投影与视图中考考题目汇总
中考数学总复习《投影与视图》专项测试卷-附参考答案
![中考数学总复习《投影与视图》专项测试卷-附参考答案](https://img.taocdn.com/s3/m/d2f7212e2379168884868762caaedd3383c4b537.png)
中考数学总复习《投影与视图》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.如图是某个几何体的三视图,该几何体是( )A.长方体B.正方体C.圆柱D.三棱柱2.小卖部货架上摆放着某品牌方便面,它们的三视图如图,货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒3.如图所示几何体的俯视图是( )A.B.C.D.4.如图是由几个相同的小正方体组成的一个几何体.它的左视图是( )A.B.C.D.5.将下面的平面图形绕轴旋转一周,得到的立体图形是( )A.B.C.D.6.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12cm2B.14cm2C.16cm2D.18cm27.一个几何体的表面展开图如图所示,这个几何体是( )A.圆柱B.圆锥C.长方体D.球8.下列几何体中,俯视图为三角形的是()A.B.C.D.二、填空题(共5题,共15分)9.(1)底面圆半径为1,高为2的圆柱体,其侧面展开图的周长是.(2)圆柱的侧面展开图是边长为4的正方形,则圆柱的体积是.10.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.11.如图,将圆柱的侧面展开,得到圆柱的侧面展开图,圆柱的侧面展开图是形,它的长等于圆柱的,宽等于圆柱的.12.有一个矩形纸片ABCD,连接矩形对角线AC,如图①;把这个矩形卷成一个圆柱体,如图②.看一看对角线AC这时是一条什么线(直线或曲线).答:是一条.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB= 1.5m,CD=4.5m点P到CD的距离是2.7m,则P到AB的距离是m.三、解答题(共3题,共45分)14.如图,直角梯形ABCD被平行光线从上往下照射BC∥AD,BE⊥AD于点E,AD在投影面上,则AB的投影是什么?BC与CD的投影呢?它们与其对应投影的大小关系呢?15.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,某一时刻她在地面上竖直立了一个2m长的标杆CD,测得其影长DE=0.4m.(1) 请在图中画出此时旗杆AB在阳光下的投影BF;(2) 如果BF=1.6m,求旗杆AB的高.16.一个圆锥的主视图如图所示,根据图中数据,求这个圆锥的侧面积.参考答案1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】C9. 【答案】4π+4;16π10. 【答案】144或384π11. 【答案】长方;底面的周长;高12. 【答案】曲线13. 【答案】0.914. 【答案】AB的投影是AE AB>AE;BC的投影为ED BC=EDCD的投影是点D.15. 【答案】(1) 略(2) ∵AF∥CE∴∠AFB=∠CED.而∠ABF=∠CDE=90∘∴△ABF∽△CDE∴ABCD =BFDE,即AB2=1.60.4∴AB=8(m).答:旗杆AB的高为8m.16. 【答案】15π。
中考数学总复习《投影与视图》专项提升练习题(附答案)
![中考数学总复习《投影与视图》专项提升练习题(附答案)](https://img.taocdn.com/s3/m/b679040b68eae009581b6bd97f1922791688be93.png)
中考数学总复习《投影与视图》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
《投影与视图》单元检测试卷一、选择题(每小题3分,共36分)1.下列几何体中,主视图和左视图都为矩形的是( )2.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )3.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120°B.约156°C.180°D.约208°4.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A.4个B.5个C.6个D.7个5.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.116.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆B.三角形C.线段D.椭圆7.身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是( )A.10米B.9米C.8米D.10.8米8.如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为( )A.15mB.803m C.21m D.m9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长10.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高h(单位:m)的范围是()A.3<h<5B.5<h<10C.10<h<15D.15<h<2012.如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c2二、填空题(每空3分,共30分)13.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)14.如图是一个三棱柱,它的正投影是下图中的________(填序号).15.如图所示,是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.16.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.17.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.18.一个由小立方块搭成的几何体,其左视图、主视图如图所示, 这个几何体最少由个小立方块搭成的 .三、解答题(7个小题,共66分)19.用7个大小相同的小正方体搭成的几何体如左图所示,请你在右边的方格中画出该几何体的三种视图(用较粗的实线进行描绘):20.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.21.如图是某几何体的展开图.(1) 请根据展开图画出该几何体的主视图;(2) 若中间的矩形长为20πcm,宽为20cm,上面扇形的中心角为240°,试求该几何体的表面积.22.