模拟混合信号系统中的频率合成技术

合集下载

第二章直接频率合成技术

第二章直接频率合成技术

ωm, n称为组合频率;m和n的绝对值称为组合
频率分量的阶。
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
37
若频率合成器通过混频器取差频输出, 即ωout=ω1-ω2, 也就是m=1, n=-1,那么 m和n的其他取值均为干扰频率,高阶的干扰 频率的信号很弱,但是低阶的干扰频率信号 必须要加以考虑。
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
5
f n −1 + f n +
( Δf 0−9 )n−1 ( Δf 0−9 )n
10
n−2
+
10n −1
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
6
由n个石英晶体振荡器和混频器以及滤波器构成,每 一个石英晶体振荡器的输出频率为
第四章 单端口网络和多端口网络
10
若设置(Δf0) 1=(Δf0)2=(Δf0)3=0 MHz,则最小 输出频率为
(Δf 0 ) 2 (Δf 0 )3 f out = f1 + f 2 + f 3 + (Δf 0 )1 + + 2 10 10 = 47.0 + 6.0 + 5.0 =58.0 MHz
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
11
若设置(Δf9) 1=(Δf9) 2=(Δf9)3=0.9 MHz, 则最大输出频率为
(Δf 9 ) 2 (Δf 9 )3 f out = f1 + f 2 + f 3 + (Δf 9 )1 + + 2 10 10 = 47.9 + 6.09 + 5.009 =58.999 MHz

DDS原理

DDS原理

通常用频率增量来表示频率合成器的分辨率,DDS的最小分辨率为
f min
fc 2N
这个增量也就是最低的合成频率。最高的合成频率受奈奎斯特抽样定理的限制,所 以有
f 0 max
fc 2
与PLL不同,DDS的输出频率可以瞬时地改变,即可以实现跳频,这是DDS的一个突 出优点,用于扫频测量和数字通讯中,十分方便。
AD9830
芯片特性 +5V电压供电 50MHz频率 片内正弦查询表 片内10位数模转换器 并行数据接口 掉电功能选择 250mW功耗 48引脚薄方扁封装 (TQFP)
DDS的信号质量分析
取样系统信号的频谱
镜像频率分量为-60dB,而其他各种杂散分量 分布在很宽的频带上,其幅值远小于镜像频率分量。 D/A之后用的低通滤波器可用来滤去镜像频率分量, 谐波分量和带外杂散分量。第一个镜像频率分量 最靠近信号频率,且幅度最大,实际应用时, 应尽量提高采样时钟频率,使该分量远离低通 滤波器的带宽,以减少低通滤波器的制作难度。
DDS的信号质量分析
DDS信号源的性能指标: 1, 频率稳定度,等同于其时鈡信号的稳定度。 2, 频率的值的精度,决定于DDS的相位分辨率。即由DDS的相位累加器的字宽和ROM函数表决定。 本题要求频率按10Hz步进,频率值的误差应远小于10Hz。DDS可达到很高的频率分辨率。 3, 失真与杂波:可用输出频率的正弦波能量与其他各种频率成分的比值来描述。失真与杂波的成分 可分为以下几个部分: ⑴,采样信号的镜像频率分量。DDS信号是由正弦波的离散采样值的数字量经D/A转换为阶梯形的 模拟波形的,当时钟频率为,输出正弦波的频率为时,存在着以采样频率为折叠频率的一系列镜像 频率分量,这些镜像频率值为n±它们的幅度沿Sin(x)/x包络滚降。其输出信号的频谱如图6。19所 示。 ⑵ D/A的字宽决定了它的分辨率,它所决定的杂散噪声分量,满量程时,对信号的信噪比影响可表 示为 S/D+N =6.02B+1.76 dB 其中B为D/A的字宽,对于10位的D/A,信噪比可达到60dB以上。 增加D/A的位数,可以减少波形的幅值离散噪声。另外,采用过采样技术,即大幅度增加每个周期 中的样点数(提高时钟频率),也可以降低该类噪声。过采样方法使量化噪声的能量分散到更宽的 频带,因而提高了信号频带内的信噪比。 ⑶ 相位累加器截断造成的杂波。这是由正弦波的ROM表样点数有限而造成的。通过提高时钟频率 或采用插值的方法增加每个周期中的点数(过采样),可以减少这些杂波分量。 ⑷ D/A转换器的各种非线性误差形成的杂散频率分量,其中包括谐波频率分量,它们在N频率处。 这些杂波分量的幅度较小。 ⑸,其他杂散分量,包括时钟泄漏,时钟相位噪声的影响等。 D/A后面的低通滤波器可以滤去镜像频率分量和谐波分量,可以滤去带外的高频杂散分量,但是, 无法滤去落在低通带内的杂散分量。

