P 箱+ P 基+ P 土+ P 水+ P 车=1512.1KN M=64.85KN 〃mA=11.95m 2,W=11.95x11.95/6=23.8m 2 根据《公路桥涵地基与基础设计规范》(JTG D63-2007)第4.2.2条规定,max 129.26N M p Kpa A W=+=根据《公路桥涵地基与基础设计规范》(JTG D63-2007)第3.3.4条规定, 01122[][](2)(3)160 1.519.5(5.33)227.3a a f f k b k h Kpa γγ=+-+-=+⨯⨯-= 基底应力满足设计要求。
5八字墙验算墙身尺寸:墙身高: 4.850(m)墙顶宽: 0.600(m)面坡倾斜坡度: 1:0.000背坡倾斜坡度: 1:0.350采用1个扩展墙址台阶:墙趾台阶b1: 0.500(m)墙趾台阶h1: 0.600(m)墙趾台阶面坡坡度为: 1:0.000墙踵台阶b3: 0.800(m)墙踵台阶h3: 0.600(m)墙底倾斜坡率: 0.150:1物理参数:圬工砌体容重: 23.000(kN/m3)圬工之间摩擦系数: 0.400地基土摩擦系数: 0.500砌体种类: 块石砌体砂浆标号: 7.5石料强度(MPa): 30挡土墙类型: 一般挡土墙墙后填土内摩擦角: 35.000(度)墙后填土粘聚力: 0.000(kPa)墙后填土容重: 19.000(kN/m3)墙背与墙后填土摩擦角: 17.500(度)地基土容重: 18.000(kN/m3)修正后地基土容许承载力: 160.000(kPa)地基土容许承载力提高系数:墙趾值提高系数: 1.200墙踵值提高系数: 1.300平均值提高系数: 1.000墙底摩擦系数: 0.500地基土类型: 土质地基地基土内摩擦角: 30.000(度)土压力计算方法: 库仑坡线土柱:坡面线段数: 2折线序号水平投影长(m) 竖向投影长(m) 换算土柱数1 1.000 1.200 02 0.000 0.000 0坡面起始距离: 0.000(m)地面横坡角度: 0.000(度)墙顶标高: 34.000(m)挡墙分段长度: 10.000(m)=====================================================================第 1 种情况: 组合1=============================================组合系数: 1.0001. 挡土墙结构重力分项系数 = 1.000 √2. 墙顶上的有效永久荷载分项系数 = 1.000 √3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √4. 填土侧压力分项系数 = 1.000 √5. 车辆荷载引起的土侧压力分项系数 = 1.000 √=============================================[土压力计算] 计算高度为 5.293(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 8.604(m2) 重量 = 197.894 kN墙背与第二破裂面之间土楔重 = 54.636(kN) 重心坐标(4.029,-3.652)(相对于墙面坡上角点) (一) 滑动稳定性验算基底摩擦系数 = 0.500采用倾斜基底增强抗滑动稳定性,计算过程如下:基底倾斜角度 = 8.531 (度)Wn = 249.736(kN) En = 0.000(kN) Wt = 37.460(kN) Et = 0.000(kN)滑移力= -37.460(kN) 抗滑力= 124.868(kN)滑移验算满足: Kc = 12486804.000 > 1.300滑动稳定方程验算:滑动稳定方程满足: 方程值 = 180.559(kN) > 0.0地基土摩擦系数 = 0.500地基土层水平向: 滑移力= 0.000(kN) 抗滑力= 134.011(kN)地基土层水平向: 滑移验算满足: Kc2 = 13401072.000 > 1.300(二) 倾覆稳定性验算相对于墙趾点,墙身重力的力臂 Zw = 1.449 (m)相对于墙趾点,Ey的力臂 Zx = 2.953 (m)相对于墙趾点,Ex的力臂 Zy = -0.443 (m)验算挡土墙绕墙趾的倾覆稳定性倾覆力矩= 0.000(kN-m) 抗倾覆力矩= 534.290(kN-m)倾覆验算满足: K0 = 53428976.000 > 1.500倾覆稳定方程验算:倾覆稳定方程满足: 方程值 = 427.432(kN-m) > 0.0(三) 地基应力及偏心距验算基础为天然地基,验算墙底偏心距及压应力取倾斜基底的倾斜宽度验算地基承载力和偏心距作用于基础底的总竖向力 = 249.736(kN) 作用于墙趾下点的总弯矩=534.290(kN-m) 基础底面宽度 B = 3.425 (m) 偏心距 e = -0.427(m)基础底面合力作用点距离基础趾点的距离 Zn = 2.139(m)基底压应力: 趾部=18.413 踵部=127.402(kPa)最大应力与最小应力之比 = 127.402 / 18.413 = 6.919作用于基底的合力偏心距验算满足: e=-0.427 <= 0.167*3.425 = 0.571(m)墙趾处地基承载力验算满足: 压应力=18.413 <= 192.000(kPa)墙踵处地基承载力验算满足: 压应力=127.402 <= 208.000(kPa)地基平均承载力验算满足: 压应力=72.907 <= 160.000(kPa)(四) 基础强度验算基础为天然地基,不作强度验算(五) 墙底截面强度验算验算截面以上,墙身截面积 = 7.743(m2) 重量 = 178.099 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 1.359 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.953 (m)相对于验算截面外边缘,Ex的力臂 Zy = -0.443 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 