如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m,高为2 m,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?23.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?24.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m.某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.25.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6 m 的小区超市,超市以上是居民住房.在该楼的前面15 m 处要盖一栋高20 m 的新楼,当冬季正午的阳光与水平线的夹角为32°时 (1)问:超市以上的居民住房的采光是否有影响?(2)若要使超市采光不受影响,两楼应至少相距多少米?(结果保留整数,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈58)答案1.B2.D3.C4.C.5.B6.B7.B.8.B.9.D10.B.11.B12.D.13.答案为:③④.14.答案为:②15.答案为:154π.16.答案为:12.17.答案为:618.答案为:519.解:如图所示:20.解:(1)乙杆的影子如图中BC.(2)图中存在相似三角形,即△ABC∽△DCE.因为两条太阳光线AB∥DC,两杆AC∥DE.(3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.21.解:(1)主视图如图(2)表面积为S 扇形+S 矩形+S 圆. ∵S 扇形=12lR ,而20π=n πR180∴R=20×180240=15(cm). S 扇形=12lR=12×20π×15=150π(cm 2).S 矩形=长×宽=20π×20=400π(cm 2),S 圆=π(20π2π)2=100π(cm 2).S 表=150π+400π+100π=650π(cm 2). 22.解:(1)粮仓的三视图如图所示: (2)S 圆柱侧=2π·1×2=4π m 2(3)V=π×12×2=2π(m 3),即最多可存放2π m 3的粮食 23.解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为 l 1=32+4+62=109(cm); l 2=42+3+62=97(cm); l 3=62+3+42=85(cm).通过比较,得最短路径长度是85 cm.24.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题) (2)∵AC ∥DF ∴∠ACB =∠DFE.又∠ABC =∠DEF =90°∴△ABC ∽△DEF.∴AB DE =BCEF.∵AB=3 m,BC=2 m,EF=6 m∴3DE =2 6.∴DE=9 m.∴旗杆DE的高度为9 m.25.解:(1)如图,设CE=x m,则AF=(20-x)m.∵tan 32°=AF:EF,即20-x=15·tan 32°∴x≈11.∵11>6∴超市以上的居民住房的采光有影响.(2)当tan 32°=AB:BC时,BC≈20×1.6=32(m) ∴若要使超市采光不受影响,两楼应至少相距32 m.。
中考数学真题专题训练---投影与视图(附解析)
![中考数学真题专题训练---投影与视图(附解析)](https://img.taocdn.com/s3/m/d4338e5448d7c1c708a1458c.png)
中考数学真题专题训练---投影与视图一.选择题1.(•兴安盟)如图,是一个长方体的主视图与左视图,由图示数据(单位:cm)可得出该长方体的体积是( )A.18cm3B.8cm3C.6cm3D.9cm32.(•河池)如图,该几何体的主视图是( )A.B.C.D.3.(•安丘市)如图是由若干个大小相同的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置的立方体的个数,则这个几何体的左视图是( )A.B.C.D.4.(•营口)如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图( )A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变5.(•辽阳)如图所示几何体是由五个相同的小正方体搭成的,它的左视图是( )A.B.C.D.6.(•广元)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.7.(•巴彦淖尔)如图是一个几何体的三视图,则这个几何体的表面积是( )A.60π+48B.68π+48C.48π+48D.36π+48 8.(•锦州)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A.B.C.D.9.(•牡丹江)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.10.(•德阳)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A.16πB.12πC.10πD.4π11.(•绥化)已知某物体的三视图如图所示,那么与它对应的物体是( )A.B.C.D.12.(•毕节市)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是( )A.B.C.D.13.(•益阳)如图是某几何体的三视图,则这个几何体是( )A.棱柱B.圆柱C.棱锥D.圆锥14.(•抚顺)下列物体的左视图是圆的是( )A.足球B.水杯C.圣诞帽D.鱼缸15.(•阜新)如图所示,是一个空心正方体,它的左视图是( )A.B.C.D.二.填空题16.(•百色)如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG 的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是 (用“=、>或<”连起来)17.(•日照)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是 .18.(•东营)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .19.(•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为 cm.20.(•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm2.21.