频率合成技术

频率合成技术

频率合成技术一、频率合成技术简述频率合成技术起步于上世纪30年代,至今已有七十年的历史。

其原理是通过一个或多个参考信号源的线性运算,在某一频段内,产生多个离散频率点。

基于此原理制成的频率源称为频率合成器。

频率合成器是现代电子系统的重要组成部分,是决定整个电子系统系统性能的关键设备,不仅在通信、雷达、电子对抗等军事领域,更在广播电视、遥控遥测、仪器仪表等民用领域得到了广泛的应用。

随着电子技术在各领域内占有越来越重要的地位,现代雷达和精确制导等高精尖电子系统对频率合成器的各项指标提出了越来越高的要求,推动了频率合成技术的发展。

频率合成器的主要性能指标包括:(1).输出频率范围,是频率合成器输出的最低频率和最高频率之间的变化范围。

一般来说,输出的带宽越高越容易满足系统对于频率源的需求。

(2).频率分辨率,是输出频率两个相邻频率点之间的最小间隔。

作为标准信号源的频率合成器,频率分辨率越精细越好。

(3).频率切换时间,是输出频率由一个频率切换到另一个指定的频率的时间,电子对抗时的频率跳变对此有着极高的要求。

(4).频谱纯度,频谱的噪声包括杂散分量和相位噪声两方面,杂散又称为寄生信号,主要由频率合成过程中的非线性失真产生;相位噪声是衡量输出信号相位抖动大小的参数。

(5).频率稳定度,是指在规定的时间间隔内,频率合成器输出频率偏离指定值的数值,由作为参考信号源的时钟和各种随机噪声决定。

(6).调制性能,频率合成器是否具有调幅(AM)、调频(FM)和调相(PM)功能。

初期的频率合成技术采用一组晶体组成的晶体振荡器,输出频率点由晶体个数决定,频率准确度和稳定度由晶体性能决定,频率切换由人工手动完成。

随着时间的推移,频率合成技术理论的完善和微电子技术的发展,后来的科学家不断的提出了若干频率合成方法,现代的频率合成技术主要经历了三个阶段:直接模拟频率合成、间接频率合成和直接数字频率合成。

直接模拟频率合成(Direct Frequency Synthesis,DS)技术也是一种早期的频率合成技术,使用一个或几个晶体振荡器作为参考频率源,通过分频、混频和倍频的方法对参考源频率进行加减乘除的运算,然后用滤波器处理杂散频率得到需求的不同频率。

