动能定理机械能守恒定律和能量守恒定律

合集下载

机械能守恒定律、能量守恒定律讲解

机械能守恒定律、能量守恒定律讲解
现在系统的内力和外力一起作用于质点,并且用Wex表示外力做功的和,Win 表示内力做功的和,上述定理就可以写成Wex + Win = ΣEki-ΣEki0。而力又 分为保守力和非保守力,所以有如下的推导过程:
这个式子就是质点系的功能原理,它表示质点系机械能的增量等于外力与非保 守内力所做的功之和,当外力与非保守内力等于零时,可以推导出ΣEki + ΣEpi = ΣEpi0 + ΣEki0,这就是质点系的机械能守恒定律,它表明当外力和非保守内 力不做功或者做功的代数和为零时,质点系的总机械能保持不变;
《机械能守恒定律与能量守恒定律, 理想与现实的对抗》
前两章分别讲了动能和势能,并介绍了相应的定理,在此基础上,本章将对由 动能和势能所组成的机械能进行详细地讲解,并说明他们所遵循的定律。
如果有一个力作用于某个质点系,第一个质点的初动能为Ek10,末动能为Ek1; 第二个质点的初动能为Ek20,末动能为Ek2;第三个质点的初动能为Ek30,末 动能为Ek3。那么第i个质点就是Eki0、Eki,用Σ表示求和符号,于是以上规律 就可以写成ΣWi=ΣEki-ΣEki0,这就是质点系的动能定理。
发动机产生的动能通过传动机构传给轮胎,使整个汽车具有平动动能,转动部 分则具有转动动能,而汽车运动时又会与空气和地面摩擦,因此一部分化学能 又转化为摩擦热,图中的箭头表示了汽油化学能的最终去处。
介绍完了机械能守恒定律,那么在下一章《不要把宇宙速度看得太神秘,他们 的诞生都是以逃离地球为出发点》中,就以机械能守恒然界完全隔离,那这个系统必然会和自然界发 生能量转化,以汽车为例子,我们知道汽车的最终能量来源是汽油,汽油存储 着化学能,当汽油进入发动机气缸燃烧时,化学能释放出来,其中一部分转化 为发动机转子的转动动能,由于发动机与整个汽车都有接触,因此汽油燃烧的 化学能还要转化为汽车各个部件热能,也就是汽车升温,同时汽车与空气接触, 这些热量还会传向空气分子;

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。

这个规律叫做机械能守恒定律。

机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。

如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。

外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。

这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。

这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。

这只能在一些特殊的惯性参考系如地球参考系中才成立。

如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。

机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。

【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。

一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。

从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。

当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。

当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。

机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。

2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统。

3 动能定理 功能原理 机械能守恒定理

3 动能定理 功能原理 机械能守恒定理
A Ek2 Ek1
注意 功和动能都与 参考系有关;动能定理仅适用于惯性系 .
动能 能量守恒定律
质点系统动能定理
每一个质点都满足动能定理,则有
A1 12 m 1v12 12m1v120
Ai

1 2
mi vi2

1 2
mi vi20
以上各式左右分别相加
对称性与守恒定律


F1
m2
都有这一特点
A
B
C
保守力作的功,是位置的单值函数;
D
那么,我们就可以引入仅是位置的单
B
值函数的能量,叫作保守力的势能,
也叫作位能。
动能 能量守恒定律
对称性与守恒定律
五 势能
势能 与物体间相互作用及相对位置有关的能量 .
重力功
重力势能
A (mgzB mgzA )
引力功
A


(G
械能的改变。
动能 能量守恒定律
九 机械能守恒定律 功能原理
对称性与守恒定律
A外 A非 保 内 E
当 A外 A非 保内 0 时,有 E1 E2
机械能守恒定律: 只有保守内力作功的情况下,质 点系的机械能保持不变 .
注意: 1、机械能守恒是有条件的。从初态到末态的每一个微元 过程中,外力和非保守内力所做的元功的代数和均为零, 则机械能守恒。
9/4
4dy 9.125J
1
动能 能量守恒定律
对称性与守恒定律
例:质量为 m 的物体放在水平桌面上,物体和桌面的摩 擦系数为 ,物体在外力作用下沿半径为R圆由a运动 到b,移动了半个圆周,求在这一过程中摩擦力的功。
这是力的大小不变,物 体沿曲线运动的例子