232.735(kN) 作用于墙趾下点的总弯矩=489.587(kN-m) 相对于验算截面外边缘,合力作用力臂 Zn = 2.104(m)截面宽度 B = 3.388 (m) 偏心距 e1 = -0.410(m)截面上偏心距验算满足: e1= -0.410 <= 0.250*3.388 = 0.847(m)压应力验算满足: 计算值= 118.581 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -27.482 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 232.735(kN)轴心力偏心影响系数醟= 0.851挡墙构件的计算截面每沿米面积A = 3.388(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 1.000计算强度时:强度验算满足: 计算值= 232.735 <= 1995.694(kN)计算稳定时:稳定验算满足: 计算值= 232.735 <= 1995.694(kN)(六) 台顶截面强度验算[土压力计算] 计算高度为 4.250(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 6.128(m2) 重量 = 140.943 kN墙背与第二破裂面之间土楔重 = 37.443(kN) 重心坐标(2.895,-1.676)(相对于墙面坡上角点) [强度验算]验算截面以上,墙身截面积 = 5.711(m2) 重量 = 131.352 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 0.740 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.088 (m)相对于验算截面外边缘,Ex的力臂 Zy = 0.000 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 168.794(kN) 作用于墙趾下点的总弯矩=205.642(kN-m)相对于验算截面外边缘,合力作用力臂 Zn = 1.218(m)截面宽度 B = 2.088 (m) 偏心距 e1 = -0.175(m)截面上偏心距验算满足: e1= -0.175 <= 0.250*2.088 = 0.522(m)压应力验算满足: 计算值= 121.427 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -32.344 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 168.794(kN)轴心力偏心影响系数醟= 0.923挡墙构件的计算截面每沿米面积A = 2.088(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 0.990计算强度时:强度验算满足: 计算值= 168.794 <= 1333.967(kN)计算稳定时:稳定验算满足: 计算值= 168.794 <= 1321.145(kN)=====================================================================第 2 种情况: 组合2=============================================组合系数: 1.0001. 挡土墙结构重力分项系数 = 1.000 √2. 墙顶上的有效永久荷载分项系数 = 1.000 √3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √4. 填土侧压力分项系数 = 1.000 √5. 车辆荷载引起的土侧压力分项系数 = 1.000 √=============================================[土压力计算] 计算高度为 5.293(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 8.604(m2) 重量 = 197.894 kN墙背与第二破裂面之间土楔重 = 54.636(kN) 重心坐标(4.029,-3.652)(相对于墙面坡上角点) (一) 滑动稳定性验算基底摩擦系数 = 0.500采用倾斜基底增强抗滑动稳定性,计算过程如下:基底倾斜角度 = 8.531 (度)Wn = 249.736(kN) En = 0.000(kN) Wt = 37.460(kN) Et = 0.000(kN)滑移力= -37.460(kN) 抗滑力= 124.868(kN)滑移验算满足: Kc = 12486804.000 > 1.300滑动稳定方程验算:滑动稳定方程满足: 方程值 = 180.559(kN) > 0.0地基土摩擦系数 = 0.500地基土层水平向: 滑移力= 0.000(kN) 抗滑力= 134.011(kN)地基土层水平向: 滑移验算满足: Kc2 = 13401072.000 > 1.300(二) 倾覆稳定性验算相对于墙趾点,墙身重力的力臂 Zw = 1.449 (m)相对于墙趾点,Ey的力臂 Zx = 2.953 (m)相对于墙趾点,Ex的力臂 Zy = -0.443 (m)验算挡土墙绕墙趾的倾覆稳定性倾覆力矩= 0.000(kN-m) 抗倾覆力矩= 534.290(kN-m)倾覆验算满足: K0 = 53428976.000 > 1.500倾覆稳定方程验算:倾覆稳定方程满足: 方程值 = 427.432(kN-m) > 0.0(三) 地基应力及偏心距验算基础为天然地基,验算墙底偏心距及压应力取倾斜基底的倾斜宽度验算地基承载力和偏心距作用于基础底的总竖向力 = 249.736(kN) 作用于墙趾下点的总弯矩=534.290(kN-m) 基础底面宽度 B = 3.425 (m) 偏心距 e = -0.427(m)基础底面合力作用点距离基础趾点的距离 Zn = 2.139(m)基底压应力: 趾部=18.413 