(•陇南)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .22.(•盘锦)如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是 .(结果保留π)23.(•青岛)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.参考答案一.选择题1.解:观察其视图知:该几何体为立方体,且立方体的长为3cm,宽为2cm,高为3cm,故其体积为:3×3×2=18cm3,故选:A.2.解:由图可得,几何体的主视图是:故选:D.3.解:从左边看有3列,第一列有3行,第二列有1行,第三列有2行,故选:A.4.解:将正方体A向右平移2个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变,故选:D.5.解:从左面可看到从左往右2列小正方形的个数为:2,1.故选:D.6.解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.7.解:此几何体的表面积为π•42××2+•2π•4×6+(4+4)×6=60π+48,故选:A.8.解:左视图有2列,每列小正方形数目分别为2,1.故选:A.9.解:结合主视图、左视图可知俯视图中左上角有2层,其余1层,故选:A.10.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.11.解:从上面物体的三视图看出这是一个圆柱体,故排除A选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体.故选:B.12.解:其主视图是,故选:B.13.解:由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选:D.14.解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.15.解:如图所示:左视图为:.故选:C.二.填空题(共8小题)16.解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.17.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,18.解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π19.解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.20.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.21.解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.22.解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.23.解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.。
2023年中考数学专题21 视图与投影(原卷版)
![2023年中考数学专题21 视图与投影(原卷版)](https://img.taocdn.com/s3/m/1592c952a517866fb84ae45c3b3567ec102ddcb6.png)
专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
中考数学真题分类汇编及解析(四十二)投影与视图
![中考数学真题分类汇编及解析(四十二)投影与视图](https://img.taocdn.com/s3/m/f1ebaf19f011f18583d049649b6648d7c1c708d0.png)
(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。
2024年中考数学考点必备知识必备10 视图与投影、尺规作图(原卷版)
![2024年中考数学考点必备知识必备10 视图与投影、尺规作图(原卷版)](https://img.taocdn.com/s3/m/26e7b1ffdc3383c4bb4cf7ec4afe04a1b071b086.png)
知识必备10视图与投影、尺规作图易错点1:由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A.2B.3C.4D.5【变式1】.(2023•南皮县校级一模)用小立方块搭成的几何体,从左面看和从上面看如下,这样的几何体最多要x 个小立方块,最少要y个小立方块,则x y等于()A.12B.13C.14D.15【变式2】.(2023•巴中一模)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.4B.5C.6D.7【变式3】.(2023•青山区校级模拟)小明用大小相等的正方体摆出了一个立体图形,这个立体图形从主视图、俯视图、左视图看都只能看见4个方块,则小明至少用了()正方体.A.4个B.5个C.6个D.7个【变式4】.(2023•来凤县模拟)用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块【变式5】.(2023·河北·统考中考真题)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【变式6】.(2023·四川眉山·统考中考真题)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6B.9C.10D.14【变式7】.(2023·黑龙江牡丹江·统考中考真题)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.9【变式8】.(2023·湖北黄石·统考中考真题)如图,根据三视图,它是由()个正方体组合而成的几何体A.3B.4C.5D.6【变式9】.(2022·黑龙江牡丹江·统考中考真题)由一些大小相同的小正方体搭成的几何体的三视图如图所示,则搭成这个几何体的小正方体的个数是()A.3B.4【变式10】.(2023·四川成都·统考中考真题)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如【变式11】.(2022·几何体的小正方体的个数是易错点2:根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】如图所示,,则这个几何体的侧面积是().A.18cm2B.20cm222cm D cm.(18【变式1】.(2023·黑龙江齐齐哈尔·统考中考真题)如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是()表示面积,A.48πcm2【变式8】.