江西1997-2012中考数学试题及答案
2012年江西省中考数学试题(含答案)

一、选择题(共6小题,每题3分,共18分)1.-1的绝对值是()A.1B.0C.-1D.±12.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.下列运算正确的是()A.3362a a a B.a6÷a-3=a3C.3332a a a⋅= D.236(2)8a a-=-4.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长第4题图第5题图5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()2012年江西省中考数学试题(满分120分,考试时间120分钟)A .B .C .D .二、填空题(共8小题,每题3分,共24分) 7. 一个正方体有个面.8. 当x =-4时,63x -的值是.9. 如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C =度.第9题图第13题图10. 已知关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值是______.11. 已知2()8m n -=,2()2m n +=,则m 2+n 2=____. 12. 已知,一次函数y kx b (k ≠0)的图象经过(2,-1),(-3,4)两点,则它的图象不经过第_______象限.13. 如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹).14. 如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是.三、解答题(共4题,每题6分,共24分)15. 化简2211(1)a a a a--÷+.16.解不等式组21131xx+-⎧⎨-≥⎩<,并将解集在数轴上表示出来.17.如图,已知两菱形ABCD、CEFG,其中点A,C,F在同一直线上,连接BE,DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1、A2),(B1、B2)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(共2题,每题8分,共16分)19.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在曲线上,求m的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.五、(共2题,每题9分,共18分)21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm),收集并整理出如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中的选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器)六、(共2题,每题10分,共20分)23. 如图,已知二次函数2143L y x x =-+:与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C . (1)写出A ,B 两点的坐标;(2)二次函数2243L y kx kx k =-+:(k ≠0),顶点为P .①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质; ②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由;③若直线8y k 与抛物线2L 交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB,CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.图1 图2图3图4图52012年江西省中考数学参考答案15.-116.x<-117.(1)△ABC≌△ADC;△BCE≌△DCG;△CEF≌△CGF(任意两对均可).(2)证明略.18.(1)12;(2)13.四、(共2题,每题8分,共16分)19.(1)12(43)C yx=,;;(2)m=2.20.信纸的纸长为28.8cm,信封的口宽为11cm.五、(共2题,每题9分,共18分)21.(1)平均数为166.4cm,中位数为165cm,众数为164cm;(2)选择平均数作为选定标准,具有“普通身高”的有⑦⑧⑨⑩四位男生;选择中位数作为选定标准,具有“普通身高”的有①⑦⑧⑩四位男生;选择众数作为选定标准,具有“普通身高”的有①⑤⑦⑧⑩四位男生;(3)选择平均数作为选定标准,该年级男生中具有“普通身高”的约有112名;选择中位数作为选定标准,该年级男生中具有“普通身高”的约有112名;选择众数作为选定标准,该年级男生中具有“普通身高”的约有140名.注:任意选择其中一个标准即可.22.(1)证明略;(2)61.9°;(3)会拖到地面.六、(共2题,每题10分,共20分)23.(1)(10)(30) .A B,,,(2)①对称轴都为直线x=2;都经过(10)(30)A B,,,两点.②存在,=k EF的长度不会发生变化,EF=6.24.(1)43;(2;(3)①2;②四边形OMPN为平行四边形,证明略.10。
南昌市2012年中考数学样卷及答案

江西省南昌市2012年初中毕业暨中等学校招生考试数学试卷(样卷)说明:本卷共有六个大题,28个小题,全卷满分120分,考试时间120分钟.考试可以使用计算器.试卷分为试题卷和答题卷。
考生只能按要求在答题卷指定的位置作答,否则不给分。
一、选择题(本大题共12小题,每小题3分,共36分)1.一个数的相反数是-2,则这个数是( ) A .12-B .12C .2-D .22.下列各式计算结果正确的是( )A .2x x x += B .2(2)4x x = C .22(1)1x x +=+D .2x x x =3.有一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入23后,输出的结果应为( )A .10B .11C .12D .134.若分式211x x --的值为0,则x 等于( )A .1,-1B .1C .-1D .1,0,-1 5.将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能...的是( )6.下列现象不属于...平移的是( ) A .小华乘电梯从一楼到三楼 B .足球在操场上沿直线滚动 C .一个铁球从高处自由落下D .小朋友坐滑梯下滑7.将32x xy -分解因式,正确的是( ) A .()()x x y x y +- B .22()x x y +C .2()x x y -D .()xy x y -8.近视眼镜的度数()y 度与镜片焦距(m)x 成反比例,已知400度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为( )A .400y x =B .14y x =C .100y x =D .1400y x= 9.如图用两道绳子....捆扎着三瓶直径均为8cm 的酱油瓶,若不 计绳子接头(π取3),则捆绳总长是( )A .B .C .D .A .24cmB .48cmC .96cmD .192cm10.加热一定量的水时,如果将温度与加热量的关系用图表示,一开始是直线,但是当到达100℃时,温度会持续一段时间,而后因为沸腾后汽化需要吸收大量热量,图形就完全变了,反应这一现象正确的图形是( )11.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为21424y n n =-+-,则该企业一年中应停产的月份是( ) A .1月、2月、3月 B .2月、3月、4月C .1月、2月、12月D .1月、11月、12月12.将如右图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是( )二、填空题(本题共8小题,每小题3分,共24分) 13.化简:2()a b a --=.14.如图,数轴上的两个点A B ,所表示的数分别是a b ,,化简:a b += . 15.方程112x =-的解是x = .16.如图,AB 是半圆O 的直径,30BAC ∠=,BC 为半圆的切线, 且43BC =,则点O 到AC 的距离OD =.三、(本大题共5小题,每小题各4分,共20分)A .B .C .D . 第14题图B0 Ax17.化简:221(23)32x x x x x ⎡⎤-+-÷⎣⎦.18..如图,在ABC △中,AB AC =,M ,N 分别是AB ,AC 的中点, D ,E 为BC 上的点,连结DN ,EM .若13cm AB =,10cm BC =, 5cm DE =,求图中阴影部分的面积.19.解不等式组413230x xx +⎧>+⎪⎨⎪+≥⎩,并解集在数轴上表示出来.20.已知:如图,AB ED ∥,AB DE =,点F ,点C 在AD 上,AF DC =.求证:BC EF ∥. 21.将一箱苹果分给一群小朋友,若每位小朋友分5个苹果, 则还剩12个苹果;若每位小朋友分8个苹果,则最后有一个 小朋友只分到2个苹果.求这群小朋友的人数.四、(本大题共4小题,每小题6分,共24分)22.如图,ABC △内接于O ,点D 在OC 的延长线上, 已知:30B CAD ∠=∠=.(1)求证:AD 是O 的切线;(2)若OD AB ⊥,求sin BAC ∠的值.23.已知:直线y x =-反比例函数ky x =的图象的一个交点为(3)A a ,. (1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线l 的另一个交点坐标. 24.有两个可以自由转动的均匀转盘A ,B ,均被分成4等份, 并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.用树状图或列表法,求两数相加和为零的概率25.某初级中学为了解学生的身高状况,在1500名学生中抽取部分学生进行抽样统计,结果如下:组别 分组 频数 频率 1 130.5~140.5 3 0.05 2 140.5~150.5 m 0.15 3 150.5~160.5 27 n 4 160.5~170.5 18 0.30 5 170.5~180.53 0.05 合计32 01 01-2- 3-(第24题)ABAB C F ED BCDA O请你根据上面的图表,解答下列问题:(1)m = ,n = ; (2)补全频率分布直方图.五、(本大题共2小题,每小题8分,共16分)26.如图,已知经过原点的抛物线y =-2x 2+4x 与x 轴的另一交点为A ,现将它向右平移m (m >0)个单位,所得抛物线与x 轴交与C 、D 两点,与原抛物线交与点P . (1)求点A 的坐标,并判断△PCA 存在时它的形状(不要求说理)(2)在x 轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由; (3)△CDP 的面积为S ,求S 关于m 的关系式。
2012年江西省中考数学试卷-答案