踵部=127.402(kPa)最大应力与最小应力之比 = 127.402 / 18.413 = 6.919作用于基底的合力偏心距验算满足: e=-0.427 <= 0.167*3.425 = 0.571(m)墙趾处地基承载力验算满足: 压应力=18.413 <= 192.000(kPa)墙踵处地基承载力验算满足: 压应力=127.402 <= 208.000(kPa)地基平均承载力验算满足: 压应力=72.907 <= 160.000(kPa)(四) 基础强度验算基础为天然地基,不作强度验算(五) 墙底截面强度验算验算截面以上,墙身截面积 = 7.743(m2) 重量 = 178.099 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 1.359 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.953 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 232.735(kN) 作用于墙趾下点的总弯矩=489.587(kN-m)相对于验算截面外边缘,合力作用力臂 Zn = 2.104(m)截面宽度 B = 3.388 (m) 偏心距 e1 = -0.410(m)截面上偏心距验算满足: e1= -0.410 <= 0.250*3.388 = 0.847(m)截面上压应力: 面坡=18.827 背坡=118.581(kPa)压应力验算满足: 计算值= 118.581 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -27.482 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 232.735(kN)轴心力偏心影响系数醟= 0.851挡墙构件的计算截面每沿米面积A = 3.388(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 1.000计算强度时:强度验算满足: 计算值= 232.735 <= 1995.694(kN)计算稳定时:稳定验算满足: 计算值= 232.735 <= 1995.694(kN)(六) 台顶截面强度验算[土压力计算] 计算高度为 4.250(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 6.128(m2) 重量 = 140.943 kN墙背与第二破裂面之间土楔重 = 37.443(kN) 重心坐标(2.895,-1.676)(相对于墙面坡上角点) [强度验算]验算截面以上,墙身截面积 = 5.711(m2) 重量 = 131.352 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 0.740 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.088 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 168.794(kN) 作用于墙趾下点的总弯矩=205.642(kN-m) 相对于验算截面外边缘,合力作用力臂 Zn = 1.218(m)截面宽度 B = 2.088 (m) 偏心距 e1 = -0.175(m)截面上偏心距验算满足: e1= -0.175 <= 0.250*2.088 = 0.522(m)截面上压应力: 面坡=40.292 背坡=121.427(kPa)压应力验算满足: 计算值= 121.427 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -32.344 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 168.794(kN)轴心力偏心影响系数醟= 0.923挡墙构件的计算截面每沿米面积A = 2.088(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 0.990计算强度时:强度验算满足: 计算值= 168.794 <= 1333.967(kN)计算稳定时:稳定验算满足: 计算值= 168.794 <= 1321.145(kN)=====================================================================第 3 种情况: 组合3=============================================组合系数: 1.0001. 挡土墙结构重力分项系数 = 1.000 √2. 墙顶上的有效永久荷载分项系数 = 1.000 √3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √4. 填土侧压力分项系数 = 1.000 √5. 车辆荷载引起的土侧压力分项系数 = 1.000 √=============================================[土压力计算] 计算高度为 5.293(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 8.604(m2) 重量 = 197.894 kN墙背与第二破裂面之间土楔重 = 54.636(kN) 重心坐标(4.029,-3.652)(相对于墙面坡上角点) (一) 滑动稳定性验算基底摩擦系数 = 0.500采用倾斜基底增强抗滑动稳定性,计算过程如下:基底倾斜角度 = 8.531 (度)Wn = 249.736(kN) En = 0.000(kN) Wt = 37.460(kN) Et = 0.000(kN)滑移力= -37.460(kN) 抗滑力= 124.868(kN)滑移验算满足: Kc = 12486804.000 > 1.300滑动稳定方程验算:滑动稳定方程满足: 方程值 = 180.559(kN) > 0.0地基土摩擦系数 = 0.500地基土层水平向: 滑移力= 0.000(kN) 