混频 原理

混频 原理

混频原理
混频是一种将多个频率信号合并或分离的过程。

它通常在无线通信、音频信号处理和电子系统中使用。

混频的基本原理是利用混频器(也称为调频器)进行频率转换。

混频器是一种非线性元件,它可以将两个输入信号进行线性或非线性混合。

当输入信号经过混频器时,混频器会产生输出信号,其频率等于输入信号频率之和或差值,同时还会产生其他频率成分。

混频器通常由非线性晶体管、二极管或集成电路实现。

它们可以以不同的方式进行混频操作,包括加法混频、减法混频和倍频混频等。

在加法混频中,输入信号的频率相加形成输出信号的频率,而在减法混频中,输入信号的频率相减形成输出信号的频率。

混频在无线通信中的应用非常广泛。

例如,在超高频(UHF)和极高频(SHF)频段,混频被用来将信号从接收机转换到基
带频率进行解调。

类似地,在频率合成器或数字信号处理中,混频被用于将信号转换到所需的频率范围。

总之,混频是一种重要的信号处理技术,它可以将多个频率信号进行合并或分离,为无线通信和电子系统提供了更灵活和高效的信号处理能力。

频率合成的原理及应用视频

频率合成的原理及应用视频

频率合成的原理及应用视频1. 引言频率合成是一种将多个不同频率的信号进行合成,生成新的复合频率信号的技术。

通过频率合成,我们可以生成各种各样的音频信号,用于音乐制作、音频合成、声音合成等领域。

频率合成技术的发展使得音乐产生了革命性的变化,创造了更加多样化的音乐作品。

这个视频将会介绍频率合成的原理及其在实际应用中的一些例子。

2. 频率合成的原理频率合成的原理基于振荡器和混频器的组合。

频率合成器可以根据一组输入频率和幅度信息,输出所需的特定频率的复合信号。

频率合成主要依赖于两个核心组件:•振荡器:振荡器是一种电子设备,可以产生特定频率的周期性信号。

它们可以是简单的正弦波振荡器,也可以是复杂的波形合成器。

振荡器通常由振荡电路或晶体管实现。

•混频器:混频器是一种电子设备,可以将两个或多个不同频率的信号混合在一起。

混频器可以通过调整不同频率信号之间的相对幅度,生成新的复合频率信号。

频率合成的过程大致可以分为以下几步:1.输入待合成的频率信息和幅度信息。

2.使用振荡器生成具有特定频率的信号。

3.使用混频器将多个不同频率的信号混合在一起。

4.输出生成的复合频率信号。

3. 频率合成的应用频率合成技术在许多领域中得到广泛应用,以下是一些常见的应用示例:3.1 音乐合成频率合成技术在音乐制作中扮演重要角色。

通过合成器、调音台和效果器等设备,音乐制作人可以合成各种音乐乐器的声音,如钢琴、吉他、风琴等。

频率合成使得音乐制作人可以创造出各种奇特的音乐效果,为音乐作品增添独特的风格和魅力。

3.2 语音合成频率合成技术在语音合成中也得到广泛应用。

语音合成系统可以将文本或符号转化为声音信号。

通过合成器和音频处理算法,语音合成系统可以产生具有自然听感的合成语音。

这种技术被广泛应用于语音助手、导航系统、自动电话系统等各种语音交互应用中。

3.3 音频特效频率合成技术还可以用于音频特效的生成。

通过合成器和音频效果器,音频工程师可以产生各种特殊的音频效果,如回声、混响、声相位扭曲等。

毕业设计(论文)-基于DDS芯片AD9951的信号发生器

毕业设计(论文)-基于DDS芯片AD9951的信号发生器

基于DDS芯片AD9951的精密信号发生器设计摘要直接数字频率合成(Direct Digital Frequency Synthesis简称DDS)是近年来迅速发展起来的一种新的频率合成方法。

而AD9951是美国模拟器件公司(ADI)最新推出的高集成度DDS芯片。

本设计采用该芯片,以AT89S52单片机为控制,采用AT24C02来存储重要的系统数据,由1602点阵式字符型液晶显示模块作为显示器,并加上一个小键盘构成了精密信号发生器。

要求其输出频率范围为0~160MHz、最小步进为10Hz或者1Hz、输出信号幅度大于0.3Vp-p、杂散小、有掉电数据保持功能。

文中详细介绍了DDS的工作原理以及该信号发生器的软、硬件设计方案,并给出了具体的程序设计。

指标关键词:直接数字频率合成(DDS)、AD9951、AT89S52、信号发生器、频率控制字直接数字频率合成(Direct Digital Frequency Synthesis简称DDS)是近年来迅速发展起来的一种新的频率合成方法,广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。

而AD9951是美国模拟器件公司(ADI)最新推出的高品质、高集成度DDS芯片。

本设计采用该DDS芯片作为核心元件,以AT89S52单片机为主控器件、并辅以AT24C02存储重要的系统数据、1602点阵式字符型液晶显示模块作为显示器,构成了一种精密的DDS信号发生器。

文中详细介绍了DDS的工作原理以及该精密信号发生器的软、硬件设计方法,并给出了具体的程序设计方案。

设计出的信号发生器,输出频率范围为0~160MHz、最小步进为10Hz或者1Hz、输出信号幅度大于0.3Vp-p、杂散小。

关键词:直接数字频率合成(DDS)、AD9951、AT89S52、信号发生器、频率控制字该芯片能以早期DDS 1/10的功耗提供速度高达400 MHz 的内部时钟,而合成频率高达160 MHz。

通信电子中的混频技术应用

通信电子中的混频技术应用

通信电子中的混频技术应用混频技术在通信电子领域中是一项非常重要的技术手段,它的作用在于将针对传输信号的操作放到更为低频的部位,这将有助于跨越长距离或通过狭窄带宽的信道来传输高频率信号。

在现代通信系统中,混频技术被广泛应用于数字信号处理、移动通信、无线电、卫星通信和雷达等领域,在各种场合中表现出了极为出色的传输效果。

本文将通过进一步探究混频技术的原理和应用,来了解混频技术在通信电子领域中的广泛应用和巨大价值。

一、混频技术的原理混频技术是一种将输入信号和局部振荡信号进行混合的技术,通过将二者叠加后得到衍生的信号,在频域中既包含原来的频率部分又包含某些新的频率部分,同时频率部分或者幅度也发生了改变。

混频器是混频技术的基础设备,它是一种器件或者电路,用以将两个或更多的输入信号的频率混合在一起产生输出信号。

混频器的内部结构通常包括一个非线性元件和一个局部振荡器,非线性元件主要负责对输入的交流信号进行整流、倍频或者调制等操作,而局部振荡信号则负责对信号频率进行转换,完成混频效果的实现。