江西省2012年中等学校招生考试数学答案解析 一、选择题1.【答案】A【解析】10-<Q ,||11∴-=. 【提示】根据绝对值的性质进行解答即可.【考点】绝对值2.【答案】D【解析】A.4的a 倍用代数式表示4a ,故本选项正确;B.a 的4倍用代数式表示4a ,故本选项正确;C.4个a 相加用代数式表示4a a a a a +++=,故本选项正确;D.4个a 相乘用代数式表示4a a a a a =g g g ,故本选项错误.故选D.【提示】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【考点】代数式3.【答案】B【解析】Q 等腰三角形的一个顶角为80o ,∴底角(18080)250=-÷=o o o .故选B.【提示】根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.【考点】等腰三角形的性质4.【答案】D【解析】A.3332a a a +=,故本选项错误;B.639a a a -÷=,故本选项错误;C.336a a a =,故本选项错误;D.236(2)8a a -=-,故本选项正确.故选D.【提示】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.【考点】同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方5.【答案】C【解析】A.是轴对称图形,不是中心对称图形,故本选项错误;B.不是轴对称图形,也不是中心对称图形,故本选项错误;C.既是轴对称图形,也是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.【提示】根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.【考点】中心对称图形;轴对称图形6.【答案】D【解析】a Q ,b ,c 三户家用电路接入电表,相邻电路的电线等距排列,∴将a 向右平移即可得到b ,c ,Q 图形的平移不改变图形的大小,∴三户一样长.故选D.【提示】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【考点】生活中的平移现象7.【答案】A【解析】由于人相对于太阳与太阳相对于人的方位正好相反,Q 在阳光下你的身影的方向北偏东60o 方向,∴太阳相对于你的方向是南偏西60o .故选A.【提示】根据方向角的定义进行解答即可.【考点】方向角8.【答案】C【解析】2()8m n -=Q ,2228m mn n ∴-+=①,2()2m n +=Q ,2222m mn n ∴++=②,①+②得,222210m n +=,225m n ∴+=.故选C.【提示】根据完全平方公式由2()8m n -=得到2228m mn n -+=①,由2()2m n +=得到2222m mn n ++=②,然后①+②得,222210m n +=,变形即可得到22m n +的值.【考点】完全平方公式9.【答案】D【解析】根据方差的定义可得:因为丁的方差大于甲、乙、丙的方差,所以月考班级名次波动最大的是丁.故选D.【提示】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【考点】方差10.【答案】B【解析】Q 关于x 的一元二次方程220x x a +-=有两个相等的实数根,2240a ∴∆=+=,解得1a =-.故选B.【提示】根据关于x 的一元二次方程220x x a +-=有两个相等的实数根可知0∆=,求出a 的取值即可.【考点】根的判别式11.【答案】C【解析】①当正三角形AEF 在正方形ABCD 的内部时,如图1,Q 正方形ABCD 与正三角形AEF 的顶点A 重合,当BE DF =时,AB AD BE DF AE AF =⎧⎪∴=⎨⎪=⎩,()ABE ADF SSS ∴△≌△,BAE FAD ∴∠=∠,60EAF ∠=o Q ,30BAE FAE ∴∠+∠=o ,15BAE FAD ∠=∠=o ;②当正三角形AEF 在正方形ABCD 的外部时,如图2,Q 正方形ABCD 与正三角形AEF 的顶点A 重合,当BE DF =时,AB AD BE DF AE AF =⎧⎪∴=⎨⎪=⎩,()ABE ADF SSS ∴△≌△,BAE FAD ∴∠=∠,60EAF ∠=o Q ,36060300BAE FAE ∴∠+∠=-=o o ,165BAE FAD ∴∠=∠=o .故答案为15o 或165o .【提示】利用正方形的性质和等边三角形的性质证明()ABE ADF SSS △≌△,有相似三角形的性质和已知条件即可求出当BE DF =时,BAE ∠的大小,应该注意的是,正三角形AEF 可以再正方形的内部也可以在正20.【答案】如图所示,只要是符合图形即可.21.【答案】树形图如图:即点B'恰好落在双曲线上.125x=,216EF x x∴=-=,∴线段EF的长度不会发生变化.②过点O 作OE AB ⊥交O e 于点E ,如图2所示,连接OA 、OB 、AE 、BE ,120π24π⨯③如图3所示,连接O A ',O B ',(2)①如图4,②如图5,当AB与CD不平行时,四边形OMPN是平行四边形.。
2012年江西省中考数学试卷(教师版)

2012年江西省中考数学试卷(教师版)一.选择题(本题6个小题,每小题3分,共18分)1.(3分)﹣1的绝对值是()A.1B.0C.﹣1D.±1【考点】15:绝对值.【分析】根据绝对值的性质进行解答即可.【解答】解:∵﹣1<0,∴|﹣1|=1.故选:A.【点评】本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(3分)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°【考点】KH:等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.【解答】解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选:B.【点评】考查三角形内角和定理和等腰三角形的性质的运用,比较简单.3.(3分)下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a3=2a3D.(﹣2a2)3=﹣8a6【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.【解答】解:A、a3+a3=2a3,故本选项错误;B、a6÷a﹣3=a9,故本选项错误;C、a3•a3=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项正确;故选:D.【点评】此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.(3分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【考点】Q1:生活中的平移现象.【分析】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选:D.【点评】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.5.(3分)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°【考点】IH:方向角.【分析】根据方向角的定义进行解答即可.【解答】解:由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故选:A.【点评】本题考查的是方向角的概念,熟知方向角的概念是解答此题的关键.6.(3分)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.【考点】E6:函数的图象.【分析】根据某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,休息时油量不再发生变化,再次出发油量继续减小,即可得出符合要求的图象.【解答】解:某人驾车从A地上高速公路前往B地,油量在减小;中途在服务区休息了一段时间,休息时油量不发生变化;再次出发油量继续减小;到B地后发现油箱中还剩油4升;只有C符合要求.故选:C.【点评】本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二.填空题(本题8个小题,每小题3分,共24分)7.(3分)一个正方体有6个面.【考点】I1:认识立体图形.【分析】根据正方体有6个面进行填空即可.【解答】解:正方体有6个面.故答案为:6.【点评】此题考查了认识立体图形的知识,属于基础常识题,解答本题需要我们有一定立体图形的常识.8.(3分)当x=﹣4时,的值是3.【考点】71:二次根式的定义.【分析】将x=﹣4代入,然后进行二次根式的化简即可.【解答】解:当x=﹣4时,===3.故答案为:3.【点评】此题考查了二次根式的定义,解答本题关键是熟练二次根式的化简,属于基础题.9.(3分)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=20度.【考点】M5:圆周角定理;MC:切线的性质.【分析】首先连接OB,由AB与⊙O相切于点B,根据切线的性质,即可得OB⊥AB,又由∠A=50°,即可求得∠AOB的度数,然后由圆周角定理,求得∠C的度数.【解答】解:连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,即∠OBA=90°,∵∠A=50°,∴∠AOB=90°﹣∠A=40°,∴∠C=∠AOB=×40°=20°.故答案为:20.【点评】此题考查了切线的性质,圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【考点】AA:根的判别式.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3分)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=5.【考点】4C:完全平方公式.【分析】根据完全平方公式把两个已知条件展开,然后相加即可得解.【解答】解:(m﹣n)2=m2﹣2mn+n2=8①,(m+n)2=m2+2mn+n2=2②,①+②得,2(m2+n2)=10,解得m2+n2=5.故答案为:5.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.12.(3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第三象限.【考点】F5:一次函数的性质;FA:待定系数法求一次函数解析式.【分析】根据题意画出图形即可直观发现函数图象所过象限.【解答】解:由于函数过(2,﹣1)、(﹣3,4)两点,如图:可见,函数不经过第三象限.故答案为:三.【点评】本题考查了一次函数的图象和性质,画出图象并观察图象得出结论是解题的关键.13.(3分)如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..【考点】P7:作图﹣轴对称变换.【分析】根据正五边形的对称性,先任意作出两条对角线相交于一点,然后过第五个顶点与这个交点作出对称轴即可.【解答】解:如图所示,直线AK即为所求的一条对称轴(解答不唯一).【点评】本题考查了利用轴对称变换作图,熟练掌握正五边形的对称性是解题的关键.14.(3分)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠F AD,∵∠EAF=60°,∴∠BAE+∠F AD=30°,∴∠BAE=∠F AD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=ADBE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠F AD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠F AD=165°故答案为:15°或165°.【点评】本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.三.(本题4个小题,每小题6分,共24分)15.(6分)化简:.【考点】6C:分式的混合运算.【分析】将括号中的两项通分并利用同分母分式的减法运算法则计算,同时将除式的分子利用平方差公式分解因式,分母提取a分解因式,然后利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后即可得到结果.【解答】解:(﹣1)÷=÷=•=﹣•=﹣1.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式分解因式再约分.16.(6分)解不等式组,并将解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.【解答】解:解不等式(1)得:x<﹣1解不等式(2)得:x≤2,所以不等式组的解集是:x<﹣1.在数轴上表示出不等式的解集,如图所示:【点评】本题考查的是在数轴上表示不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.17.(6分)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.【考点】KD:全等三角形的判定与性质;L8:菱形的性质.【分析】(1)△ADC≌△ABC,△GFC≌△EFC,根据菱形的性质推出AD=AB,DC=BC,根据SSS即可证出结论;(2)根据菱形性质求出DC=BC,CG=CE,推出∠DCG=∠BCE,根据SAS证出△DCG ≌△BCE即可.【解答】(1)解:△ADC≌△ABC,△GFC≌△EFC;(2)证明:∵四边形ABCD、CEFG是菱形,∴DC=BC,CG=CE,∠DCA=∠BCA,∠GCF=∠ECF,∵∠ACF=180°,∴∠DCG=∠BCE,在△DCG和△BCE中∵,∴△DCG≌△BCE,∴BE=DG.【点评】本题考查了菱形的性质和全等三角形的性质和判定的应用,注意:菱形的四条边都相等,且每一条对角线平分一组对角.18.(6分)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.