动能定理与机械能守恒

动能定理与机械能守恒

动能定理和机械能及其守恒定律1.动能定理:(合外力的功等于物体动能的变化量)(1)“221mv ”是一个新的物理量(2)2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量。

其差值正好等于合力对物体做的功。

(3)物理量221mv 定为动能,其符号用E K表示,即当物体质量为m ,速度为V 时,其动能:E K=221mv (4)动能是标量,单位焦耳(J )(5)含义:动能是标量,同时也是一个状态量(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。

①当合力做正功时,物体动能增加。

②当合力做负功时,物体动能减小。

③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

2. 机械能及其守恒定律(关键是把握什么能转化为什么能,在不守恒情况下一般都是有摩擦力做功即产生热能)1、机械能(1)定义:物体的动能和势能之和称为物体的机械能。

机械能包括动能、重力势能、弹性势能。

(2)表达式:E=EK+EP这些不同形式的能是可以相互转化的,那么在相互转化的过程中,他们的总量是否发生变化?这节课我们就来探究这方面的问题。

2、机械能守恒定律推导:质量为m 的物体自由下落过程中,经过高度h 1的A 点时速度为v 1,下落至高度h 2的B 点处速度为v 2,不计空气阻力,取地面为参考平面,试写出物体在A 点时的机械能和B 点时的机械能,并找到这两个机械能之间的数量关系。

A 点 12121mgh mv E E E PA kA A+=+= B 点 22221mgh mv E E E PB kB B +=+=根据动能定理,有21222121mv mv W G -=重力做功在数值上等于物体重力势能的减少量。

21mgh mgh W G -=由以上两式可以得到121222mgh mv 21mgh mv 21+=+ 即 1122p k p k E E E E +=+即 12E E =可见:在只有重力做功的物体系统内,动能和重力势能可以相互转化,而总的机械能保持不变。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。

只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。

机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。

能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。

动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。

动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。

所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。

只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。

大学物理(3.4.2)--功能原理机械能守恒定律能量守恒定律

大学物理(3.4.2)--功能原理机械能守恒定律能量守恒定律

第四讲功能原理 机械能守恒定律 能量守恒定律k k k i i i i ii e E E E v m v m W W ∆=-=-=+∑122122)2121(系统的外力和内力作功的总和等于系统动能的增量。

回顾前面学过的知识点:1. 质点系动能定理P1p 2p )(E E E W ∆-=--=2. 保守力作功等于势能的减少3. 成对力的功只与作用力和相对位移有关:r d F dW '⋅= 22/16※ 质点系功能原理1、系统的机械能: 动能与势能的总和称为机械能3、由势能的定义,保守内力的功总等于系统势能的减少pin c E W ∆-= 2、内力的功可分为: 保守内力的功和非保守内力功pk E E E +=(保守内力的功由势能代替)第四讲 功能原理 机械能守恒定律 能量守恒定律 in ncin c in in W W W W i i+==∑非保守内力的功将导致机械能与其他形式的能量转换。

inncex p k W W E E E +=∆+∆=∆k in ncp ex in nc in c ex in ex E W E W W W W W W ∆=+∆-=++=+ 4、系统的功能原理 (由质点系动能定理)在选定的质点系内,在任一过程中,质点系总机械能的增量等于所有外力的功与非保守内力的功的代数和。

4/16※ 机械能守恒定律问题1:有非保守内力作功,系统的机械能不守恒 ?例如:摩擦力作功,机械能转变成热能。

0=+in nc ex W W 0=∆+∆=∆p k E E E 常量=+p k E E 由功能原理:则:或:如果: 如果系统内只有保守内力作功,其他内力和一切外力都不作功,或元功之和恒为零,则系统内各物体的动能和势能可以相互转换,但总机械能保持不变。