二、混频技术在通信电子领域中的应用1.数字信号处理在数字通信领域中,混频技术的主要作用在于对数字信号进行频域转换。

在发送端,混频技术可用来将基带信号的频率转换到更高的调制频率,并通过无线电进行传输;在接收端,混频技术可用来将调制信号的频率转换回基带频率,并通过DSP进行数字信号处理。

混频技术不仅有助于降低信号的噪声和失真,同时也有适用于信号挤压、分集、频谱分析、信号鉴别等方面的应用。

2.移动通信移动通信将无线电信号发送和接收的范围还原到更短的距离内,以便移动设备能够与基站直接通信。

混频技术在移动通信领域中也有许多应用。

例如,在CDMA系统中,混频技术用于将基带信号转换到包含具有不同扰码的多个中频频段中,以便在接收端进行数字信号处理。

此外,在GSM系统中,混频技术也用于将频率带信号转换到更适合移动终端的范围内。

3.无线电和雷达在无线电领域中,混频器经常用来对信号进行调频或调幅,以实现广播和电视节目的传播。

数模混合ic-解释说明

数模混合ic-解释说明

数模混合ic-概述说明以及解释1.引言1.1 概述数模混合IC是指在一个芯片内集成了模数混合信号电路的集成电路,它将数字电路与模拟电路有机地结合在一起。

随着电子技术的快速发展和市场需求的不断增加,数模混合IC的应用逐渐得到了广泛关注和应用。

数模混合IC主要用于将模拟信号转换为数字信号或将数字信号转换为模拟信号的过程中。

它可以实现模拟信号的采样、滤波、放大、调制、解调等功能,同时能够进行数字信号的处理、编解码、调制解调等操作。

因此,数模混合IC被广泛应用于通信、音视频处理、传感器接口等领域。

数模混合IC的设计流程主要包括需求分析、系统设计、电路设计、电路仿真、布局布线、验证测试等多个环节。

在设计过程中,需要考虑电路的性能指标、功耗、面积、成本等因素,以确保设计出满足实际应用需求的芯片。

数模混合IC相比于传统的模拟电路和数字电路独立设计的方式,具有一定的优势和挑战。

它可以减少电路间的接口,简化系统设计,提高集成度和性能。

然而,由于数字和模拟电路之间的互相影响和干扰,数模混合IC的设计和验证相对较为复杂,对设计人员的技术水平要求较高。

总之,数模混合IC作为一种集成度高、功能强大的芯片设计技术,具有广泛的应用前景。

随着科技的不断进步和市场需求的不断变化,数模混合IC的应用将得到进一步的推广和发展。

未来,数模混合IC设计将更加注重低功耗、高性能、高集成度和低成本等方面的探索,为各个领域的应用提供更加优越的解决方案。

1.2文章结构文章结构部分的内容可以按照以下方式进行编写:2. 文章结构本文分为引言、正文和结论三个部分。

每个部分包含多个小节,具体的结构如下:2.1 引言2.1.1 概述2.1.2 文章结构2.1.3 目的2.1.4 总结2.2 正文2.2.1 数模混合IC的定义2.2.2 数模混合IC的应用领域2.2.3 数模混合IC的设计流程2.2.4 数模混合IC的优势和挑战2.3 结论2.3.1 数模混合IC的发展前景2.3.2 数模混合IC的应用推广2.3.3 数模混合IC的未来发展方向2.3.4 总结在引言部分,我们将概述整篇文章的主要内容、目的以及总结。

锁相与频率合成技术

锁相与频率合成技术

1.PLL典型部件
1.鉴相器 鉴相器的种类有很多,但大致可以分为两类。 (1)模拟鉴相器→即以乘法器(混频器作鉴 相器)。
i ( p)

e (t )
V (t ) K

K V sin e (t )
a ( p)
1.PLL典型部件
V



2
2

e (t )
其有效鉴相区域为-π/2~ π/2,且近似线 性区域仅在0点附近。只具备鉴相功能 (必需同频)。目前已较少应用。
1 1 C2 ( ~ )C1 5 10
1 1 R2C2 ( ~ ) R1C1 5 10
1.PLL典型部件
KVCO KVCO N 1 1 R2 ( ~ ) R1 3 10
2. 频率合成
由较少的基准频率源(通常为晶振)合成输 出较多的频率点的信号。 一般分为两类: 1.直接合成
2.间接合成
1.PLL典型部件
(2)脉冲鉴相器→输入信号为脉冲信号。 典型的有异或门鉴相器与双D鉴相器,为大多 数集成芯片所采用。既具鉴相也具鉴频功能。
V
4
2
0
e (t )
2
4
1.PLL典型部件
鉴相区域为-2π~+2 π,在区域内呈线性。 输出大多为两路信号(脉冲),以脉冲宽 度差代表相差。
缩相与频率合成技术
缩相技术的特点



