2021-2022学年北师大版八年级数学下册《1-1等腰三角形》解答题优生辅导训练(附答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022学年北师大版八年级数学下册《1-1等腰三角形》解答题优生辅导训练(附答案)1.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)
2.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
3.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.
4.如图,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF ⊥AC于F.
(1)在图(1)中,D是BC边上的中点,计算DE+DF和BG的长(用a,b表示),并判断DE+DF与BG的关系.
(2)在图(2)中,D是线段BC上的任意一点,DE+DF与BG的关系是否仍然成立?
如果成立,证明你的结论;如果不成立,请说明理由.
(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明)
5.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.
(1)如图1,填空∠B=°,∠C=°;
(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2
①求证:△ANE是等腰三角形;
②试写出线段BN、CE、CD之间的数量关系,并加以证明.
6.如图,在△ABC中,AB=AC,D在边AC上,且BD=DA=BC.
(1)如图1,填空∠A=°,∠C=°.
(2)如图2,若M为线段AC上的点,过M作直线MH⊥BD于H,分别交直线AB、BC 于点N、E.
①求证:△BNE是等腰三角形;
②试写出线段AN、CE、CD之间的数量关系,并加以证明.
7.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;
若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
8.等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连接CE.(1)如图1,若点D在线段BC上,求证:CE+CD=AB;
(2)如图2,若点D在CB的延长线上,线段CE,CD,AB的数量有怎样的数量关系?
请加以证明.
9.已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形.
10.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.
11.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;
(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF ⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.
12.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答问题:当t为何值时,△PBQ是直角三角形?
13.如图,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动速度为1厘米/秒,点Q从点B开始沿B →C→A方向运动速度为2厘米/秒,若它们同时出发,设出发的时间为t秒.
(1)求出发2秒后,PQ的长;
(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.
14.已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF =CE.求证:△ABC是等腰三角形.
15.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.
(1)当t为何值时,M、N两点重合;
(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.
①当t为何值时,△AMN是等边三角形;
②当t为何值时,△AMN是直角三角形;
(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.
16.图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?
说明理由;
如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM相等吗?说明理由;
如图(3)C点为线段AB外一点,△ACM,△CBN是等边三角形,AN与BM相等吗?
说明理由.
17.在等边三角形ABC中,D、E分别在边BC、AC上,DC=AE,AD、BE交于点F,(1)请你量一量∠BFD的度数,并证明你的结论;
(2)若D、E分别在边BC、CA的延长线上,其它条件不变,(1)中的结论是否成立,请画图证明你的结论.
18.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.
(I)探究:线段BM,MN,NC之间的关系,并加以证明.
(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.
19.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为h.
(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;
(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.
20.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.
(1)当t为何值时,△PBQ为等边三角形?
(2)当t为何值时,△PBQ为直角三角形?
21.如图所示,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t s,解答下列问题:
(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.
(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.
22.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N 第一次到达B点时,M,N同时停止运动,设运动时间为t(s).
(1)当t为何值时,M,N两点重合?两点重合在什么位置?
(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N运动的时间;若不存在,请说明理由.
23.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.
(1)若∠A=50°,∠D=30°,求∠GEF的度数;
(2)若BD=CE,求证:FG=BF+CG.
参考答案
1.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,
∴∠GDF=∠E,∠DGB=∠ACB.
在△GDF和△CEF中,,
∴△GDF≌△CEF(ASA),
∴GD=CE.
∵BD=CE,
∴BD=GD,
∴∠B=∠DGB=∠ACB,
∴△ABC是等腰三角形.
2.(1)证明:连接BD,
∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=×120°=60°,
∵AD=AB,
∴△ABD是等边三角形;
(2)证明:∵△ABD是等边三角形,
∴∠ABD=∠ADB=60°,BD=AD
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE与△ADF中,

∴△BDE≌△ADF(ASA),
∴BE=AF.
3.(1)证明:如图1所示:
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC=.
∵BD平分∠ABC,
∴∠1=∠DBA=∠A=30°.
∴DA=DB.
∵DE⊥AB于点E.
∴AE=BE=.
∴BC=BE.
∴△EBC是等边三角形;
(2)结论:AD=DG+DM.
证明:
如图2所示:延长ED使得DW=DM,连接MW,
∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,
又∵DM=DW,
∴△WDM是等边三角形,
∴MW=DM,
在△WGM和△DBM中,