问题2:有摩擦力作功:机械能守恒?in nc ex p k W W E E E +=∆+∆=∆力 f 作正功,f ' 作负功,总和为零,机械能守恒。

力学量守恒的条件

力学量守恒的条件

力学量守恒的条件
力学中的三大能量守恒定律包括动能定理、机械能守恒定律及功能原理,它们各自有不同的条件。

1. 动能定理的条件是外力对物体所做的合功,等于物体的动能增长量。

这个定理研究的对象是单位物体或者物体系,使用的条件是在同一个惯性参照系中有速度和位移变化。

2. 机械能守恒定律的条件是在只有重力和弹力做功的物体系内,动能和势能可以相互转化,而总的机械能则保持不变。

这个定律研究的对象是物体系统,使用条件是物体重力和弹力做功。

3. 功能原理的条件是除了重力和弹力之外,其他外力做的功和内力做的代数和等于系统机械能增加量。

这个原理研究的对象是单个物体或物体系,使用条件是不计重力和弹力做的功,只计系统内其他外力和内力做的功。

以上内容仅供参考,如需更专业的解释,可查阅相关力学书籍或咨询专业物理学家。

(机械能守恒定律、能量守恒定律、动能定理的区别)

(机械能守恒定律、能量守恒定律、动能定理的区别)

-μmgL-mgR=-E,
解得 CD 圆弧半径至少为 R=3mEg.
答案
2E (1)3mgL
E (2)3mg
解析 (1)设小车在轨道 CD 上加速的距离为 s,由动能定理得
Fs-μMgs2=12Mv2①
设小车在轨道 CD 上做加速运动时的加速度为 a,由牛顿运动定律得
F-μMg=Ma②
7
s=12at2③ 联立①②③式,代入数据得 t=1 s.④ (2)设小车在轨道 CD 上做加速运动的末速度为 v′,撤去力 F 后小车做减速运动时的加速度为 a′, 减速时间为 t′,由牛顿运动定律得 v′=at⑤ -μMg=Ma′⑥ v=v′+a′t′⑦ 设滑块的质量为 m,运动到 A 点的速度为 vA,由动能定理得 mgR=12mvA2 ⑧ 设滑块由 A 点运动到 B 点的时间为 t1,由运动学公式得 s1=vAt1⑨ 设滑块做平抛运动的时间为 t1′,则 t1′=t+t′-t1⑩ 由平抛规律得 h=12gt1t2⑪ 联立②④⑤⑥⑦⑧⑨⑩⑪式,代入数据得 h=0.8 m.
A.mgLcos θ
B.FLsin θ
C.mgL(1-cos θ)
D.FL(1-cos θ)
图 5-2-9 图 5-2-10 4.如图 5-2-10 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0 沿水平 方向射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前 进距离 L,子弹进入木块的深度为 s,若木块对子弹的阻力 F 视为恒定,则下列关系式中正确的是 A.FL=12Mv2 B.-Fs=12mv2-12mv20 C.-F(L+s)=12mv2-12mv20 D.F(L+s)=12Mv2 5.一质量为 m 的物体在水平恒力 F 的作用下沿水平面运动,在 t0 时刻撤去力 F, 其 v-t 图象如图 5-2-11 所示.已知物体与水平面间的动摩擦因数为 μ,则下列关于力 F 的大小和 力 F 做的功 W 的大小关系式,正确的是

物体的机械能和能量守恒定律

物体的机械能和能量守恒定律

物体的机械能和能量守恒定律能量是物理学中一个重要的概念,它存在于各种不同形式的物体和现象中。

在经典力学中,机械能是一种常见的能量形式,它包括了物体的动能和势能。

本文将探讨物体的机械能以及能量守恒定律的基本原理。

一、机械能的定义与运动的特点机械能是指物体由于运动而具有的能量,包括了物体的动能和势能。

动能是由于物体运动而产生的能量,它与物体的质量和速度有关。

动能的表达式为:E_k = 1/2mv^2,其中E_k为动能,m为物体的质量,v 为物体的速度。

势能是由于物体所处的位置而具有的能量,它与物体的位置和形状有关。

常见的势能形式有重力势能、弹性势能和化学势能等。

重力势能的表达式为:E_p = mgh,其中E_p为重力势能,m为物体的质量,g为重力加速度,h为物体的高度。

在运动中,机械能可以相互转换,但总机械能守恒。

这意味着,在没有外力和非保守力的情况下,系统的机械能保持不变。

当物体受到外力或非保守力的作用时,机械能会发生转换,并且转换的总量等于外力对物体做功或非保守力对物体所做的负功。

二、能量守恒定律的基本原理能量守恒定律是指在一个封闭系统中,能量的总量保持不变。

即使能量在不同形式之间转换,总能量仍保持不变。

根据能量守恒定律,机械能的转换可以用下式表示:ΔE_k + ΔE_p + ΔW = 0,其中ΔE_k和ΔE_p分别表示动能和势能的变化量,ΔW为外力对物体所做的功。