(2020·四川是()A.20πB.18π【变式9】.(2020·湖南永州·中考真题)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.1B.2【变式11】.(2021·山东菏泽积为()A.12 B.18【变式13】.(2021·江苏扬州cm.面积为2【变式14】.(2021·云南一.作图—基本作图(共9小题)1.(2023•福建)阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC OD;②分别以C,D为圆心,以大于12CD的长为半径作弧,两弧在AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.12且CM DMB.13且CM DMC.12且OD DMD.23且OD DM2.(2023•长春)如图,用直尺和圆规作MAN的角平分线,根据作图痕迹,下列结论不一定正确的是() A.AD AEB.AD DFC.DF EFD.AF DE3.(2023•湖北)如图,矩形ABCD中,3AB ,4BC ,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A .10B .11C .23D .44.(2023•随州)如图,在ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是()A .AE CF B .DE BF C .OE OF D .DE DC5.(2023•山西)如图,在ABCD 中,60D .以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点A ,E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OF OE 的值为.6.(2023•成都)如图,在ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在BAC 内部交前面的弧于点N ;④过点N 作射线DN 交BC 于点E .若BDE 与四边形ACED 的面积比为4:21,则BE CE 的值为.7.(2023•益阳)如图,在ABCD中,6AB ,4AD ,以A为圆心,AD的长为半径画弧交AB于点E,连接DE,分别以D,E为圆心,以大于12DE的长为半径画弧,两弧交于点F,作射线AF,交DE于点M,过点M作//MN AB交BC于点N.则MN的长为.8.(2023•河南)如图,ABC中,点D在边AC上,且AD AB.(1)请用无刻度的直尺和圆规作出A的平分线(保留作图痕迹,不写作法);(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE BE.9.(2023•鄂州)如图,点E是矩形ABCD的边BC上的一点,且AE AD.(1)尺规作图(请用2B铅笔):作DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.二.作图—复杂作图(共3小题)10.(2023•陕西)如图,已知四边形ABCD,//AD BC.请用尺规作图法,在边AD上求作一点E,在边BC上求作一点F,使四边形BFDE为菱形.(保留作图痕迹,不写作法)11.(2023•无锡)如图,已知APB,点M是PB上的一个定点.(1)尺规作图:请在图1中作O与射线PB相切于点M,同时与PA相切,切点记为N;,使得OMN与PM、PN所围成图形的面积是.(2)在(1)的条件下,若60的劣弧APB,3PM ,则所作的O12.(2023•陕西)如图.已知锐角ABC内部求作一点P.使PB PC.且B,请用尺规作图法,在ABC,48.(保留作图痕迹,不写作法)24PBC三.作图—应用与设计作图(共1小题)13.(2023•广安)如图,将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).四.简单几何体的三视图(共4小题)14.(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同15.(2023•济南)下列几何体中,主视图是三角形的为()A.B.C.D.16.(2023•淄博)在如图所示的几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.17.(2023•辽宁)如图所示,该几何体的俯视图是()A.B.C.D.五.简单组合体的三视图(共6小题)18.(2023•襄阳)先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是()A.B.C.D.19.(2023•海南)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是()A.B.C.D.20.(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.21.(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.22.(2023•十堰)下列几何体中,三视图的三个视图完全相同的几何体是()A.B.C.D.23.(2023•重庆)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.六.由三视图判断几何体(共1小题)24.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”的一部分,D是 AB的中点,连接OD,与弦AB交于点C,连接OA,OB.已(图①)的形状示意图. AB是O知24,则O的半径OA为()CD cm,碗深8AB cmA.13cm B.16cm C.17cm D.26cm。
中考数学复习专题练习:投影与视图(解析版)
![中考数学复习专题练习:投影与视图(解析版)](https://img.taocdn.com/s3/m/c64eaa3e783e0912a2162ac4.png)