抗滑力= 134.011(kN)地基土层水平向: 滑移验算满足: Kc2 = 13401072.000 > 1.300(二) 倾覆稳定性验算相对于墙趾点,墙身重力的力臂 Zw = 1.449 (m)相对于墙趾点,Ey的力臂 Zx = 2.953 (m)相对于墙趾点,Ex的力臂 Zy = -0.443 (m)验算挡土墙绕墙趾的倾覆稳定性倾覆力矩= 0.000(kN-m) 抗倾覆力矩= 534.290(kN-m)倾覆验算满足: K0 = 53428976.000 > 1.500倾覆稳定方程验算:倾覆稳定方程满足: 方程值 = 427.432(kN-m) > 0.0(三) 地基应力及偏心距验算基础为天然地基,验算墙底偏心距及压应力取倾斜基底的倾斜宽度验算地基承载力和偏心距作用于基础底的总竖向力 = 249.736(kN) 作用于墙趾下点的总弯矩=534.290(kN-m)基础底面宽度 B = 3.425 (m) 偏心距 e = -0.427(m)基础底面合力作用点距离基础趾点的距离 Zn = 2.139(m)基底压应力: 趾部=18.413 踵部=127.402(kPa)最大应力与最小应力之比 = 127.402 / 18.413 = 6.919作用于基底的合力偏心距验算满足: e=-0.427 <= 0.167*3.425 = 0.571(m)墙趾处地基承载力验算满足: 压应力=18.413 <= 192.000(kPa)墙踵处地基承载力验算满足: 压应力=127.402 <= 208.000(kPa)地基平均承载力验算满足: 压应力=72.907 <= 160.000(kPa)(四) 基础强度验算基础为天然地基,不作强度验算(五) 墙底截面强度验算验算截面以上,墙身截面积 = 7.743(m2) 重量 = 178.099 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 1.359 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.953 (m)相对于验算截面外边缘,Ex的力臂 Zy = -0.443 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 232.735(kN) 作用于墙趾下点的总弯矩=489.587(kN-m) 相对于验算截面外边缘,合力作用力臂 Zn = 2.104(m)截面宽度 B = 3.388 (m) 偏心距 e1 = -0.410(m)截面上偏心距验算满足: e1= -0.410 <= 0.250*3.388 = 0.847(m)截面上压应力: 面坡=18.827 背坡=118.581(kPa)压应力验算满足: 计算值= 118.581 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -27.482 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 232.735(kN)轴心力偏心影响系数醟= 0.851挡墙构件的计算截面每沿米面积A = 3.388(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 1.000计算强度时:强度验算满足: 计算值= 232.735 <= 1995.694(kN)计算稳定时:稳定验算满足: 计算值= 232.735 <= 1995.694(kN)(六) 台顶截面强度验算[土压力计算] 计算高度为 4.250(m)处的库仑主动土压力无荷载时的破裂角 = 0.000(度)按实际墙背计算得到:第1破裂角: 0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=0.000(度) 第1破裂角=0.000(度)Ea=0.000 Ex=0.000 Ey=0.000(kN) 作用点高度 Zy=0.000(m)墙身截面积 = 6.128(m2) 重量 = 140.943 kN墙背与第二破裂面之间土楔重 = 37.443(kN) 重心坐标(2.895,-1.676)(相对于墙面坡上角点) [强度验算]验算截面以上,墙身截面积 = 5.711(m2) 重量 = 131.352 kN相对于验算截面外边缘,墙身重力的力臂 Zw = 0.740 (m)相对于验算截面外边缘,Ey的力臂 Zx = 2.088 (m)相对于验算截面外边缘,Ex的力臂 Zy = 0.000 (m)[容许应力法]:法向应力检算:作用于验算截面的总竖向力 = 168.794(kN) 作用于墙趾下点的总弯矩=205.642(kN-m)相对于验算截面外边缘,合力作用力臂 Zn = 1.218(m)截面宽度 B = 2.088 (m) 偏心距 e1 = -0.175(m)截面上偏心距验算满足: e1= -0.175 <= 0.250*2.088 = 0.522(m)截面上压应力: 面坡=40.292 背坡=121.427(kPa)压应力验算满足: 计算值= 121.427 <= 1900.000(kPa)切向应力检算:剪应力验算满足: 计算值= -32.344 <= 90.000(kPa)[极限状态法]:重要性系数0 = 1.000验算截面上的轴向力组合设计值Nd = 168.794(kN)轴心力偏心影响系数醟= 0.923挡墙构件的计算截面每沿米面积A = 2.088(m2)材料抗压极限强度Ra = 1600.000(kPa)圬工构件或材料的抗力分项系数鉬= 2.310偏心受压构件在弯曲平面内的纵向弯曲系数豮= 0.990计算强度时:强度验算满足: 计算值= 168.794 <= 1333.967(kN)计算稳定时:稳定验算满足: 计算值= 168.794 <= 1321.145(kN)=================================================各组合最不利结果=================================================(一) 滑移验算安全系数最不利为:组合1(组合1)抗滑力 = 124.868(kN),滑移力 = -37.460(kN)。