根据能量守恒定律,当一个物体从一个位置移动到另一个位置时,其动能和势能会发生相应的变化。

例如,当一个物体从高处下落时,它失去了一部分的势能,同时增加了相应的动能。

这个过程中,重力对物体做了负功,使得机械能保持不变。

当物体受到其他非保守力的作用时,能量转换的情况更加复杂。

非保守力对物体的功既可以正值也可以负值,取决于力的方向和物体的运动方向。

然而,总能量仍然守恒,只是能量在不同形式之间进行转换。

三、应用举例能量守恒定律在日常生活中有许多应用。

动量、动能定理、机械能守恒、能量守恒综合运用

动量、动能定理、机械能守恒、能量守恒综合运用

图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。

4.4 功能原理 机械能守恒定律

4.4 功能原理 机械能守恒定律

30° A o
B
Ep = 0
20
4.4 功能原理 机械能守恒定律 第4章 功和能 功能原理
例:如图所示,轻质弹簧劲度系数为k,两端各固定一 质量均为M的物块A和B,放在水平光滑桌面上静止。 今有一质量为m的子弹沿弹簧的轴线方向以速度υ0射入 A 物块而不复出。求:此后弹簧的最大压缩长度。
解:第一阶段: 子弹射入到相对静止
第4章 功和能 功能原理
人们在总结各种自然过程中发现:
如果一个系统是孤立的、与外界无能量交换,系 统内部各种形式的能量可以相互转换,或由一个物体 传递给另一个物体。但是不论如何转换,这些能量的 总和却保持不变。能量既不能消灭,也不能创造。这 一结论叫做能量守恒定律。
例如:利用水位差推动水轮机转动,能使发电机发 电,将机械能转换为电能。
例:有一轻弹簧, 其一端系在铅直放置的圆环的顶点 P, 另一端系一质量为m 的小球,小球穿过圆环并在 圆环上运动(不计摩擦)。开始小球静止于点 A,弹簧处 于自然状态,其长度为圆环半径R; 当小球运动到圆 环的底端点B时,小球对圆环没有压力。
求:弹簧的劲度系数。
P
解 以弹簧、小球和地球为一系统,
R
Q A → B 只有保守内力做功 ∴系统机械能守恒 EB = EA
υ0
mA
B
于物块中。
由于时间极短,可认为物块还没有移动,
应用动量守恒定律,求得物块A的速度υA
mυ0 = ( M + m )υA
∴ υA
=
m (M +
m)
υ0
21
4.4 功能原理 机械能守恒定律 第4章 功和能 功能原理
第二阶段:A移动,直到当A 和B有相同的速度时,弹簧 压缩最大。应用动量守恒定

