功能磁共振成像研究介绍

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能磁共振成像研究介绍

影像学检查在现代医学诊断中扮演着极其重要的角色,超声、PET、MEG、CT、MRI 以及光学成像技术等使无创性地观察组织或器官的解剖结构和功能状态成为可能。其中,磁共振成像(Magnetic Resonance Imaging,MRI)技术[1,2] 是一种有效的研究人脑的非侵害性途径,它相对传统的医学成像技术具有很大的优势,包括:多参数的成像方式、生物组织的成像高对比度、对生物体能代谢的测量以及无创安全成像。磁共振图像含有丰富的化学和生物信息,可以达到分子生物学和组织学水平。它的原理是先利用射频脉冲激发处于提出磁场中的原子核,再利用原子核退激弛豫时释放的能量成像。1973 年,美国的Paul Lauterbur 得到了第一幅二维NMR(nuclear magneticresonance)质子图像,1977 年英国的Peter Mansfield 等人发明了一种称为EPI 的回波平面快速成像技术,大大推动了磁共振成像技术的发展。1978 年,人们又获取了第一张人体头部的MR 图像,此后随着功能磁共振的出现,磁共振成像技术也越来越多的应用于医学、神经科学、心理学、认知科学等方面的研究。磁共振成像技术根据扫描参数的变化又衍生出多种成像模式,如观察解剖结构的T1 加权成像(T1WI) 和T2 加权成像(T2WI),观察事件刺激的功能激活区域的功能磁共振成像,以及观察组织各向异性的扩散加权成像(Diffusion Weighted Imaging, DWI) 和扩散张量成像(Diffusion Tensor Imaging, DTI) 等。磁共振技术现在是脑科学研究中的一种非常重要的无创性观测工具,可以对人类大脑进行重复性测量,在大脑功能研究、病理研究和临床诊疗中起着越来越重要的作用。

目前,磁共振成像技术在科学研究领域和临床应用领域得到了相当的发展和推广,但是这种成像技术数据模式分析方法的不足限制了它更为广泛的应用。由于磁共振成像技术是基于二次信号的成像方法,通过对血氧依赖水平BOLD(blood oxygen level dependent)信号的分析研究生物体的神经电活动。成像信号和神经电活动之间存在着复杂的非线性关系[3],至今尚未被研究者完全解析。BOLD效应fMRI

是基于神经元功能活动对局部氧耗量和脑血流影响程度不匹配所导致的局部磁场性质变化的原理。血红蛋白包括含氧血红蛋白和去氧血红蛋白,两种血红蛋白对磁场有完全不同的影响。早期的fMRI 是单纯利用神经元活动的血流增强效应,利用注射顺磁造影剂的方法来实现的,后来随成像技术的发展,才形成BOLD 信号成像技术。现在神经科学界的研究热点就是在成像技术的生理基础和物理基础上,进行数据模式分析方法的研究,将成像信号和感兴趣的神经电活动之间建立映射关系,从时空和频域对神经响应进行建模,最终利用其研究大脑的功能以及通路。自上世纪90 年代初,在MRI 技术的基础上发展起来的功能磁共振成像技术(functional MRI,fMRI)是脑科学研究领域的一项重要科学进展,最早在1991 年就由Belliveau 等应用于初级视觉皮质的定位,从而为fMRI 在人脑功能定位方面的研究开创了先河。它以血氧水平相关BOLD 效应为其原理基础,探测脑在不同条件及不同区域下,与神经活动相关的生理变化,实现了人类长久以来无损伤具体观察活体大脑功能的梦想。脑功能的定位研究是利用功能磁共振进行脑研究的重要内容之一,其目的就是从功能图像中把受到刺激后激活的脑区标记出来,标记出的脑区再和同一层面的T1 结构图迭加,最后形成脑功能定位图。功能磁共振成像与传统的磁共振成像技术不同的是,功能磁共振成像得到的是人脑在执行某项任务或受到某种刺激时的功能映射图,而不是人脑的解剖图像,并最终描绘出大脑的功能网络连接,清晰描述各个脑区的功能作用。功能磁共振成像突破了过去仅从生理学或病理生理学角度对人脑实施研究和评价的状态,打开了从语言、记忆和认知等领域对大脑进行探索的大门。

不同的脑区的血流分布有显著的不同,其中神经内分泌的供血量最大。该现象的主要原因是组织中毛细血管数目的不同,和血流量的关系并不大。大脑灰质内的毛细血管密度非常高,是白质中的2~3 倍。毛细血管中的血流量和血容量会随大脑神经细胞氧代谢而发生变化,这就是fMRI 的基础。大脑功能性活动和血流之间的耦合关系现在还未完全清楚,很可能有某种介质在其中起作用,这种物质可能是CO2,H+,K+ 或者腺苷等,它们可能对功能性充血有很重要的作用。此外

需要注意的不同成像序列的BOLD 信号血管源不同。如使用SE 序列时,信号主要来源于毛细血管前的小动脉,而GRE 序列的信号主要来源于毛细血管床和小静脉。因为毛细血管和小静脉在灰质皮层中是均匀分布的,所以利用它们的BOLD 信号能够更精确的定位功能活动。BOLD 响应信号的时程可以划分为静息期、出现潜伏期、反应期和消失潜伏期等四个阶段。出现潜伏期是指刺激到BOLD 信号上升到峰值的90这段响应时程,而消失潜伏期是指从刺激结束到BOLD 信号下降到峰值的10 这段时程,大概时间为5~8 秒。一般认为只有当动脉血液到达毛细血管床并且高氧合血液充满静脉血管时,BOLD 信号才能被检测到。BOLD 信号的峰值时间和刺激开始的时间差异决定了BOLD 成像的时间分辨率,相对其他医学成像方式比较低,比较合适大脑功能区的整体定位,但一般情况下研究大脑功能区域的动态关联则比较困难。但是随着信号分析技术的发展,我们也可以利用BOLD 信号来研究脑区的动态关联,甚至是研究大脑神经网络的信息流,即具有方向性的有效连接(Effective Connectivity)。

神经元活动与细胞能量代谢密切相关,功能磁共振成像并不能直接检测神经元活动,而是通过MR 信号的测定来反映血氧饱和度及血流量,从而间接反映脑的能量消耗,因此,在一定程度上能够反映神经元的活动情况,达到功能成像的目的。血氧依赖水平技术和血流量成像(cerebral blood flow; CBF)是fMRI 的基础,它们不同的图像对比度反映的神经电活动耦合信号不同。神经元活动增强时,脑功能区皮层的血流量和氧交换增加,但与代谢耗氧量的增加不成比例,超过细胞代谢所需的氧供应量,其结果可导致功能活动区血管结构中氧合血红蛋白增加,脱氧血红蛋白相对减少。脱氧血红蛋白是顺磁性物质,其铁离子有4 个不成对电子,磁矩较大,有明显的T2 缩短效应。因此,脱氧血红蛋白的直接作用是引起T2 加权像信号减低,fMRI 对其在血管结构中的浓度变化极为敏感,当浓度增加时可引起局部信号减低,减低时则可使磁化率诱导的象素内失相位作用减低,引起自旋相干性增大,从而导致T2*和T2 弛豫时间延长,信号升高,使脑功能成像时功能活动区的皮层表现为高信号。研究表明,T2* 信号更多反

相关文档
最新文档