锁定时无剩余频差 良好的窄带载波跟踪性能 良好的宽带调制跟踪性能 门限性能好 易于集成 缩相电路的基本应用:缩相解调、载波提 取与位同步以及频率合成
缩相环的基本组成与原理

缩相环(PLL)由三个基本部件组成:鉴相器、环 路滤波器、压控振荡器

ad9912纯中文数据使用指南

ad9912纯中文数据使用指南

AD9912纯中文数据使用指南简介AD9912是一款高性能、高集成度的直接数字频率合成器(DDS)芯片,由ADI(Analog Devices Inc.)公司推出。

它采用了先进的数字技术和模拟混合技术,可以实现高速、精确的频率合成和相位调制功能。

本文档将介绍AD9912芯片的特性、应用场景以及如何使用纯中文数据进行编程。

希望通过本文档的阅读,能够帮助用户更好地理解和使用AD9912芯片。

特性1. 高频率合成精度AD9912芯片内部集成了32位的数字调频/调相(FM/PM)解析器,可以实现高精度的频率合成和相位调制。

它支持多种工作模式,包括连续频率合成模式(CFSM)、相位调制模式(PM)等。

2. 宽带输出AD9912芯片的输出频率范围广,可达到1 Hz至4 GHz,同时提供高达14位的分辨率,能够满足大多数应用场景的需求。

3. 多种接口支持AD9912芯片采用了SPI(串行外围设备接口)和I2C(双向串行总线)接口,方便与其他设备进行通信和控制。

同时,它还提供了多个通用IO引脚,用于实现用户自定义的功能扩展。

4. 低功耗设计AD9912芯片在设计过程中注重功耗的优化,采用了先进的低功耗技术,最大限度地降低了功耗。

在低功耗模式下,功耗可以降低到几十毫瓦以下。

应用场景AD9912芯片具有广泛的应用场景,包括但不限于以下几个方面:1. 无线通信AD9912芯片可以用于无线通信系统中的频率合成和相位调制,包括无线电、雷达、通信基站等。

它提供了高精度、高稳定性的频率合成功能,可以满足无线通信设备对信号频率的精确定时要求。

2. 仪器仪表AD9912芯片可以用于仪器仪表领域,如信号发生器、频谱分析仪等。

它提供了宽频带、高分辨率的输出信号,能够满足对信号质量和精度要求较高的应用场景。

3. 天线阵列AD9912芯片可以用于天线阵列系统中的相位调制和波束成形。

通过对多通道的相位控制,可以实现对天线波束的快速定向和抗干扰性能的优化。

信号产生的技巧

信号产生的技巧

信号产生的技巧
以下是一些常用的信号产生技巧:
1. 使用基本振荡器:使用基本的振荡器(例如电压控制振荡器或晶振)来产生周期性信号。

2. 使用计数器和分频器:使用计数器和分频器将高频信号分频为所需的频率。

3. 使用频率合成器:使用频率合成器可以通过将多个不同频率的信号组合起来产生所需频率的信号。

4. 使用调频技术:通过改变载波信号的频率来产生调频信号,例如使用频率调制器。

5. 使用数模转换器:通过将数字信号转换为模拟信号,可以产生不同频率和形状的信号。

6. 使用滤波器和滤波技术:通过选择适当的滤波器和调整其参数,可以改变信号的频率和形状。

7. 使用锁相环(PLL):使用PLL可以产生具有特定频率和相位的稳定信号。

8. 使用混频器:使用混频器可以将多个信号混合在一起,从而产生新的频率组合。

9. 使用随机数发生器:通过使用随机数发生器可以产生随机或噪声信号。

10. 使用数学函数和算法:通过使用数学函数和算法,可以根据需要生成各种形状和频率的信号。

基于DDS和PLL的频率合成器的设计

基于DDS和PLL的频率合成器的设计

基于DDS和PLL的频率合成器的设计作者:宣家扬来源:《硅谷》2013年第21期摘要 AD9956是ADI公司的一款高分辨率、可编程、配置多样化的频率合成芯片,文章介绍了AD9956中直接频率合成技术的基本原理和工作模式,在此基础上利用DDS+PLL混合频率合成方案,实现在1.325 GHz-1.75 GHz带宽内,以25 kHz为步进产生任意高精度频率源。

关键词 AD9956;高分辨率;可编程;直接频率合成中图分类号:TN837 文献标识码:A 文章编号:1671-7597(2013)21-0033-02跳频通信技术由于具有较好的抗干扰,抗追踪能力,在军事通信领域应用广泛,其中对频率合成器的覆盖范围,频率步进,捷变频时间等指标都有较高要求。