能量守恒定律与机械能守恒定律的区别

能量守恒定律与机械能守恒定律的区别

能量守恒定律与机械能守恒定律的区别能量守恒定律和机械能守恒定律是物理学中两个重要的概念,它们在研究物体运动和相互作用时起着至关重要的作用。

虽然这两个概念都与能量有关,但它们的定义和应用有很大的不同。

本文将详细探讨这两个概念的区别,以便更好地理解它们在物理学中的应用。

能量守恒定律是物理学中的一条基本定律,它表明在任何物理系统中,能量总量保持不变。

这意味着在一个系统中,能量可以从一种形式转换为另一种形式,但总能量不会改变。

例如,当一个物体从高处落下时,它的重力势能被转换为动能,但总能量保持不变。

同样,当一个物体被加热时,其内部能量会增加,但总能量仍保持不变。

机械能守恒定律是能量守恒定律的一个特例,它只适用于机械系统,即只考虑机械能的转换。

机械能是由物体的位置和速度共同决定的能量,它包括动能和势能。

当一个物体在机械系统中运动时,它的动能和势能可以相互转换,但总机械能不变。

例如,当一个物体在一个斜面上滑动时,它的重力势能被转换为动能,但总机械能保持不变。

机械能守恒定律的应用范围比能量守恒定律要窄,因为它只适用于机械系统。

而能量守恒定律适用于所有物理系统,包括热力学系统、电磁系统等。

因此,能量守恒定律是更普遍的定律。

另一个区别是,能量守恒定律适用于封闭系统,即系统内部没有能量交换。

而机械能守恒定律适用于没有外部力和摩擦力的系统。

因此,当有外部力和摩擦力作用时,机械能守恒定律不再适用,而能量守恒定律仍然适用。

在实际应用中,能量守恒定律和机械能守恒定律常常被用于解决物理问题。

例如,当我们需要计算一个物体从高处落下的速度时,我们可以使用机械能守恒定律来计算其动能和势能的转换。

而当我们需要计算一个热力学系统中的能量转换时,我们可以使用能量守恒定律来计算总能量的变化。

总之,能量守恒定律和机械能守恒定律是物理学中两个重要的概念,它们都与能量有关,但定义和应用有很大的不同。

能量守恒定律适用于所有物理系统,而机械能守恒定律只适用于机械系统。

第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。

5 动能定理 机械能守恒

5 动能定理 机械能守恒

F
1
2. 质点的动能定理 合力对质点的功等于质点动 能的增量.
说明: 1) 动能是标量, 是状态量v的单 值函数, 也是状态量; 2) 功与动能的本质区别: 它们 的单位和量纲相同, 但功是过程 量, 动能是状态量, 功是能量变 化的量度;
3) 动能定理由牛顿第二定律得 出, 只适用于惯性参考系, 动能 本身也与参考系有关.
GMm GMm r r 2 1
推断: 对于保守力场中的力学 系统, 能用一个状态函数表示 其某种能量, 该能量由质点的 相对位置决定, 与保守力做功 有关, 称为势能(势能函数).
保守力的功与势能的关系: 质点在保守力场中从某一点 移动到另一点的势能降落(提 升), 等于质点在此过程中受 到的保守力的功(负功).
.
m R
r
x
解: F F0 xi F0 yj
dr dxi dyj
O
r xi yj
与参考系的选择有关.
讨论: 1) 功是标量(代数量)
dW > 0 力对物体做功; dW < 0 物体反抗阻力做功; dW = 0 力的作用点无位移 或力与位移垂直. 2) 功是过程量 与力作用点的位移相关;
m gdz
质点从M1到M2重力的总功
x
x2 弹性力 f x kxi x2 x2 W f x dx kxi dxi
x1 x1
O x1
a
b
X
W
mgz2 mgz1