∴△WGM≌△DBM,
∴BD=WG=DG+DM,
∴AD=DG+DM.
(3)结论:AD=DG﹣DN.
证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.
∵DE⊥AB于点E.
∴∠2=∠3=60°.
∴∠4=∠5=60°.
∴△NDH是等边三角形.
∴NH=ND,∠H=∠6=60°.
∴∠H=∠2.
∵∠BNG=60°,
∴∠BNG+∠7=∠6+∠7.
即∠DNG=∠HNB.
在△DNG和△HNB中,
∴△DNG≌△HNB(ASA).
∴DG=HB.
∵HB=HD+DB=ND+AD,
∴DG=ND+AD.
∴AD=DG﹣ND.
4.解:(1)∵DF⊥AC,BG⊥AC,
∴DF∥BG,
∵D是BC的中点,
∴DF=BG=.
连接AD,DE⊥AB,DF⊥AC,
∴DE=DF=.
∴DE+DF=.
∴DE+DF=BG.
(2)延长FD,使FM=BG,
∵DF⊥AC,BG⊥AC,
∴四边形BMFG是矩形,
∴BG=MF,
∵∠EDB+∠ABD=90°,∠FDC+∠C=90°,∠ABC=∠C,∴∠EDB=∠FDC,
∵∠FDC=∠BDM,
∴∠EDB=∠BDM.
∵∠BED=∠BMD,BD=BD,
∴△EBD≌△MBD,
∴ED=MD.
∴BG=DE+DF.
(3)BG=DE﹣DF.
5.解:(1)∵BA=BC,
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案为:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵MH⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
即△ANE是等腰三角形;
②CD=BN+CE.
证明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,
∴BN+CE=BC﹣BD=CD,
即CD=BN+CE.
6.解:(1)∵BD=BC,
∴∠BDC=∠C,
∵AB=AC,
∴∠ABC=∠C,
∴∠A=∠DBC,
∵AD=BD,
∴∠A=∠DBA,
∴∠A=∠DBA=∠DBC=∠ABC=∠C,∵∠A+∠ABC+∠C=5∠A=180°,
∴∠A=36°,∠C=72°;
故答案为:36,72;
(2)①∵∠A=∠ABD=36°,
∠B=∠C=72°,
∴∠ABD=∠CBD=36°,
∵BH⊥EN,
∴∠BHN=∠EHB=90°,
在△BNH与△BEH中,

∴△BNH≌△BEH,
∴BN=BE,
∴△BNE是等腰三角形;
②CD=AN+CE,
理由:由①知,BN=BE,
∵AB=AC,
∴AN=AB﹣BN=AC﹣BE,
∵CE=BE﹣BC,
∵CD=AC﹣AD=AC﹣BD=AC﹣BC,
∴CD=AN+CE.
7.(1)证明:∵△ABC是等边三角形
∴∠ABQ=∠CAP,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
∵,
∴△ABQ≌△CAP(SAS);
(2)解:点P、Q在运动的过程中,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠QMC=∠BAQ+∠MAC=∠BAC=60°
(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠P AC=180°﹣60°=120°.
8.证明:(1)如图1,∵△ADE与△ABC都是等边三角形,
∴AC=AB,AE=AD,∠DAE=∠BAC=60°.
∴∠DAE﹣∠CAD=∠BAC﹣∠CAD.
即∠CAE=∠BAD.
在△CAE和△BAD中,
∵,
∴△CAE≌△BAD(SAS).
∴EC=DB(全等三角形的对应边相等);
∴CE+CD=DB+CD=BC=AB,即CE+CD=AB;
(2)CE+AB=CD.
理由如下:如图2,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°.
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE.
即∠CAE=∠BAD.
在△CAE和△BAD中,
∵,
∴△CAE≌△BAD(SAS).
∴EC=DB(全等三角形的对应边相等);
∴CE+AB=DB+BC=CD,即CE+AB=CD.
9.证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,在△ACN和△MCB中,
∵,
∴△ACN≌△MCB(SAS),
∴AN=BM.
(2)∵△CAN≌△CMB,
∴∠CAN=∠CMB,
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,
在△CAE和△CMF中,
∵,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
10.(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,

∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.
(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:△CBF≌△ACD,∴CF=AD,
∵△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.
11.(1)证明:∵DC∥AB,
∴∠CDB=∠ABD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴BC=DC,
又∵AD=BC,
∴AD=DC;
(2)△DEF为等边三角形,
证明:∵BC=DC(已证),CF⊥BD,
∴点F是BD的中点,
∵∠DEB=90°,∴EF=DF=BF.
∵∠ABC=60°,BD平分∠ABC,
∴∠DBE=30°,∠BDE=60°,
∴△DEF为等边三角形.
12.解:根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3﹣t)cm,
△PBQ中,BP=3﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=BP,
即t=(3﹣t),t=1(秒),
当∠BPQ=90°时,BP=BQ,
3﹣t=t,t=2(秒).
答:当t=1秒或t=2秒时,△PBQ是直角三角形.13.(1)解:(1)BQ=2×2=4cm,
BP=AB﹣AP=8﹣2×1=6cm,
∵∠B=90°,
PQ==2(cm);
(2)解:分三种情况:
①当CQ=BQ时,如图1所示:
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②当CQ=BC时,如图2所示:
则BC+CQ=12
∴t=12÷2=6秒.
③当BC=BQ时,如图3所示:
过B点作BE⊥AC于点E,
则BE===4.8(cm)
∴CE==3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
14.证明:∵D是BC的中点,
∴BD=CD,
∵DE⊥AC,DF⊥AB,
∴△BDF与△CDE为直角三角形,
在Rt△BDF和Rt△CDE中,