【考点】X6:列表法与树状图法.【分析】(1)由若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,利用概率公式即可求得答案;(2)首先根据题意画出树形图或列出表格,即可求得所有可能的结果与恰好匹配成相同颜色的一双拖鞋的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况;∴P(恰好匹配)=(2)方法一:画树形图如下:∵所有可能的结果为A1A2,A1B1,A1B2;A2A1,A2B1,A2B2;B1A1,B1A2,B1B2;B2A1,B2A2,B2B1…4分∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.方法二:列表格如下:A1B2A2B2B1B2﹣A1B1A2B1﹣B2B1A1A2﹣B1A2B2A2﹣A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况;其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.四.(本题2个小题,每小题8分,共16分)19.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【考点】G7:待定系数法求反比例函数解析式;G8:反比例函数与一次函数的交点问题;GB:反比例函数综合题;KD:全等三角形的判定与性质;LJ:等腰梯形的性质.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE=2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.20.(8分)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①cm;若将信纸如图②cm.试求信纸的纸长与信封的口宽.【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【分析】根据设信纸的纸长为xcm,根据信封折叠情况得出【解答】解:解法一:设信纸的纸长为xcm,根据题意得:解得x所以信封的口宽为cm),cm,信封的口宽为11cm.解法二:设信封的口宽为ycm,根据题意得:4(y﹣y﹣解得y=11;所以信纸的纸长为4×(11﹣cm).cm,信封的口宽为11cm.解法三:设信纸的长度为xcm、信封的口宽为ycm,根据题意得:解得:cm,信封的口宽为11cm.【点评】此题主要考查了一元一次方程和二元一次方程组的应用,根据已知折叠情况得出正确的等量关系是解题关键.五.(本题2个小题,每小题9分,共18分)21.(9分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:①②③④⑤⑥⑦⑧⑨⑩男生序号身高163171173159161174164166169164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案;(2)根据选平均数作为标准,得出身高x×(1﹣2%)≤x≤×(1+2%)为“普通身高”,从而得出⑦、⑧、⑨、⑩男生的身高具有“普通身高”;根据选中位数作为标准,得出身高x满足165×(1﹣2%)≤x≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;根据选众数作为标准,得出身高x满足164×(1﹣2%)≤x≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)分三种情况讨论,(1)以平均数作为标准(2)以中位数作为标准(3)以众数数作为标准;分别用总人数乘以所占的百分比,即可得出普通身高的人数.【解答】解:(1)平均数为:cm),中位数为:=165(cm),众数为:164cm;(2)选平均数作为标准:身高x×(1﹣2%)≤x≤×(1+2%),≤x≤“普通身高”,此时⑦、⑧、⑨、⑩男生的身高具有“普通身高”,选中位数作为标准:身高x满足165×(1﹣2%)≤x≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;选众数作为标准:身高x满足164×(1﹣2%)≤x≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为:(人).【点评】此题考查了中位数、众数、平均数,本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.22.(9分)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.°≈°≈°≈【考点】SA:相似三角形的应用;T8:解直角三角形的应用.【分析】(1)根据等角对等边得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),进而利用平行线的判定得出即可;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.【解答】(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠BOD),同理可证:∠OBD=∠ODB=(180°﹣∠BOD),∴∠OAC=∠OBD,∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=用科学计算器求得∠OEF°;(3)解法一:小红的连衣裙会拖落到地面;在Rt△OEM中,=30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF°;过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×°=136×≈cm所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.【点评】此题主要考查了相似三角形的判定与性质以及解直角三角形,根据已知构造直角三角形利用锐角三角函数解题是解决问题的关键.六.(本题2个小题,每小题10分,共20分)23.(10分)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知抛物线的解析式,当函数值为0时,可求得A、B的横坐标,由此得解.(2)①直接从系数的变化情况来进行分析;②当△ABP为等边三角形时,P点必为函数的顶点,首先表示出P点纵坐标,它的绝对值正好是等边三角形边长的倍,由此确定k的值;③联立直线y=8k和抛物线的解析式,求出E、F两点的坐标,然后判断EF是否为定值.【解答】解:(1)当y=0时,x2﹣4x+3=0,∴x1=1,x2=3;即:A(1,0),B(3,0);(2)①二次函数L2与L1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x=2或顶点的横坐标为2;(Ⅱ)都经过A(1,0),B(3,0)两点;②存在实数k,使△ABP为等边三角形.∵y=kx2﹣4kx+3k=k(x﹣2)2﹣k,∴顶点P(2,﹣k).∵A(1,0),B(3,0),∴AB=2要使△ABP为等边三角形,必满足|﹣k|=,∴k=±;③线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E、F两点,∴kx2﹣4kx+3k=8k,∵k≠0,∴x2﹣4x+3=8,∴x1=﹣1,x2=5,∴EF=x2﹣x1=6,∴线段EF的长度不会发生变化.【点评】该题考查了二次函数的性质、函数图象交点坐标的求法、等边三角形的性质等知识,虽然题目较长,但难度适中,适合训练.24.(10分)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.【考点】KM:等边三角形的判定与性质;L6:平行四边形的判定;M2:垂径定理;MK:相切两圆的性质;MN:弧长的计算;PB:翻折变换(折叠问题);T7:解直角三角形.【分析】(1)如图2,过点O作OE⊥AB交⊙O于点E,连接OA、OB、AE、BE,可得△OAE、△OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可;(2)如图3,连接O′A、O′B,过点O′作O′E⊥AB于点E,可得△AO′B为等边三角形,根据三角函数的知识可求折叠后所在圆的圆心O′到弦AB的距离;(3)①如图4,与所在圆外切于点P时,过点O作EF⊥AB交于点E,交于点F,根据垂径定理及折叠,可求点O到AB、CD的距离之和;②根据一组对边平行且相等的四边形是平行四边形即可得证.【解答】解:(1)如图2,过点O作OE⊥AB交⊙O于点E,连接OA、OB、AE、BE∵点E与点O关于AB对称∴△OAE、△OBE为等边三角形;…1分∴∠OEA=∠OEB=60°∴==;…2分(2)如图3,连接O′A、O′B,∵折叠前后所在的⊙O与⊙O′是等圆,∴O′A=O′B=OA=AB=2∴△AO′B为等边三角形;…3分过点O′作O′E⊥AB于点E∴O′E=O′B•sin60°=;…4分(3)①如图4,与所在圆外切于点P时,过点O作EF⊥AB交于点E,交于点F,∵AB∥CD,∴EF垂直平分CD、且必过点P,…5分根据垂径定理及折叠,可知,…6分又∵EF=4,∴点O到AB、CD的距离之和为:d=PH+PG=;…7分②如图5,当AB与CD不平行时,四边形OMPN是平行四边形…8分证明如下:设O′、O″为和所在圆的圆心,由折叠可知:O′与O关于AB对称,O″与O关于CD对称,∴M为OO′的中点,N为OO″的中点;…9分∵所在圆外切,∴连心线O′O″必过点P,∵所在圆与⊙O都是等圆,∴O′P=O″P=2;∴;∴四边形OMPN是平行四边形.【点评】综合考查了相切两圆的性质,等边三角形的判定与性质,平行四边形的判定,垂径定理,弧长的计算,翻折变换(折叠问题),解直角三角形,综合性较强,难度较大.。
2012江西中考数学

2012江西中考数学1 江西中考数学全卷(上)一、选择题1. 一圆锥,高14cm, rl=4 (其中,r表示底面半径,l表示斜高),则这个圆锥的侧面积是()A .224cm2 B.220cm2 C.240cm2 D.260cm22.在等边三角形ABC中,D、E分别是边AB ,AC上的点,且AD=3cm,AE=2cm ,则DE 的长度为()A. 7cmB.5cmC. 6cmD. 4cm3.已知mn=108 ,若m是2的倍数,n 是9的的约数,则m、 n 分别是()A.6,18B.18,6C.9,12D.12,94.下面哪一个分式的值最大()A. 1/2B. 2/3C. 1/3D. 3/45.已知△ABC 三个内角所对的边长为 a=3 ,b=4 ,c=5 ,则角BAC的正弦值为()A. 4/5B. 3/4C. 3/5D. 1/26.如图,△ABC 外接于三个圆,则两个角的和是()A.180°B. 300°C. 360°D.400°7. 10个完全相同的盖子排成一排,从第一个开始,每隔两个盖子撤掉一个盖子,最后还剩下5个盖子,那么摘掉的第一个盖子是()A.第1个B.第2个C.第3个D.第4个8.如图,△ABC的三个内角大小相同,则它必是一个()A. 正三角形B. 等腰三角形C. 直角三角形D. 等边三角形9.如图,把一个正方形分成 4 个互不相同的不规则四边形和一个等边三角形,这个正方形的边长为( )A. 2B. 5C.1D. 310.如图,每一个正方形中填入一个自然数,使得左右的和等于下面一个括号中的数,则括号中的数是()A.14B. 7C. 8D. 15二、填空题1.半径等于直径的圆周长是()cm2.已知二项式展开式的3项都是数m的倍数,且这个二项式的第3项是90 ,则这个二项式的前二项合是()3.如图,黑格有()个4.某一小数的百分数是12.5%,若小数本身增长了8倍,则这个小数是()5. 如图,点 B 是△ABC 几何中线CC’上的点,AC=12cn ,BC’=8cm ,则对应角B’的正弦值是()三、填涂题将题目5 的图形填涂完整,并用阿拉伯数字填入正确的锐角和钝角四、解答题1、根据下列条件:若一个已知数的正方形是28 ,求这个已知数的正方形根()2、利用有理数的加法和乘法运算规则,计算下式的值:()( 3.75 + 2.1 )(-4.8 )÷(-0.6 )结束。
2012年江西省中考数学试题和答案(word版)