传统的模拟频率合成技术结构复杂且难以维护,直接数字频率合成技术(Direct Digital Synthesizer,DDS)频率分辨率高,转换时间短,但杂散较大,工作频率低,而锁相环技术(Phase Locked Loop,PLL)的工作带宽大,但频率转换时间长,分辨率低。

在实际应用往往将DDS和PLL两者结合,取长补短发挥两者的优势。

1 DDS原理介绍AD9956是一款高性能的频率合成芯片,其内部集成DDS和PLL电路。

DDS电路的内部时钟频率可达400Msps,具有14位DAC,48位频率调谐字(Frequency tuning word,FTW)和14位相位调谐字。

PLL电路包括一个输入频率为200MHz的鉴频鉴相器(分频情况下可高达655 MHz),一个数控电流泵和一个655MHz CML模式的PECL驱动器。

DDS的功能主要是基于相位累加器和波形查找表实现,在每一个时钟周期,相位累加器将前一次寄存器中的相位值与频率调谐字相加,所得值通过一张波形查找表映射成正弦波幅度的数字量信号,驱动DAC,最后输出模拟量。

这里假设N为相位累加器的字长,FTW为频率调谐字,那么在经过个时钟周期后,相位寄存器回到初始状态,完成波形查找表中一个循环的查找,DDS系统输出一个正弦波。

基于Simulink的FH/DS混合信号源的仿真设计

基于Simulink的FH/DS混合信号源的仿真设计

基于Simulink的FH/DS混合信号源的仿真设计作者:杜佩纪明来源:《现代电子技术》2008年第07期摘要:混合扩频信号源是混合扩频系统的重要组成部分。

利用Matlab/Simulink对FH/DS 混合信号源进行模块化设计和系统级仿真,通过重新设置参数能够改变信号源频率。

和以往完全图形化的设计方法不同,进一步采用Altera公司推出的DSP Builder工具将核心模块(伪码发生和DDS功能模块)自动转换成VHDL文件,由Quartus Ⅱ进行综合、适配、时序分析,最终得到可供芯片下载使用的.sof文件。

这一做法大大缩短了从软件仿真到系统硬件实现的周期,仿真结果表明系统功能正确,且具有较高的性价比。

关键词:FH/DS;Simulink;DDS;PN码中图分类号:TN914文献标识码:B文章编号:1004-373X(2008)07-073-Simulation Design of Hybrid FH/DS Signal Based on SimulinkDU Pei,(The Fourth Lab,Xi′an Institute of Applied Optics,Xi′an,710065,China)Abstract:Hybrid spread spectrum signal is an important part of hybrid spread spectrum system.The hybrid DS/FH signal is designed and emulated with Matlab/Simulink,and the frequence of signal can be changed by resetting the parameters.Different from usual method of design,converting the kernel modules(PN generator and DDS module)to VHDL files with DSP builder of Altera automatically,synthesized,fitted and timing analyzed by Quartus Ⅱ,and generating the .sof files used for chip download finally.The methods greatly shorten the time from software simulation to hardware implementation.The simulation results testify the functions correctness of the system which has high ratio of quality to price.Keywords:FH/DS;Simulink;DDS;PN code;DSP Builder1 引言跳频(FH)和直扩(DS)系统都具有很强的抗干扰能力,是使用最多的两种扩频技术。

基于FPGA和DDS的数字调制信号发生器设计与实现

基于FPGA和DDS的数字调制信号发生器设计与实现

基于FPGA和DDS的数字调制信号发生器设计与实现杨东霞;巨永锋【摘要】为了提高数字调制信号发生器的频率准确度和稳定度,并使其相关技术参数灵活可调,提出了基于FPGA和DDS技术的数字调制信号发生器设计方法.利用Matlab/Simulink、DSP Builder、QuartusⅡ3个工具软件,进行基本DDS建模,然后在DDS模块的基础上,通过单片机等电路组成的控制单元的逻辑控制作用,根据通信系统中数字调制方式的基本原理,设计并实现了数字调制信号发生器,从而实现二进制频移键控(2FSK)、二进制相移键控(2PSK)和二进制幅移键控(2ASK)3种基本的二进制数字调制.所得仿真结果表明设计方法的正确性和实用性.%In this paper, a design method of digital modulation signal generator based on FPGA and DDS technology is presented, in order to improve the frequency accuracy and stability of the digital modulation signal generator, and make its relevant technical parameters flexible and adjustable. The basic DDS is modeled by using three software tools: Matlab/ Simulink.DSP Builder and Quartus II, and then based on the DDS module, the digital modulation signal generator is designed and implemented according to the basic principle of the digital modulation scheme in a communication system, and by the logic control function of the control unit composed by the microcontroller and other circuit, thus three basic binary digital modulation: the binary frequency shift keying (2FSK), the binary phase shift keying (2PSK) and the binary amplitude shift keying (2ASK) are realized. The simulation results show the correctness and practicality of the design method.【期刊名称】《电子设计工程》【年(卷),期】2013(021)006【总页数】4页(P90-93)【关键词】数字调制信号;直接数字频率合成器;FPGA;DSP Builder【作者】杨东霞;巨永锋【作者单位】长安大学电子与控制工程学院,陕西西安710064【正文语种】中文【中图分类】TP39信号发生器种类很多,按是否利用频率合成技术来分,可分为非频率合成式信号发生器与频率合成式信号发生器。