M2
M1
mgdy mgz1 z 2
1 2 1 2 kx2 kx1 2 2

动能定理与机械能守恒定律

动能定理与机械能守恒定律

动能定理与机械能守恒定律动能定理和机械能守恒定律是物理学中重要的两个定理,它们描述了物体在力的作用下产生的能量变化。

这两个定理对于理解物体运动和能量转换至关重要。

一、动能定理动能定理是指物体的动能随时间的变化与物体受到的力的做功之间的关系。

根据动能定理,物体的动能的变化等于物体所受到的合外力的做功。

动能定理可以用数学公式表示为:ΔK = W其中,ΔK代表物体动能的变化,W代表物体所受到的合外力的做功。

动能定理表明,力对物体做功,可以改变物体的动能。

如果物体受到的合外力做功为正,物体的动能会增加;如果物体受到的合外力做功为负,物体的动能会减小。

二、机械能守恒定律机械能守恒定律是指在只有重力和弹力(或者其他保守力)的情况下,物体的机械能(动能和势能的和)保持不变。

机械能守恒定律可以用数学公式表示为:E = K + U = 常数其中,E代表物体的机械能,K代表物体的动能,U代表物体的势能。

根据机械能守恒定律,物体在受到合外力的作用下,动能和势能之间会相互转化,但它们的总和保持不变。

这意味着,一个物体在运动过程中,如果没有其他形式的能量转化或者能量损失(如空气阻力等),它的机械能将始终保持恒定。

机械能守恒定律的应用非常广泛。

例如,在弹射器中,当物体受到拉力作用而发射出去时,势能转化为动能,从而实现弹射。

同样地,当物体在重力场中自由下落时,动能逐渐增加,而势能逐渐减小。

根据动能定理和机械能守恒定律,我们可以对物体的运动和能量转换进行分析和计算。

这两个定理为我们理解物体的能量变化提供了重要的工具和思路。

总结:动能定理描述了物体的动能随时间的变化与物体所受的力的做功之间的关系,它使我们能够了解物体受力时能量的变化情况。

机械能守恒定律是指在只有重力和弹力(或其他保守力)的情况下,物体的机械能保持不变,它使我们能够分析和计算物体在这些力的作用下的能量转换。

这两个定理是物理学中重要的基本定理,对于理解物体的运动和能量守恒至关重要。

机械能守恒定律和能量守恒定律

机械能守恒定律和能量守恒定律

机械能守恒定律和能量守恒定律
机械能守恒定律和能量守恒定律是物理学中的两个基本定律,它们对证明物体传递能量的规律有重要意义。

机械能守恒定律即“历史力学定律”,指系统内总机械能不变。

该定律表明:当系统处于静止或单一恒定速度状态时,其机械能保持不变。

而能量守恒定律即“动能定理”,它建立在机械能守恒定律的基础上,在机械运动中,总机械能的变化等于全系统接收到或释放出的量子能量。

机械能守恒定律和能量守恒定律是建立物理学的基本定律,它们对于我们了解物体传递能量有着重要的意义。

只有完全遵循机械能守恒定律和能量守恒定律,我们才能正确地解释动能变化的原因,才能探讨解释动能变化后物体之间的变化。

让我们更加清楚的认识两个定律,把它们用到实践当中,实际开展分析物理学相关问题,深入理解物理学之美。

专题复习:动能定理、机械能守恒、能量守恒

专题复习:动能定理、机械能守恒、能量守恒

机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。

尤其是机械能能守恒和动能定理。

因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。

1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。

2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。

3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。

4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。

5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。

在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。

如果某一边没有, 说明在那个状态的重力势能为零。

不管用什么公式,等号两边决不能既有重力做功,又有重力势能。

解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。

因为动能定理的研究对象在高中阶段通常是单个的物体。

相关的习题有:《讲义》P15410、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R的光滑圆柱,与圆柱轴心一样高的A球的质量为2m正好着地的B球质量是m,释放A球后,B球上升,则A球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A、B,且m=2m=2m由图示位置从静止开始释放A物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B所做的功。

动量动能定理机械能守恒能量守恒综合运用

动量动能定理机械能守恒能量守恒综合运用

动量动能定理机械能守恒能量守恒综合运用假设我们有一个木箱,质量为m,放在一个水平的滑道上。

初始时,木箱以速度v0沿滑道向右运动。

滑道底部和末端的垂直高度分别为h1和h2,木箱在滑道上运动的过程中还受到了一个与速度方向相反的恒力F。

首先我们来分析初始时刻的动能和势能。

木箱的初始动能为:(1) K = 1/2 mv0^2木箱的初始势能为:(2) U = mgh1其中,g为重力加速度。

根据机械能守恒定律,系统的总机械能守恒,即初始机械能和末端机械能的和保持不变。

因为末端只有势能,所以有:(3) K + U = mg(h1 + h2)接下来我们来考虑木箱在滑道上受到的恒力F对动能的影响。

根据动量动能定理,恒力对物体的作用会改变物体的动能。

恒力对木箱的总功为:(4)W=Fx其中x为恒力F作用的距离。

假设木箱在滑道上受到恒力F作用的时间为t,速度增加的大小为△v。

根据动量动能定理,恒力对木箱的总功等于木箱速度的变化与质量的乘积:(5)W=△K=m△v因此,根据(4)式和(5)式,我们可以得到:(6)m△v=Fx接下来我们将初始动能、势能以及木箱在滑道上受到的恒力F对动能的影响结合起来,综合运用动量动能定理、机械能守恒和能量守恒。

根据能量守恒定律,初始机械能和末端机械能的和保持不变,即:(7) K + U + W = mg(h1 + h2)代入(1)式和(2)式,可以得到:(8) 1/2 mv0^2 + mgh1 + m△v = mg(h1 + h2)再由(6)式,即:m△v=Fx代入(8)式,得到:1/2 mv0^2 + mgh1 + Fx = mg(h1 + h2)通过以上运算我们可以发现,当木箱滑到末端时,速度变为v,并且速度、质量和滑道的高度之间存在关系。

同时可以通过给定的恒力F、质量m、初始速度v0和滑道的高度差h1和h2来求解滑道上的各个物理量。

这样我们就用到了动量动能定理、机械能守恒和能量守恒这三个定律进行综合运用。

机械能守恒与能量守恒

机械能守恒与能量守恒

机械能守恒与能量守恒一.知识导航二.知识归纳1、机械能守恒定律机械能守恒的条件:系统内只有重力(或弹力)做功,其它力不做功(或没有受到其它力作用)①从做功的角度看,只有重力或弹簧的弹力做功或系统内的弹力做功,机械能守恒。