中考数学复习专题练习:投影与视图一、单选题(共19题;共38分)1、如图所示,该几何体的俯视图是()A 、B 、C 、D 、2、如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A、90°B、120°C、135°D、150°3、把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A 、B 、C 、D 、4、一个几何体的三视图如图所示,则这个几何体是()A、球体B、圆锥C、棱柱D、圆柱5、下列几何体中,主视图和俯视图都为矩形的是()A 、B 、C 、D 、6、圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A、0.324πm2B、0.288πm2C、1.08πm2D、0.72πm27、一个几何体的三视图如图所示,则该几何体的表面积为()A、4πB、3πC、2π+4D、3π+48、三本相同的书本叠成如图所示的几何体,它的主视图是()A 、B 、C 、D 、9、如图所示正三棱柱的主视图是()A 、B 、C 、D 、10、下列四个几何体中,左视图为圆的是()A 、B 、C 、D 、11、由六个相同的立方体搭成的几何体如图所示,则它的主视图是()A 、B 、C 、D 、12、将如图绕AB边旋转一周,所得几何体的俯视图为()A 、B 、C 、D 、13、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A 、B 、C 、D 、14、如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A 、B 、C 、D 、15、如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A 、B 、C 、D 、16、如图是由5个相同的小正方体构成的几何体,其左视图是()A 、B 、C 、D 、17、如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A 、B 、C 、D 、18、如图是某工件的三视图,则此工件的表面积为()A、15πcm2B、51πcm2C、66πcm2D、24πcm219、如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A、40πcm2B、65πcm2C、80πcm2D、105πcm2二、填空题(共4题;共4分)20、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________m.21、一个侧面积为16 πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为________cm.22、如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是________.23、如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、作图题(共1题;共5分)24、由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.四、解答题(共1题;共5分)25、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?五、综合题(共1题;共15分)26、如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M 处,折痕为PE,此时PD=3.(1)求MP的值(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)答案解析一、单选题【答案】C【考点】简单组合体的三视图【解析】【解答】解:从上往下看,可以看到C选项所示的图形.故选:C.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.【答案】B【考点】圆锥的计算,由三视图判断几何体【解析】【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6 ,∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【答案】A【考点】平行投影【解析】【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.【答案】D【考点】由三视图判断几何体【解析】【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.【答案】B【考点】简单几何体的三视图【解析】【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;C、球的主视图、俯视图都是圆,故本选项错误;D、三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.故选:B.【分析】分别分析四个选项中圆锥、圆柱、球体、三棱柱的主视图、俯视图,从而得出都为矩形的几何体.本题考查了简单几何体的三视图,关键是培养学生的思考能力和对几何体三种视图的空间想象能力.【答案】D【考点】相似三角形的应用,中心投影【解析】【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴= ,即= ,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S圆环形阴影=0.92π﹣0.32π=0.72π(m2).故选:D.【分析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.本题考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.【答案】D【考点】由三视图判断几何体【解析】【解答】解:观察该几何体的三视图发现其为半个圆柱放在一个长方体的上面组成的一个几何体,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.【答案】B【考点】简单组合体的三视图【解析】【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.【分析】主视图是分别从物体正面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.【答案】C【考点】简单几何体的三视图【解析】【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.【分析】找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意本题不要误选C.【答案】C【考点】简单几何体的三视图【解析】【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是圆的几何体是球.故选:C.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.主要考查立体图形的左视图,关键根据圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形解答.【答案】A【考点】简单组合体的三视图【解析】【解答】解:结合几何体发现:从主视方向看到上面有一个正方形,下面有3个正方形,故选A.【分析】根据主视方向确定看到的平面图形即可.