电子测量考试试题及答案

电子测量考试试题及答案

一、填空题1、在选择仪器进行测量时,应尽可能小的减小示值误差,一般应使示值指示在仪表满刻度值的___2/3__ 以上区域。

2、随机误差的大小,可以用测量值的____标准偏差____ 来衡量,其值越小,测量值越集中,测量的____精密度____ 越高。

3、设信号源预调输出频率为1MHz ,在15 分钟内测得频率最大值为1.005MHz ,最小值为998KHz ,则该信号源的短期频率稳定度为___0。

7%___ 。

4、信号发生器的核心部分是振荡器。

5、函数信号发生器中正弦波形成电路用于将三角波变换成正弦波。

6、取样示波器采用非实时取样技术扩展带宽,但它只能观测重复信号。

7、当观测两个频率较低的信号时,为避免闪烁可采用双踪显示的____断续____方式。

8、BT-3 型频率特性测试仪中,频率标记是用一定形式的标记来对图形的频率轴进行定量,常用的频标有___针形频标_____ 和____菱形频标_____ 。

9、逻辑分析仪按其工作特点可分逻辑状态分析仪和逻辑定时分析仪。

10、指针偏转式电压表和数码显示式电压表测量电压的方法分别属于____模拟__ 测量和___数字___ 测量.1、测量误差是测量结果与被真值的差异。

通常可以分为绝对误差和相对误差。

2、在测量数据为正态分布时,如果测量次数足够多,习惯上取3σ作为判别异常数据的界限,这称为莱特准则。

3、交流电压的波峰因数定义为峰值与有效值之比,波形因数定义为有效值与平均值之比。

4、正弦信号源的频率特性指标主要包括频率范围、频率准确度和频率稳定度。

5、频谱分析仪按信号处理方式不同可分为模拟式、数字式和模拟数字混合式。

6、逻辑笔用于测试单路信号,逻辑夹则用于多路信号。

7、当示波器两个偏转板上都加正弦信号时,显示的图形叫李沙育图形,这种图形在相位和频率测量中常会用到。

8、在示波器上要获得同步图形,待测信号周期与扫描信号周期之比要符合。

1、按照误差的基本性质和特点,可把误差分为系统误差、随机误差、和粗大误差。

DDS信号源设计原理

DDS信号源设计原理

DDS 信号源设计原理DDS 引言 DDS 原理 DDS 结构 DDS 设计 DDS 描述 DDS 仿真 DDS 实现一、DDS 引言频率合成技术是将一个(或多个)基准频率变换成另一个(或多个)合乎质量要求的所需频率的技术。

在通信、雷达、导航、电子侦察、干扰与抗干扰等众多领域都有应用。

随着各种频率合成器和频率合成方案的出现,频率合成技术得到了不断的发展。

1971年3月美国学者J.Tierncy ,C.M.Rader 和B.Gold 首次提出了直接数字频率合成(DDS__Direct Digital Synthesis )技术。

这是一种从相位概念出发直接合成所需要的波形的新的全数字频率合成技术。

同传统的频率合成技术相比,DDS 技术具有极高的频率分辨率、极快的变频速度,变频相位连续、相位噪声低,易于功能扩展和全数字化便于集成,容易实现对输出信号的多种调制等优点,满足了现代电子系统的许多要求,因此得到了迅速的发展。

目前市面上的DDS 芯片,价格昂贵、功能固定单一,应用受到限制。

本综合实验项目采用基于FPGA 的EDA 技术设计实现DDS 芯片,并可以根据实际需要对其功能进行灵活地修改,配置。

二、DDS 工作原理一个纯净的单频信号可表示为:()()o o t f U t u θπ+=2sin (2-1)只要它的幅度U 和初始相位o θ不变,它的频谱就是位于o f 的一条谱线。