②从能量的角度看,只有系统内动能和势能的相互转化,没有机械能与其他形式能量之间的转化,机械能守恒。

机械能守恒的方程:①初始等于最终:2211p k p k E E E E +=+ ②减少等于增加:P k E E ∆-=∆用第二种方法有时更简捷。

对机械能守恒定律的理解:机械能守恒定律是对一个过程而言的,在做功方面只涉及跟重力势能有关的重力做功和跟弹性势能相关的弹力做功。

在机械能方面只涉及初状态和末状态的动能和势能,而不涉及运动的各个过程的详细情况;因此,用来分析某些过程的状态量十分简便。

机械能中的势能是指重力势能和弹性势能,不包括电势能和分子势能,这一点要注意。

思维误区警示:对于一个系统,系统不受外力或合外力为零,并不能保证重力以外其他力不做功,所以系统外力之和为零,机械能不一定守恒,而此时系统的动量却守恒(因为动量守恒的条件是功 机械能 动能: E K =221mv 重力势能:E K =mgh 弹性势能:221kl E P =动能定理: W 合=21222121mv mv -抛体运动 单摆 弹簧振子功能关系: W G =mgh 1-mgh 2 W 弹力=22212121kl kl - W 其它=12E E - 机械能守恒定律 E k1+E p1=E k2+E p2能的转化及 守恒定律12E E ∆-=∆系统的合外力为零)。

同样,只有重力做功,并不意味系统不受外力或合外力为零。

2、能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移互另一个物体,在转化和转移的过程中其总量保持不变。

(2)对能量守恒定律的理解:①某种形式的能量减少,一定存在其他形式的能的增加,且减少量和增加量一定相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②由力和位移的夹角α 的大小进行判断:α =90°,
不做功;α > 90°,做负功;α < 90°,做正功。
——适用判断恒力做功问题
③由力和物体速度的夹角α 的大小进行判断:
α =90°,不做功; α >90°,做负功;α <90°,
做正功。
——适用判断曲线运动做功问题
④由物体间的能量转化进行判断:能量不变化,不
速度变化的关系
力与速度不在一条直线的问题,
3.重力势能、重力做功 不定量讨论机车以恒定功率起
与重力势能改变的关
动与匀加速起动的问题 3、不要求掌握弹簧弹性势能的表