江西省2012年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)1.-1的绝对值是( )A.2B.0C.﹣1D.+12.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°3.下列运算正确的是( ).A.633a a a =+B.336a a a =÷-C.3332a a a =⋅D.6328)2(a a -=- 4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a 户最长B. b 户最长C. c 户最长D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分)7.一个正方体有 个面.8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度.10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限.13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x 并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.五、(本大题共2小题,每小题9分,共18分)21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB=CD =136㎝,OA=OC =51㎝,OE=OF =34㎝,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32㎝.(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)六、(本大题共2小题,每小题10分,共20分)23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由; ③若直线k y 8=与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的AB经过圆心O时,求AB弧的长;(2)如图3,当弦AB=2时,求折叠后AB弧所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的CD弧与AB弧所在圆外切于点P,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的CD弧与AB弧所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。
[VIP专享]2012年江西省南昌市中考数学试题(解析版)
![[VIP专享]2012年江西省南昌市中考数学试题(解析版)](https://img.taocdn.com/s3/m/637f5a876c175f0e7dd1378c.png)
底数幂的除法法则.
5.(2012 南昌)在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是( )
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
江西省2012年中考数学试题(word试题+图片答案)

江西省2012年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)1.-1的绝对值是( )A.2B.0C.﹣1D.+12.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80° 3.下列运算正确的是( ).A.633a a a =+B.336a a a =÷-C.3332a a a =⋅D.6328)2(a a -=- 4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a 户最长B. b 户最长C. c 户最长D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分)7.一个正方体有 个面.8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度.10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限.13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x 并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136㎝,OA=OC=51㎝,OE=OF=34㎝,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32㎝.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由; ③若直线k y 8=与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的AB经过圆心O时,求AB弧的长;(2)如图3,当弦AB=2时,求折叠后AB弧所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的CD弧与AB弧所在圆外切于点P,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的CD弧与AB弧所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。
2012年江西省中考数学试卷及答案解析

2012年江西省中考数学试卷一.选择题(本题6个小题,每小题3分,共18分)1.(3分)(2012•南昌)﹣1的绝对值是()A.1 B.0 C.﹣1 D.±12.(3分)(2012•南昌)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.(3分)(2012•南昌)下列运算正确的是()A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3•a3=2a3 D.(﹣2a2)3=﹣8a64.(3分)(2012•南昌)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长5.(3分)(2012•南昌)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.(3分)(2012•南昌)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.二.填空题(本题8个小题,每小题3分,共24分)7.(3分)(2012•南昌)一个正方体有个面.8.(3分)(2012•南昌)当x=﹣4时,的值是.9.(3分)(2012•江西)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=度.10.(3分)(2012•江西)已知关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值是.11.(3分)(2012•江西)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=.12.(3分)(2012•江西)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第象限.13.(3分)(2012•江西)如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..14.(3分)(2012•南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF 绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三.(本题4个小题,每小题6分,共24分)15.(6分)(2012•江西)化简:.16.(6分)(2012•江西)解不等式组,并将解集在数轴上表示出来.17.(6分)(2012•南昌)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.18.(6分)(2012•江西)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四.(本题2个小题,每小题8分,共16分)19.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.20.(8分)(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.五.(本题2个小题,每小题9分,共18分)21.(9分)(2012•江西)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:①②③④⑤⑥⑦⑧⑨⑩男生序号身高163 171 173 159 161 174 164 166 169 164 根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?22.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)六.(本题2个小题,每小题10分,共20分)23.(10分)(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.24.(10分)(2012•江西)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.2012年江西省中考数学试卷参考答案与试题解析一.选择题(本题6个小题,每小题3分,共18分)1.(3分)(2012•南昌)﹣1的绝对值是()A.1 B.0 C.﹣1 D.±1【考点】绝对值.【分析】根据绝对值的性质进行解答即可.【解答】解:∵﹣1<0,∴|﹣1|=1.故选A.【点评】本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(3分)(2012•南昌)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.【解答】解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.【点评】考查三角形内角和定理和等腰三角形的性质的运用,比较简单.3.(3分)(2012•南昌)下列运算正确的是()A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3•a3=2a3 D.(﹣2a2)3=﹣8a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.【解答】解:A、a3+a3=2a3,故本选项错误;B、a6÷a﹣3=a9,故本选项错误;C、a3•a3=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项正确;故选D.【点评】此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.(3分)(2012•南昌)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【考点】生活中的平移现象.【专题】探究型.【分析】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.【点评】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.5.(3分)(2012•南昌)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°【考点】方向角.【分析】根据方向角的定义进行解答即可.【解答】解:由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故选A.【点评】本题考查的是方向角的概念,熟知方向角的概念是解答此题的关键.6.(3分)(2012•南昌)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题;图表型.【分析】根据某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,休息时油量不再发生变化,再次出发油量继续减小,即可得出符合要求的图象.【解答】解:某人驾车从A地上高速公路前往B地,油量在减小;中途在服务区休息了一段时间,休息时油量不发生变化;再次出发油量继续减小;到B地后发现油箱中还剩油4升;只有C符合要求.故选:C.【点评】本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二.填空题(本题8个小题,每小题3分,共24分)7.(3分)(2012•南昌)一个正方体有6个面.【考点】认识立体图形.【分析】根据正方体有6个面进行填空即可.【解答】解:正方体有6个面.故答案为:6.【点评】此题考查了认识立体图形的知识,属于基础常识题,解答本题需要我们有一定立体图形的常识.8.