∴Rt△BFD≌Rt△CED(HL),
∴∠B=∠C,
∴AB=AC,
∴△ABC是等腰三角形.
15.解:(1)设点M、N运动x秒后,M、N两点重合,
x×1+6=2x,
解得:x=6,
即当M、N运动6秒时,点N追上点M;
(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,
AM=t,AN=6﹣2t,
∵∠A=60°,当AM=AN时,△AMN是等边三角形
∴t=6﹣2t,
解得t=2,
∴点M、N运动2秒后,可得到等边三角形△AMN.
②当点N在AB上运动时,如图2,
若∠AMN=90°,∵BN=2t,AM=t,
∴AN=6﹣2t,
∵∠A=60°,
∴2AM=AN,即2t=6﹣2t,
解得t=;
如图3,若∠ANM=90°,
由2AN=AM得2(6﹣2t)=t,
解得t=.
综上所述,当t为或s时,△AMN是直角三角形;
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,
如图4,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵∠AMC=∠ANB,∠C=∠B,AC=AB,
∴△ACM≌△ABN(AAS),
∴CM=BN,
∴t﹣6=18﹣2t,
解得t=8,符合题意.
所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.16.解:(1)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC,
又∵∠ACN=∠MCN+60°,∠MCB=∠MCN+60°,
∴∠ACN=∠MCB,
∴△ACN≌△MCB,
∴AN=BM.
(2)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC,
∵C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,∴点M,C,N这三点共线,
∴∠ACN=∠MCB,
∴△ACN≌△MCB,
∴AN=BM.
(3)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC,
又∵∠ACN=∠MCN+60°,∠MCB=∠MCN+60°,
∴∠ACN=∠MCB,
∴△ACN≌△MCB,
∴AN=BM.
17.解:(1)∠BFD=60°
在三角形ABE与三角形CDA中,AB=AC,∠BAE=∠C=60°,AE=CD,
∴△AEB≌△CDA.•
∴∠AEB=∠CDA,
又∠DAC+∠ADC=180°﹣∠C=120°,
∴∠AEB+∠DAC=120°,
∴∠AFE=∠BFD=60°
(2)∵∠BAC=∠ACB=60°,
∴∠EAB=∠ACD=120°,
在△ABE和△ACD中,
△ABE≌△ACD,
∴∠E=∠D,
∵∠EAF=∠CAD,∠CAD+∠D=60°,
∴∠EAF+∠E=60°,
∴∠BFD=60°.
18.解:(1)MN=BM+NC.理由如下:
延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠EDC,
∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=60°,
∴∠NDC+∠EDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE,
∵MD=DE,DN=DN,
∴△DMN≌△DEN(SAS),
∴MN=NE=NC+CE=NC+BM.
(2)按要求作出图形,(1)中结论不成立,应为MN=NC﹣BM.在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵,
∴△BMD≌△CED(SAS),
∴MD=DE,∠BDM=∠EDC,
∵∠BDC=120°,即∠BDE+∠EDC=120°,
∴∠BDE+∠BDM=120°,即∠MDE=120°,
∵∠MDN=60°,
∴∠NDE=60°,
∴∠MDN=∠NDE,
在△MDN和△EDN中
∵,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC﹣CE=NC﹣BM.
19.解:(1)如图1,连接AP,则S△ABC=S△ABP+S△APC ∴BC•AM=AB•PD+AC•PF
即BC•h=AB•h1+AC•h2
又∵△ABC是等边三角形
∴BC=AB=AC,
∴h=h1+h2;
(2)点P在△ABC内时,h=h1+h2+h3,理由如下:
如图2,连接AP、BP、CP,则S△ABC=S△ABP+S△BPC+S△ACP ∴BC•AM=AB•PD+AC•PE+BC•PF
即BC•h=AB•h1+AC•h2+BC•h3
又∵△ABC是等边三角形,
∴BC=AB=AC.
∴h=h1+h2+h3;
点P在△ABC外时,h=h1+h2﹣h3.
理由如下:如图3,连接PB,PC,P A
由三角形的面积公式得:S△ABC=S△P AB+S△P AC﹣S△PBC,
即BC•AM=AB•PD+AC•PE﹣BC•PF,∵AB=BC=AC,
∴h1+h2﹣h3=h,
即h1+h2﹣h3=h.
20.解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.
∵4÷2=2,
∴0≤t≤2,BP=4﹣2t,BQ=t.
(1)当BP=BQ时,△PBQ为等边三角形.
即4﹣2t=t.
∴.
当时,△PBQ为等边三角形;
(2)若△PBQ为直角三角形,
①当∠BQP=90°时,BP=2BQ,
即4﹣2t=2t,
∴t=1.
②当∠BPQ=90°时,BQ=2BP,
即t=2(4﹣2t),
∴.
即当或t=1时,△PBQ为直角三角形.
21.解:(1)当点Q到达点C时,PQ与AB垂直,即△BPQ为直角三角形.理由是:
∵AB=AC=BC=6cm,∴当点Q到达点C时,BP=3cm,
∴点P为AB的中点.
∴QP⊥BA(等边三角形三线合一的性质).
(2)假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,
∴BP=PQ=BQ,
∴6﹣t=2t,
解得t=2.
∴当t=2时,△BPQ是个等边三角形.
22.解:(1)由题意,t×1+12=2t,
解得:t=12,
∴当t=12时,M,N两点重合,
此时两点在点C处重合;
(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,
如图,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,

∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,
∵CM=NB,
∴y﹣12=36﹣2y,
解得:y=16.故假设成立.
∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.23.(1)解:∵∠A=50°,
∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,
∵EG⊥BC,
∴∠CEG=90°﹣∠C=90°﹣65°=25°,
∵∠A=50°,∠D=30°,
∴∠CEF=∠A+∠D=50°+30°=80°,
∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;
(2)证明:过点E作EH∥AB交BC于H,
则∠ABC=∠EHC,∠D=∠FEH,
∵AB=AC,
∴∠ABC=∠C,
∴∠EHC=∠C,
∴EC=EH,
∵BD=CE,
∴BD=EH,
在△BDF和△HEF中,

∴△BDF≌△HEF(AAS),∴BF=FH,
又∵EC=EH,EG⊥BC,∴CG=HG,
∴FG=FH+HG=BF+CG.。

相关文档
最新文档