达式
4.探究弹性势能
4、运用机械能守恒定律计算时,
5.机械能守恒定律
不涉及弹性势能的表达式,不 求解多个物体的问题。
6.能量守恒定律与能源 5、不要求用能量守恒定律进行教
A.若斜面向左匀速移动距离s,斜面对物块没有做功 B.若斜面向上匀速移动距离s,斜面对物块做功mgs C.若斜面向左以加速度a移动距离s,斜面对物块做功 mas D.若斜面向下以加速度a移动距离s,斜面对物块做功 m(g+a)s
变化2 、图示,小物块位于光滑的斜面上, 斜面置于光滑水平面上,从地面上看, 在小物块沿斜面下滑的过程中,斜面对 小物块的作用力( B )
做功;能量减少,做负功;能量增加,做正功。
——适用判断两个相互作用且做曲线运动的物体的做功问题
下面列举的哪几种情况下所做的功是零 ( ACD )
A.卫星做匀速圆周运动,地球引力对卫星 做的功
B.平抛运动中,重力对物体做的功 C.举重运动员,扛着杠铃在头上的上方停 留10s,运动员对杠铃做的功 D.木块在粗糙水平面上滑动,支持力对木 块做的功
本章精髓提炼
重点 难点
功、功率的概念 动能定理
机械能守恒定律 能量转化守恒定律
动能定理 机械能守恒定律
能力点
运动过程分析能力 及思维能力
分析解决问题的综合能力
教学指导意见与能力要求
主要内容
说明
1.功、功率
1.不要求用功的定义式、平均力、
2.动能、探究功与物体
或利用F—L图象计算变力的功。 2、不要求用功率、力和速度解决
θ
θ
F
F
小球质量为m,用水平力 小球质量为m,用水平恒 F缓慢拉至θ,细线长为l, 力F拉至θ,细线长为l,
一人站在浮于水中的船上,船和人的总质量
m1=400kg, 此人以100N的水平力拉绳索,此
绳索的另一端一次拴在岸边的树上,另一次
拴在另一只浮在静水中质量为m2=500kg的船 上,则人在头4s内所做的功分别是 200 J
机械能
动能 Ek=mv2/2
势能 重力势能 Ep=mgh 弹性势能 Ep=kx2/2
机械能守恒定律 Ek1+Ep1=Ek2+Ep2
问题 功知识点精讲
磁场 1、如何理解功的概念?
①功是力的空对比间:积①累力的效瞬应时—效应——— 能量变化。 产生加速度;②力的时间积
②功等于恒力累效和应沿—该—动恒量力变方化。向上的 位移的乘积。(W=FLcosα )
如图所示,线拴小球在光滑水平面上做匀速 圆周运动,圆的半径是1m,球的质量是0.1kg, 线速度v=1m/s,小球由A点运动到B点恰好是半 个圆周。那么在这段运动中线的拉力做的功是 () A
A.0 C.0.314J
B.0.1J D.无法确定
反思:圆周运动中向心力永远不做功。
• 试求下列两种情况下拉力F所作的功 • 并比较拉力F与重力G做功的大小
③功的物理含义:功是能量转化的 量度。
④功是标量,但有正功和负功之分。
⑤功的单位是焦耳(J)。
图示为一质量m的物体静止在倾角为θ的斜 面上,物体与斜面的动摩擦因素为μ,现在 使斜面体向右水平匀速移动距离L,求物体 所受各力对物体所做的功?
变化1:如图所示,质量为m的物块,始终固定在倾
角为α的斜面上,下面说法中正确的是( ABC)
A垂直于接触面,做功为零
B垂直于接触面,做功不为零
C不垂直于接触面,做功为零
D不垂直于接触面,做功不为零
问题 功知识点精讲
磁场 2、如何计算力的做功多少?
(1)恒力做功等于恒力和沿该恒力方向上的位移的乘 积:W=FScosα
反思:注意上式中的位移确切地说是力的作用点发 生的位移,求解时必须明确求哪一个力所做的功。
A
小结:若一个力 f 大小不变,方向总与物体运动方 向相同或相反,则W f = f × 路程。
问题 功知识点精讲
磁场 3、如何计算合力的做功多少?
(1)求合力和沿该合力方向上发生 的位移:W总=F合Lcosα (合力为恒力)
(2)求各分力做的功,再求各个功 的代数和:W总=W1+W2+W3+···
复杂的定量计算。
高考预测
1、主要内容:功、功率、动能、动 能定理、机械能守恒定律和能量守 恒定律。
2、重点考查:动能定理、机械能守 恒定律和能量守恒定律。
3、考查特点:灵活性强,综合性大,能
力要求高。
◆知识结构
功和能
功 W=FLcosα 平均功率 P=W/t 瞬时功率 P=Fvt
动能定理 W合=Ek末-Ek初
(2)变力做功: ①化变为恒: a.变力→平均作用力→恒力(W=—FLcosα )
特例:与变量的关系呈线性变化的变力F=(F1+F2)/—2 b.分段处理,化曲为直:变力→恒力(试W举=F例S相说对路明程) ②利用功率:W=Pt(P为恒定功率)
③利用动能定理:W=△Ek ④利用功能转化:W=△Ep
物体A质量为m,与地面的动摩擦因数为μ, 当物体A在地面上沿半径为R的圆运动一周, 滑动摩擦力所所做的功。
如图所示,以恒力F沿与水平成θ 的方向拉绳 子的一端,使物体发生位移L,则此过程中恒
力F对物体做了多少功?
W FL(1 cos ) 2FL cos2
2
O

θ
BF
S

这是力F发 生的位移吗?
L
问题 功知识点精讲
磁场 4、如何判断一个力是否做功?做正功还
是负功?
①根据功的两个必要因素:力和力的方向上发生 的位移进行判断是否做功。
和 360 J。 在4s末发挥的功率分别是100 w和180 w,
(2000全国理综)如图所示,DO是水平面,AB是斜
面,初速为v0的物体从D点出发沿DBA滑动到顶点A时 速度刚好为零,如果斜面改为AC,让该物体从D点
出发沿DCA滑动到A点且速度刚好为零,则物体具有
相关文档
最新文档