(3分)(2012•南昌)当x=﹣4时,的值是3.【考点】二次根式的定义.【专题】计算题.【分析】将x=﹣4代入,然后进行二次根式的化简即可.【解答】解:当x=﹣4时,===3.故答案为:3.【点评】此题考查了二次根式的定义,解答本题关键是熟练二次根式的化简,属于基础题.9.(3分)(2012•江西)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=20度.【考点】切线的性质;圆周角定理.【分析】首先连接OB,由AB与⊙O相切于点B,根据切线的性质,即可得OB⊥AB,又由∠A=50°,即可求得∠AOB的度数,然后由圆周角定理,求得∠C的度数.【解答】解:连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,即∠OBA=90°,∵∠A=50°,∴∠AOB=90°﹣∠A=40°,∴∠C=∠AOB=×40°=20°.故答案为:20.【点评】此题考查了切线的性质,圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)(2012•江西)已知关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值是﹣1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3分)(2012•江西)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=5.【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式把两个已知条件展开,然后相加即可得解.【解答】解:(m﹣n)2=m2﹣2mn+n2=8①,(m+n)2=m2+2mn+n2=2②,①+②得,2(m2+n2)=10,解得m2+n2=5.故答案为:5.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.12.(3分)(2012•江西)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第三象限.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】根据题意画出图形即可直观发现函数图象所过象限.【解答】解:由于函数过(2,﹣1)、(﹣3,4)两点,如图:可见,函数不经过第三象限.故答案为:三.【点评】本题考查了一次函数的图象和性质,画出图象并观察图象得出结论是解题的关键.13.(3分)(2012•江西)如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..【考点】作图-轴对称变换.【专题】作图题;压轴题.【分析】根据正五边形的对称性,先任意作出两条对角线相交于一点,然后过第五个顶点与这个交点作出对称轴即可.【解答】解:如图所示,直线AK即为所求的一条对称轴(解答不唯一).【点评】本题考查了利用轴对称变换作图,熟练掌握正五边形的对称性是解题的关键.14.(3分)(2012•南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF 绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【专题】压轴题;分类讨论.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF 可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.【点评】本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.三.(本题4个小题,每小题6分,共24分)15.(6分)(2012•江西)化简:.【考点】分式的混合运算.【专题】计算题.【分析】将括号中的两项通分并利用同分母分式的减法运算法则计算,同时将除式的分子利用平方差公式分解因式,分母提取a分解因式,然后利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后即可得到结果.【解答】解:(﹣1)÷=÷=•=﹣•=﹣1.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式分解因式再约分.16.(6分)(2012•江西)解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.【解答】解:解不等式(1)得:x<﹣1解不等式(2)得:x≤2,所以不等式组的解集是:x<﹣1.在数轴上表示出不等式的解集,如图所示:【点评】本题考查的是在数轴上表示不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.17.(6分)(2012•南昌)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)△ADC≌△ABC,△GFC≌△EFC,根据菱形的性质推出AD=AB,DC=BC,根据SSS即可证出结论;(2)根据菱形性质求出DC=BC,CG=CE,推出∠DCG=∠BCE,根据SAS证出△DCG≌△BCE即可.【解答】(1)解:△ADC≌△ABC,△GFC≌△EFC;(2)证明:∵四边形ABCD、CEFG是菱形,∴DC=BC,CG=CE,∠DCA=∠BCA,∠GCF=∠ECF,∵∠ACF=180°,∴∠DCG=∠BCE,在△DCG和△BCE中∵,∴△DCG≌△BCE,∴BE=DG.【点评】本题考查了菱形的性质和全等三角形的性质和判定的应用,注意:菱形的四条边都相等,且每一条对角线平分一组对角.18.(6分)(2012•江西)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.【考点】列表法与树状图法.【专题】压轴题.【分析】(1)由若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,利用概率公式即可求得答案;(2)首先根据题意画出树形图或列出表格,即可求得所有可能的结果与恰好匹配成相同颜色的一双拖鞋的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况;∴P(恰好匹配)=(2)方法一:画树形图如下:∵所有可能的结果为A1A2,A1B1,A1B2;A2A1,A2B1,A2B2;B1A1,B1A2,B1B2;B2A1,B2A2,B2B1…4分∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.方法二:列表格如下:A1B2A2B2B1B2﹣A1B1A2B1﹣B2B1A1A2﹣B1A2B2A2﹣A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况;其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.四.(本题2个小题,每小题8分,共16分)19.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【考点】反比例函数综合题;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;全等三角形的判定与性质;等腰梯形的性质.【专题】计算题;压轴题.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE=2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.20.(8分)(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.【考点】二元一次方程组的应用;一元一次方程的应用.【专题】压轴题.【分析】根据设信纸的纸长为xcm,根据信封折叠情况得出+3.8=+1.4,进而求出即可.【解答】解:解法一:设信纸的纸长为xcm,根据题意得:+3.8=+1.4,解得x=28.8;所以信封的口宽为+3.8=11(cm),答:信纸的纸长为28.8cm,信封的口宽为11cm.解法二:设信封的口宽为ycm,根据题意得:4(y﹣3.8)=3(y﹣1.4),解得y=11;所以信纸的纸长为4×(11﹣3.8)=28.8(cm).答:信纸的纸长为28.8cm,信封的口宽为11cm.解法三:设信纸的长度为xcm、信封的口宽为ycm,根据题意得:解得:答:信纸的纸长为28.8cm,信封的口宽为11cm.【点评】此题主要考查了一元一次方程和二元一次方程组的应用,根据已知折叠情况得出正确的等量关系是解题关键.五.(本题2个小题,每小题9分,共18分)21.(9分)(2012•江西)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧身高163 171 173 159 161 174 164 166根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?【考点】众数;用样本估计总体;加权平均数;中位数.【专题】压轴题.【分析】(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案;(2)根据选平均数作为标准,得出身高x满足166.4×(1﹣2%)≤x≤166.4×(1+2%)为“普通身高”,从而得出⑦、⑧、⑨、⑩男生的身高具有“普通身高”;根据选中位数作为标准,得出身高x 满足165×(1﹣2%)≤x ≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;根据选众数作为标准,得出身高x 满足164×(1﹣2%)≤x ≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)分三种情况讨论,(1)以平均数作为标准(2)以中位数作为标准(3)以众数数作为标准;分别用总人数乘以所占的百分比,即可得出普通身高的人数.【解答】解:(1)平均数为:=166.4(cm ), 中位数为:=165(cm ),众数为:164cm ;(2)选平均数作为标准:身高x 满足166.4×(1﹣2%)≤x ≤166.4×(1+2%),即163.072≤x ≤169.728时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高具有“普通身高”,选中位数作为标准:身高x 满足165×(1﹣2%)≤x ≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;选众数作为标准:身高x 满足164×(1﹣2%)≤x ≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为:(人);以中位数作为标准,估计全年级男生中具有“普通身高”的人数约为:(人);以众数作为标准,估计全年级男生中具有“普通身高”的人数约为:280×105=140(人).…………………………9分【点评】此题考查了中位数、众数、平均数,本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.22.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB=CD=136cm ,OA=OC=51cm ,OE=OF=34cm ,现将晒衣架完全稳固张开,扣链EF 成一条直线,且EF=32cm .(1)求证:AC ∥BD ;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【考点】相似三角形的应用;解直角三角形的应用.【分析】(1)根据等角对等边得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),进而利用平行线的判定得出即可;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.【解答】(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠BOD),同理可证:∠OBD=∠ODB=(180°﹣∠BOD),∴∠OAC=∠OBD,∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=0.471,用科学计算器求得∠OEF=61.9°;(3)解法一:小红的连衣裙会拖落到地面;在Rt△OEM中,=30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.【点评】此题主要考查了相似三角形的判定与性质以及解直角三角形,根据已知构造直角三角形利用锐角三角函数解题是解决问题的关键.六.(本题2个小题,每小题10分,共20分)23.(10分)(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线的解析式,当函数值为0时,可求得A、B的横坐标,由此得解.(2)①直接从系数的变化情况来进行分析;②当△ABP为等边三角形时,P点必为函数的顶点,首先表示出P点纵坐标,它的绝对值正好是等边三角形边长的倍,由此确定k的值;③联立直线y=8k和抛物线的解析式,求出E、F两点的坐标,然后判断EF是否为定值.【解答】解:(1)当y=0时,x2﹣4x+3=0,∴x1=1,x2=3;即:A(1,0),B(3,0);(2)①二次函数L2与L1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x=2或顶点的横坐标为2;(Ⅱ)都经过A(1,0),B(3,0)两点;②存在实数k,使△ABP为等边三角形.∵y=kx2﹣4kx+3k=k(x﹣2)2﹣k,∴顶点P(2,﹣k).∵A(1,0),B(3,0),∴AB=2要使△ABP为等边三角形,必满足|﹣k|=,∴k=±;③线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E、F两点,∴kx2﹣4kx+3k=8k,∵k≠0,∴x2﹣4x+3=8,∴x1=﹣1,x2=5,。