本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.2、【答案】B【考点】点、线、面、体,简单组合体的三视图【解析】【解答】解:将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选:B.【分析】本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.根据旋转抽象出该几何体,俯视图即从上向下看,看到的棱用实线表示;实际存在,没有被其他棱挡住,看不到的棱用虚线表示.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.【分析】本题考查了简单组合体的三视图的知识,主视图是从物体的正面看得到的视图.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.2、【答案】C【考点】简单组合体的三视图【解析】【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.【分析】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【答案】D【考点】简单组合体的三视图【解析】【解答】解:所给图形的俯视图是D选项所给的图形.故选D.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.2、【答案】C【考点】简单组合体的三视图【解析】【解答】解:观察图形可知,如图是由5个相同的小正方体构成的几何体,其左视图是.故选:C.【分析】几何体的左视图有2列,每列小正方形数目分别为2,1;据此画出图形即可求解.此题考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.2、【答案】B【考点】简单组合体的三视图【解析】【解答】解:由题意得:俯视图与选项B中图形一致.故选B.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.【答案】D【考点】由三视图判断几何体【解析】【解答】解:由三视图,得,OB=3cm,0A=4cm,由勾股定理,得AB= =5cm,圆锥的侧面积×6π×5=15πcm2,圆锥的底面积π×()2=9πcm,圆锥的表面积15π+9π=24π(cm2),故选:D.【分析】根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.本题考查了由三视图判断几何体,利用三视图得出圆锥是解题关键,注意圆锥的侧面积等于圆锥的底面周长与母线长乘积的一半.【答案】B【考点】由三视图判断几何体【解析】【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题2、【答案】3【考点】中心投影【解析】【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m,答:路灯的高为3m.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的想知道的,,即可得到结论.本题考查了中心投影,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.2、【答案】4【考点】圆锥的计算,由三视图判断几何体,等腰直角三角形【解析】【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r= l,∴侧面积S侧=πrl=2πr2=16 πcm2,解得r=4,l=4 ,∴圆锥的高h=4cm,故答案为:4.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r= l,代入S侧=πrl,求出r,l,从而求得圆锥的高.本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.2、【答案】2【考点】圆锥的计算,由三视图判断几何体【解析】【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高= =2 .故答案为2 .【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【答案】24π【考点】由三视图判断几何体【解析】【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=π(×4)2×6=24π.故答案为:24π.【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、作图题【答案】解:如图所示,【考点】轴对称图形,由三视图判断几何体,作图-三视图【解析】【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.本题主要考查三视图还原几何体及轴对称图形,解题的关键是根据俯视图和左视图抽象出几何体的大概轮廓.四、解答题【答案】解:(1)画图如下:(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.【考点】作图-三视图【解析】【分析】(1)由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(2)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.五、综合题【答案】(1)解:∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴MP==5;(2)解:如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,MN===3,∴NM′=11,∵AF∥ME,∴△AFM′∽△NEM′,∴=,即=,解得AF=,即AF=时,△MEF的周长最小.(3)解:如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,M′R==5,∵ME=5,GQ=2,∴四边形MEQG的最小周长值是7+5.【考点】翻折变换(折叠问题),简单几何体的三视图【解析】【解答】(1)根据折叠的性质和矩形性质以得PD=PH=3,CD=MH=4,∠H=∠D=90°,然后利用勾股定理可计算出MP=5;(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,利用两点之间线段最短可得点F即为所求,过点E作EN⊥AD,垂足为N,则AM=AD﹣MP﹣PD=4,所以AM=AM′=4,再证明ME=MP=5,接着利用勾股定理计算出MN=3,所以NM′=11,然后证明△AFM′∽△NEM′,则可利用相似比计算出AF;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,易得QE=GR,而GM=GM′,于是MG+QE=M′R,利用两点之间线段最短可得此时MG+EQ最小,于是四边形MEQG的周长最小,在Rt△M′RN中,利用勾股定理计算出M′R=5,易得四边形MEQG的最小周长值是7+5.【分析】此题考查了几何图形中的折叠问题,涉及勾股定理,三角形相似以及最值问题。