为了分析简化起见,可令U=1,o θ=0,这将不会影响对频率的研究。

即: ()()()t t f t u o θπsin 2sin == (2-2)如果对(2-2)的信号进行采样,采样周期为c T (即采样频率为c f ),则可得到离散的波形序列:()()c o nT f n u π2sin = ()...2,1,0=n (2-3)相应的离散相位序列为:()n nT f n c o ∙∆==θπθ2 ()...2,1,0=n (2-4)式中:c oc o f f T f ππθ22==∆ (2-5)是连续两次采样之间的相位增量。

DDS系统结构原理——信号发生器(脉冲发生器)基本系统

DDS系统结构原理——信号发生器(脉冲发生器)基本系统

1.DDS技术发展简介对于普通信号发生器,有两种方式来实现信号产生,分别是模拟电路方式和数字电路方式。

在上个世纪80年代以前,信号产生全部都使用模拟方式来实现,即通过电阻电容电感等器件来组成振荡电路,产生需求函数波形[13]。

而在80年代之后,数字电路的方式开始被用于信号产生,自此频率合成技术开始发展[14]。

频率合成技术指将一个或多个稳定性和精确性很高的基准频率,通过数字混合运算后,产生具有同样的稳定度和精确度的大量离散频率的技术,这是一种产生高质量频率的重要方法,按照其发展可以将它总的分为三个类型[15]。

(1)直接频率合成技术(DAFS)。

它是最早的频率合成技术,其将基准信号通过谐波发生器来产生一系列谐波脉冲,然后通过分频、倍频、混频和带通滤波器等处理来产生大量我们需要的离散频率[16]。

这种技术可以通过相关合成和非相关合成两种方法来实现。

这两种方法主要区别在它们所使用的参考频率源的数量上。

第一种非相关的合成方法使用多个参考频率源作为输入,这种方法较为复杂且困难,并且成本较高。

相关合成方法只用一个参考频率源,所有需要用到的频率都是由这一个频率源通过分频倍频等方式产生,是使用较为广泛的一种方法[17]。

不过DAFS技术有杂波干扰较多,设备需求较大等问题,所以逐渐被后续发展的另外两种技术所取代。

(2)锁相环式频率合成技术(PLL)。

它又称间接频率合成技术,是第二代频率合成技术[18]。

它是应用模拟或者数字的锁相环来间接实现频率合成。

最早PLL技术使用模拟锁相环实现,之后发展出了数字锁相环技术,而现在最为常用的是数模混合的锁相环,这种锁相环由数字鉴相器、数字分频器和模拟环路滤波器、压控振荡器组成。

PLL是一种相位误差控制系统,从鉴相器输入的信号频率与压控振荡器的输出频率间存在相位差,这个相位差会产生误差控制电压,可以调整压控振荡器的频率,从而使其与鉴相器同频[19]。

相比较与直接频率合成技术,PLL技术输出信号频率范围较宽,产生噪声较小,电路结构简单,所以有较广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟混合信号系统中的频率合成技术
在模拟混合信号系统中,频率合成技术扮演着至关重要的角色。

频率合成是指
生成一个高稳定度的时钟信号,以供整个系统中的各个模块使用。

在数字通信、无线通信、雷达系统等领域,频率合成技术都扮演着不可或缺的角色。

频率合成技术的核心是锁相环(PLL)和数字控制振荡器(DDS)。

锁相环是
一种经典的频率合成器,通过对输入信号进行频率和相位比对,逐渐调整输出信号的频率和相位,实现从输入信号到输出信号的稳定转换。

DDS则是一种数字化的
频率合成器,通过数字信号直接控制振荡器的输出频率,具有高分辨率、快速切换和灵活性强的特点。

在混合信号系统中,频率合成技术既可以单独应用,也可以与其他模拟数字混
合技术结合使用。

例如,在射频前端中,频率合成技术可以生成射频信号,用于收发信号的调制和解调;在数字基带中,频率合成技术可以生成基带信号,用于数字信号的处理和编解码。

频率合成技术的性能指标包括频率稳定度、相位噪声、谐波失真等。

频率稳定
度是指输出信号频率的稳定性,主要受到振荡器的影响;相位噪声是指输出信号相位的稳定性,主要受到锁相环的影响;谐波失真是指输出信号中包含的不同频率的失真分量,主要受到滤波器的影响。

为了提高频率合成技术的性能,可以采用更高精度的元器件、更优化的设计方案和更严格的测试标准。

总的来说,模拟混合信号系统中的频率合成技术是实现系统高性能的关键因素
之一。

通过对频率合成技术的深入研究和不断创新,可以提高系统的性能和可靠性,满足现代通信系统对频率合成技术的不断提升的需求。

相关文档
最新文档