2012年江西省中考数学试卷(附答案与解析)

2012年江西省中考数学试卷一.选择题(本题6个小题,每小题3分,共18分)1.(3分)(2012•南昌)﹣1的绝对值是()A.1B.0C.﹣1 D.±12.(3分)(2012•南昌)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.(3分)(2012•南昌)下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a3=2a3D.(﹣2a2)3=﹣8a64.(3分)(2012•南昌)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长5.(3分)(2012•南昌)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.(3分)(2012•南昌)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.二.填空题(本题8个小题,每小题3分,共24分)7.(3分)(2012•南昌)一个正方体有_________个面.8.(3分)(2012•南昌)当x=﹣4时,的值是_________.9.(3分)(2012•江西)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=_________度.10.(3分)(2012•江西)已知关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值是_________.11.(3分)(2012•江西)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=_________.12.(3分)(2012•江西)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第_________象限.13.(3分)(2012•江西)如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)._________.14.(3分)(2012•南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF 绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是_________.三.(本题4个小题,每小题6分,共24分)15.(6分)(2012•江西)化简:.16.(6分)(2012•江西)解不等式组,并将解集在数轴上表示出来.17.(6分)(2012•南昌)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.18.(6分)(2012•江西)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四.(本题2个小题,每小题8分,共16分)19.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.20.(8分)(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.五.(本题2个小题,每小题9分,共18分)21.(9分)(2012•江西)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高163 171 173 159 161 174 164 166 169 164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?22.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)六.(本题2个小题,每小题10分,共20分)23.(10分)(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.24.(10分)(2012•江西)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.2012年江西省中考数学试卷参考答案与试题解析一.选择题(本题6个小题,每小题3分,共18分)1.(3分)(2012•南昌)﹣1的绝对值是()A.1B.0C.﹣1 D.±1考点:绝对值.分析:根据绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(3分)(2012•南昌)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°考点:等腰三角形的性质.分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.3.(3分)(2012•南昌)下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a3=2a3D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、a3+a3=2a3,故本选项错误;B、a6÷a﹣3=a9,故本选项错误;C、a3•a3=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项正确;故选D.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.(3分)(2012•南昌)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长考点:生活中的平移现象.专题:探究型.分析:可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.解答:解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.点评:本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.5.(3分)(2012•南昌)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°考点:方向角.专题:压轴题.分析:根据方向角的定义进行解答即可.解答:解:由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故选A.点评:本题考查的是方向角的概念,熟知方向角的概念是解答此题的关键.6.(3分)(2012•南昌)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:根据某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,休息时油量不在发生变化,再次出发油量继续减小,即可得出符合要求的图象.解答:解:∵某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,∴休息时油量不在发生变化,又∵再次出发油量继续减小,到B地后发现油箱中还剩油4升,∴只有C符合要求.故选:C.点评:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二.填空题(本题8个小题,每小题3分,共24分)7.(3分)(2012•南昌)一个正方体有6个面.考点:认识立体图形.分析:根据正方体有6个面进行填空即可.解答:解:正方体有6个面.故答案为:6.点评:此题考查了认识立体图形的知识,属于基础常识题,解答本题需要我们有一定立体图形的常识.8.(3分)(2012•南昌)当x=﹣4时,的值是3.考点:二次根式的定义.专题:计算题.分析:将x=﹣4代入,然后进行二次根式的化简即可.解答:解:当x=﹣4时,===3.故答案为:3.点评:此题考查了二次根式的定义,解答本题关键是熟练二次根式的化简,属于基础题.9.(3分)(2012•江西)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=20度.考点:切线的性质;圆周角定理.分析:首先连接OB,由AB与⊙O相切于点B,根据切线的性质,即可得OB⊥AB,又由∠A=50°,即可求得∠AOB的度数,然后由圆周角定理,求得∠C的度数.解答:解:连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,即∠OBA=90°,∵∠A=50°,∴∠AOB=90°﹣∠A=40°,∴∠C=∠AOB=×40°=20°.故答案为:20.点评:此题考查了切线的性质,圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)(2012•江西)已知关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值是﹣1.考点:根的判别式.分析:由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.解答:解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.点评:本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3分)(2012•江西)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=5.考点:完全平方公式.专题:计算题.分析:根据完全平方公式把两个已知条件展开,然后相加即可得解.解答:解:(m﹣n)2=m2﹣2mn+n2=8①,(m+n)2=m2+2mn+n2=2②,①+②得,2(m2+n2)=10,解得m2+n2=5.故答案为:5.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.12.(3分)(2012•江西)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第三象限.考点:待定系数法求一次函数解析式;一次函数的性质.分析:根据题意画出图形即可直观发现函数图象所过象限.解答:解:由于函数过(2,﹣1)、(﹣3,4)两点,如图:可见,函数不经过第三象限.故答案为:三.点评:本题考查了一次函数的图象和性质,画出图象并观察图象得出结论是解题的关键.13.(3分)(2012•江西)如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..考点:作图-轴对称变换.专题:作图题;压轴题.分析:根据正五边形的对称性,先任意作出两条对角线相交于一点,然后过第五个顶点与这个交点作出对称轴即可.解答:解:如图所示,直线AK即为所求的一条对称轴(解答不唯一).点评:本题考查了利用轴对称变换作图,熟练掌握正五边形的对称性是解题的关键.14.(3分)(2012•南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF 绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.考点:正方形的性质;全等三角形的判定与性质;旋转的性质.专题:压轴题;分类讨论.分析:利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.解答:解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.点评:本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.三.(本题4个小题,每小题6分,共24分)15.(6分)(2012•江西)化简:.考点:分式的混合运算.专题:计算题.分析:将括号中的两项通分并利用同分母分式的减法运算法则计算,同时将除式的分子利用平方差公式分解因式,分母提取a分解因式,然后利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后即可得到结果.解答:解:(﹣1)÷=÷…(3分)=•…(4分)=﹣•=﹣1.…(6分)点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式分解因式再约分.16.(6分)(2012•江西)解不等式组,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.解答:解:解不等式(1)得:x<﹣1解不等式(2)得:x≤2,所以不等式组的解集是:x<﹣1.在数轴上表示出不等式的解集,如图所示:点评:本题考查的是在数轴上表示不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.17.(6分)(2012•南昌)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.考点:菱形的性质;全等三角形的判定与性质.专题:证明题;压轴题.分析:(1)△ADC≌△ABC,△GFC≌△EFC,根据菱形的性质推出AD=AB,DC=BC,根据SSS即可证出结论;(2)根据菱形性质求出DC=BC,CG=CE,推出∠DCG=∠BCE,根据SAS证出△DCG≌△BCE即可.解答:(1)解:△ADC≌△ABC,△GFC≌△EFC;(2)证明:∵四边形ABCD、CEFG是菱形,∴DC=BC,CG=CE,∠DCA=∠BCA,∠GCF=∠ECF,∵∠ACF=180°,∴∠DCG=∠BCE,在△DCG和△BCE中∵,∴△DCG≌△BCE,∴BE=DG.点评:本题考查了菱形的性质和全等三角形的性质和判定的应用,注意:菱形的四条边都相等,且每一条对角线平分一组对角.18.(6分)(2012•江西)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.考点:列表法与树状图法.专题:压轴题.分析:(1)由若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,利用概率公式即可求得答案;(2)首先根据题意画出树形图或列出表格,即可求得所有可能的结果与恰好匹配成相同颜色的一双拖鞋的情况,然后利用概率公式求解即可求得答案.解答:解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况;∴P(恰好匹配)=…2分(2)方法一:画树形图如下:∵所有可能的结果为A1A2,A1B1,A1B2;A2A1,A2B1,A2B2;B1A1,B1A2,B1B2;B2A1,B2A2,B2B1…4分∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.…6分方法二:列表格如下:A1B2A2B2B1B2﹣A1B1A2B1﹣B2B1A1A2﹣B1A2B2A2﹣A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况;其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=.…6分点评:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.四.(本题2个小题,每小题8分,共16分)19.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.考点:反比例函数综合题;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;全等三角形的判定与性质;等腰梯形的性质.专题:计算题;压轴题.分析:(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE=2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.解答:解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.点评:本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.20.(8分)(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.考点:二元一次方程组的应用;一元一次方程的应用.专题:压轴题.分析:根据设信纸的纸长为xcm,根据信封折叠情况得出+3.8=+1.4,进而求出即可.解答:解:解法一:设信纸的纸长为xcm,根据题意得:+3.8=+1.4,解得x=28.8;所以信封的口宽为+3.8=11(cm),答:信纸的纸长为28.8cm,信封的口宽为11cm.解法二:设信封的口宽为ycm,根据题意得:4(y﹣3.8)=3(y﹣1.4),解得y=11;所以信纸的纸长为4×(11﹣3.8)=28.8(cm).答:信纸的纸长为28.8cm,信封的口宽为11cm.解法三:设信纸的长度为xcm、信封的口宽为ycm,根据题意得:解得:答:信纸的纸长为28.8cm,信封的口宽为11cm.点评:此题主要考查了一元一次方程和二元一次方程组的应用,根据已知折叠情况得出正确的等量关系是解题关键.五.(本题2个小题,每小题9分,共18分)21.(9分)(2012•江西)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高163 171 173 159 161 174 164 166 169 164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?考点:众数;用样本估计总体;加权平均数;中位数.专题:压轴题.分析:(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案;(2)根据选平均数作为标准,得出身高x满足166.4×(1﹣2%)≤x≤166.4×(1+2%)为“普通身高”,从而得出⑦、⑧、⑨、⑩男生的身高具有“普通身高”;根据选中位数作为标准,得出身高x满足165×(1﹣2%)≤x≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;根据选众数作为标准,得出身高x满足164×(1﹣2%)≤x≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)分三种情况讨论,(1)以平均数作为标准(2)以中位数作为标准(3)以众数数作为标准;分别用总人数乘以所占的百分比,即可得出普通身高的人数.解答:解:(1)平均数为:=166.4(cm),中位数为:=165(cm),众数为:164cm;(2)选平均数作为标准:身高x满足166.4×(1﹣2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高具有“普通身高”,(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为:(人).点评:此题考查了中位数、众数、平均数,本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.22.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)考点:相似三角形的应用;解直角三角形的应用.专题:压轴题.分析:(1)根据等角对等边得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),进而利用平行线的判定得出即可;(2)首先作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.解答:(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD…1分∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠BOD),同理可证:∠OBD=∠ODB=(180°﹣∠BOD),∴∠OAC=∠OBD,…2分∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴…1分又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;…2分∴AC∥BD…3分;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;作OM⊥EF于点M,则EM=16cm;…4分∴cos∠OEF=0.471,…5分用科学记算器求得∠OEF=61.9°…6分;(3)解法一:小红的连衣裙会拖落到地面;…7分在Rt△OEM中,=30cm…8分,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;…7分同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;…8分过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.点评:此题主要考查了相似三角形的判定与性质以及解直角三角形,根据已知构造直角三角形利用锐角三角函数解题是解决问题的关键.六.(本题2个小题,每小题10分,共20分)23.(10分)(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线的解析式,当函数值为0时,可求得A、B的横坐标,由此得解.(2)①直接从系数的变化情况来进行分析;②当△ABP为等边三角形时,P点必为函数的顶点,首先表示出P点纵坐标,它的绝对值正好是等边三角形边长的倍,由此确定k的值;③联立直线y=8k和抛物线的解析式,求出E、F两点的坐标,然后判断EF是否为定值.解答:解:(1)当y=0时,x2﹣4x+3=0,∴x1=1,x2=3;即:A(1,0),B(3,0);(2)①二次函数L2与L1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x=2或顶点的横坐标为2;(Ⅱ)都经过A(1,0),B(3,0)两点;②存在实数k,使△ABP为等边三角形.∵y=kx2﹣4kx+3k=k(x﹣2)2﹣k,∴顶点P(2,﹣k).∵A(1,0),B(3,0),∴AB=2要使△ABP为等边三角形,必满足|﹣k|=,∴k=±;③线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E、F两点,∴kx2﹣4kx+3k=8k,∵k≠0,∴x2﹣4x+3=8,∴x1=﹣1,x2=5,∴EF=x2﹣x1=6,∴线段EF的长度不会发生变化.点评:该题考查了二次函数的性质、函数图象交点坐标的求法、等边三角形的性质等知识,虽然题目较长,但难度适中,适合训练.24.(10分)(2012•江西)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。
2012年江西省南昌市中考数学试题(解析版)

2012年江西省南昌市中考数学试卷一、选择题(共12小题)1.(2012江西)-1的绝对值是()A. 1 B. 0 C.-1 D. ±1考点:绝对值。
分析:根据绝对值的性质进行解答即可.解答:解:∵-1<0,∴|-1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(2012南昌)在下列表述中,不能表示代数式“4a”的意义的是()A. 4的a倍B.a的4倍C. 4个a相加D. 4个a相乘考点:代数式。
分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.3.(2012江西)等腰三角形的顶角为80°,则它的底角是()A. 20°B. 50°C. 60°D. 80°考点:等腰三角形的性质。
分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°-80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2012江西)下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3a3=2a3D.(-2a2)3=-8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
97江西省试题一、填空题(共36分,每小题3分)1.3的相反数的倒数是______.2.近似数0.015063的有效数字的个数是______.3.对于函数y=3x-2,y随x的增大而______.4.计算:sin30°+cos60°+tg45°=______.5.如图,在正方体中,与面A′B′C′D′垂直的棱共有______条.7.分解因式:xy-xz+y-z=______.9.若圆柱的底面半径和高都等于5cm,则此圆柱的侧面积为______cm2.11.某种储蓄的月利率是0.6%,存入100元本金,则本息和y(元)(本息和=本金+本金×利率×期数)与所存月数x之间的函数关系式是______.12.如图,⊙O的直径AB=10,P是OA上一点,弦MN过点P,且二、选择题(共24分,每小题只有一个正确答案,选对者给3分,不选或选错者给0分,把你认为正确的答案代号,填在括号内)13.下列各式中,计算正确的是[ ]14.本题中有两小题,只需选做一小题(若两题都做,则全对者只给3分,一题对一题错者给0分).A.-17.38B.-0.01738C.-806.7D.-0.08067(2)用科学计算器求53的值,按键顺序是[ ]15.下列命题中,真命题是[ ]A.相交两圆的公共弦垂直平分连结这两圆圆心的线段B.圆内接四边形的对角互补C.正五边形既是中心对称图形,又是轴对称图形D.外切两圆的公切线只有一条元法来解的方程的个数有[ ]A.1B.2C.3D.417.已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:(1)∠C=72°,(2)BD是∠ABC的平分线,(3)△ABD是等腰三角形,(4)△BCD ∽△ABC,其中正确的有[ ]A.4个B.3个C.2个D.1个直角坐标系中的图象如图所示,则下列结论正确的是[ ]A.k1>0,k2>0B.k1>0,k2<0C.k1<0,k2<0D.k1<0,k2>0 19.正三角形的内切圆的面积与外接圆的面积之比是[ ]A.1:5B.1:4C.1:3D.1:220.某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少[ ]若设二、三月份平均每月的增长率为x,则可得方程A.500(1+x)2=1750B.500+500(1+x)2=1750C.500(1+x)+500(1+x)2=1750D.500+500(1+x)+500(1+x)2=1750三、(共18分,每小题6分)23.先阅读,后填空.从某校参加初中毕业考试的学生中,抽取了30名学生的数学成绩,分数如下:90,85,84,86,87,98,79,85,90,93,68,95,85,71,78,61,94,88,77,100,70,97,85,68,99,88,85,92,93,97.这个样本数据的频率分布表如下:填空:(1)这个样本数据的众数是______(分).(2)列频率分布表时,所取的组距为______分.(3)在这个频率分布表中,数据落在94.5~99.5(分)范围内的频数为______.(4)在这个频率分布表中,数据落在74.5~79.5(分)范围内的频率为______.(5)在这个频率分布表中,频率最大的一组数据的范围是______(分).(6)估计这个学校初中毕业考试的数学成绩在80分以上(含80分)的约点______%.四、(8分)24.已知:如图,ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于E、F、O.求证:四边形AFCE是菱形.五、(8分)25.如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米.(1)求加宽部分横断面AFEB的面积;(2)完成这一工程需要多少方土?六、(8分)26.王华同学去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮擦.按照商店规定,若给全组每人各买2支铅笔和1块橡皮擦,则必须按零售价计算,需支付30元;若给全组每人各买3支铅笔和2块橡皮擦,则可以按批发价计算,需支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮擦的批发价比零售价低0.10元,问这家商店每支铅笔和每块橡皮擦的批发价各为多少元.七、(9分)27.如图,在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC切于点D,直线ED交BC的延长线于F.(1)求证:BC=FC;(2)若AD:AE=2:1,求ctg∠F的值.八、(9分)28.已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为 4,若x1、x2是方程x²-2(m-1)x+m²-7=0的两个根,且x²1+x²2=10.(1)求A、B两点的坐标.(2)求抛物线的解析式及点C的坐标;(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.参考答案及评分标准一、本大题共计36分,每小题填对给3分,不填或填错一律给0分.二、本大题共24分,每小题选对给3分,不选、错选或选出代号超过一个(不论是否都在括号内)一律给0分.其中,第14题有两小题,只需选做一小题;若两题都做,则全对者只给3分,一题对一题错者给0分.13.C;14.(1)D,(2)D;15.B;16.D;17.A;18.C;19.B;20.D.三、本大题共计18分,每小题6分.21.解:解不等式①,得x≤1,2分解不等式②,得x>-7,4分∴这个不等式组的解集为-7<x≤1.6分23.(1)85;(2)5;(3)5;(4)0.100;(5)84.5~89.5;(6);73.3(每空1分)四、本题8分24.证明:∵四边形ABCD是平行四边形,∴AE∥FC,1分∴∠OAE=∠OCF,2分又∵∠AOE=∠COF,AO=CO,2分∴△AOE≌△COF,5分∴EO=FO.∴四边形AFCE是平行四边形.7分又∵EF⊥AC,∴AFCE是菱形.8分五、本题8分25.解:(1)作AG⊥BC,FH⊥BC,垂足分别是G、H.于是FH=AG=6米.HG=AF=2米,1分在Rt△AGB和Rt△FHE中,2分∴BG=2AG,EH=2.5FH,则BG=12(米),EH=15(米).3分∴EB=EH-BH=15-(12-2)=5(米)4分5分(2)完成这一项工程需要的土方V=S梯形AFEB·50=1050(米3).7分答:加宽部分横断面AFEB的面积为21平方米,完成这一工程需要1050立方米的土.8分六、本题8分26.解:设铅笔的批发价为每支x元,橡皮擦的批发价为每块y元,5分7分答:这家商店铅笔的批发价为每支0.25元,橡皮擦的批发价为每块0.30元.8分七、本题9分27.(1)证明:连结BD.1分则∠BDE=90°∴∠EBD=90°-∠BED.∵∠EBF=90°∴∠F=90°-∠BEF.∴∠F=∠EBD.2分∵⊙O切AC于D,∴∠EBD=∠ADE=∠CDF.∴∠F=∠CDF.∴CD=CF,3分∵OB⊥BC,∴BC是⊙O的切线,由切线长定理可知:CD=CB.∴BC=FC.4分(2)解:在△ADE和△ABD中,∵∠A=∠A,∠ADE=∠ABD,∴△ADE∽△ABD.6分∵AD:AE=2:1.∴BD:DE=2:1,又∵∠F=∠EBD.9分八、本题9分28.解:(1)∵x1,x2是方程x2-2(m-1)x+m2-7=0的两个根,∴x1+x2=2(m-1),x1·x2=m2-7.1分∴[2(m-1)]2-2(m2-7)=10,即m2-4m+4=0.解得:m1=m2=2.2分将m=2代入方程x2-2(m-1)x+m2-7=0,得:x2-2x-3=0,解得:x1=-1,x2=3.∴点A的坐标为(-1,0),点B的坐标为(3,0).3分(2)因为抛物线与x轴的交点为A(-1,0)、B(3,0),由对称性可知,顶点M的横坐标为1,则顶点M的坐标为(1,-4).∴抛物线的解析式为y=x2-2x-3.4分在y=x2-2x-3中,令x=0,得y=-3.∴点C的坐标为(0,-3).5分(3)设抛物线的对称轴与x轴交于点D,则AO=OD=1,DB=2,OC=3,DM=4,AB=4.∴S四边形ACMB=S△ACO+S梯形OCMD+S△DMB6分设P(x0,y)为抛物线上一点,若S△PAB=2S四边形ACMB,∴丨y0丨=9,y=±9.7分将y=9代入y=x2-2x-3中,得x2-2x-3=9,即x2-2x-12=0将y=-9代入y=x2-2x-3中,得:x2-2x-3=-9.即x2-2x+6=0.∵△=(-2)2-4×1×6=-20<0,∴此方程无实数根.9分98年江西省中考试题一、单选题(每道小题3分共24分)1. 下列运算正确的是[ ]A.x2+x2=x4B.x·x4=x4C.x6÷x2=x4D.(ab)2=ab22. 如图,已知AB=AC,AE=AD,那么图中全等三角形共有[ ]A.0对B.1对C.2对D.3对3. 如果两圆的半径分别为3cm和4cm,圆心距为5cm,那么两圆的公切线的条数是[ ]A .1条B.2条C.3条D.4条4. 下列四个式子:其中正确的个数是[ ]A.1个B.2个C.3个D.4个5. 用配方法解关于x的方程x2+px+q=0时,此方程可变形为[ ]6. 方程x 2-3x+2=0的两根之和与两根之积分别是 [ ]A .3,-2B .3,2C .-3,-2D .-3,2 7. 下列图形:其中既是轴对称图形又是中心对称图形的个数是 [ ] A .4个 B .3个 C .2个 D .1个8. 甲、乙两队学生绿化校园.如果两队合作,6天可以完成;如果单独工作, 甲队比乙队少用5天,两队单独工作各需多少天完成?若设甲队单独工作需x 天完成,则依题意得到的方程是 [ ]二、 填空题(每道小题 3分 共 36分 ) 1. -3与-7的大小关系是______. 2. |-2|=______.4. 用科学记数法表示51098,应记作______.5. 一个面积为0.64平方米的正方形桌面,它的边长是________________.6.分式方程0222=--x xx 的增根是_______ 7. 已知一元二次方程x 2+2x-1=0,它的根的判别式的值△=__________ 8. 抛物线y=2(x+3)2+5的顶点坐标是______.9. 一个角的补角是它的5倍,则这个角的度数是__________. 10. 在△ABC 中,AB=AC ,∠B=25°,则∠A=____________.11. 如图,已知直角梯形ABCD 中,AD ∥BC ,CD=10,∠C=60°,则AB=_________.12. 圆锥母线长为6,底面半径为2,则该圆锥的侧面积为_______(结果用带π的数的形式表示).三、 解答题(1-3每题 6分, 4-5每题 8分, 6-7每题 9分, 共 52分)1.解不等式组()⎪⎩⎪⎨⎧->+-≥-12325213x x x x2. 在中考体育考试引体向上项目中,某校初三100名男生考试成绩如下表所示:(1) 分别求这些男生成绩的众数,中位数与平均数;(2)规定8次以上(含8次)为优秀,问该校男生此项目考试成绩的优秀率是多少? 3.先化简,再求值:⎪⎭⎫ ⎝⎛-+÷-11112x x x ,其中x=2cos30°4. 将长为30cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为3cm .(1)求5张白纸粘合后的长度;(2)设x 张白纸粘合后的总长度为ycm ,写出y 与x 之间的函数关系式,并求x=20时,y 的值.5. 阅读下列内容:矩形、菱形、正方形都是平行四边形,但它们都有特殊条件的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题. 回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中:(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的______相等;或者先证明四边形是菱形,再证明这个菱形有一个角是______.(3)某同学根据菱形面积计算公式推导出对角线长为a 的正方形面积是S=221a ,对此结论,你认为是否正确?若正确,请给予证明;若不正确,举出一个反例来说明.6. 如图 ,已知△ABC 是边长为4的等边三角形,AB 在x 轴上,点C 在第一象限,AC 交y 轴于点D ,点A 的坐标为(-1,0).(1)求B 、C 、D 三点的坐标;(2)抛物线y =ax 2+bx +c 经过B 、C 、D 三点,求它的解析式;(3)过点D 作DE ∥AB 交经过B 、C 、D 三点的抛物线于点E ,求DE 的长.7. 如图,已知AB 切⊙O 于点B ,AB 的垂直平分线CF 交AB 于点C ,交⊙O 于D 、E .设点M 是射线CF 上的任意一点,CM =a ,连结AM ,若CB =3,DE =8。