九年级数学专题复习之《投影与视图》中考试题精选
![九年级数学专题复习之《投影与视图》中考试题精选](https://img.taocdn.com/s3/m/49bcfa928ad63186bceb19e8b8f67c1cfad6ee80.png)
九年级数学专题复习之《投影与视图》中考试题精选一.选择题(共10小题)1.如图,是某几何体的三视图,则该几何体是()A.长方体B.正方体C.三棱柱D.圆柱2.如图是由5个同样大小的小正方体摆成的几何体,现将第6个小正方体摆放在①、②、③哪个正方体前面,新几何体的主视图不发生变化()A.放在①前面主视图不改变B.放在②前面主视图不改变C.放在③前面主视图不改变D.放在①、②、③前面主视图都不改变3.由4个相同的正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.4.下面的几何体中,主视图为三角形的是()A.B.C.D.5.如图是由6个小正方体搭成的几何体,该几何体的俯视图是()A.B.C.D.6.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其左视图是()A.B.C.D.7.如图所示的立体图形的主视图是()A.B.C.D.8.如图几何体的左视图是()A.B.C.D.9.如图所示的几何体的主视图是()A.B.C.D.10.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.二.填空题(共10小题)11.在如图所示的几何体中,主视图是三角形的是.(填序号)12.如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为.13.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为.14.如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为.15.如图是某几何体的三视图,该几何体是.16.在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为.17.如图是一个无底帐篷的三视图,该帐篷的表面积是(结果保留π).18.小明用彩纸给爸爸做一顶生日帽,其左视图和俯视图如图所示,其中AB=24cm,AC =36cm,则至少需用彩纸cm2(接口处重叠面积不计).19.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为.20.一个几何体的三视图如图所示,则该几何体的表面积为.三.解答题(共10小题)21.如图(1)是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)图(2)是根据a,h的取值画出的几何体的主视图和俯视图,请在网格中画出该几何体的左视图.(2)已知h=4.求a的值和该几何体的表面积.22.用5个相同的正方体搭成如图所示的几何体.(1)分别画出从正面、左面、上面看到的几何体的形状图.(2)在这个几何体中,再添加一个相同的正方体组成一个新几何体,使从正面,左面看这个新几何体时,看到的形状图与原来相同,且从上面看到的形状图与原来不同.请画出从上面看到的这个新几何体的形状图.23.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)24.某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图1.(1)由三视图可知,密封纸盒的形状是;(2)根据该几何体的三视图,在图2中补全它的表面展开图;(3)请你根据图1中数据,计算这个密封纸盒的表面积.(结果保留根号)25.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8m,窗高CD=1.2m,并测得OE=0.8m,OF=3m,求围墙AB的高度.26.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.27.一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的测量数据,计算这个几何体的表面积.(结果保留π)28.如图是一个几何体的三视图[图中尺寸单位:cm).(1)由三视图可知,该几何体的形状是;(2)请你根据图中所示数据,计算出该几何体的表面积.29.双十一购物狂欢节,天猫“某玩具旗舰店”对乐高积木系列玩具将推出买一送一活动.根据积木数量的不同,厂家会订制不同型号的外包装盒.所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图1).长方体纸箱的长为a厘米,宽为b厘米,高为c厘米.(1)请用含有a,b,c的代数式表示制作长方体纸箱需要平方厘米纸板;(2)如图2为若干包装好的同一型号玩具堆成几何体的三视图,则组成这个几何体的玩具个数最少为个;(3)由于旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内(如图1),已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图3所示,现有甲,乙两种摆放方式,请分别计算甲,乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板面积更少,说明理由.30.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)。
中考数学总复习《投影与视图》专项测试卷-附带有参考答案
![中考数学总复习《投影与视图》专项测试卷-附带有参考答案](https://img.taocdn.com/s3/m/c79587540a1c59eef8c75fbfc77da26925c596a1.png)
中考数学总复习《投影与视图》专项测试卷-附带有参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.四棱柱D.正方体2.如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.3.如图,一个由6个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是( )A.主视图的面积为6B.左视图的面积为2C.俯视图的面积为4D.俯视图的面积为34.下列四个几何体中,主视图与左视图相同的几何体有( )A.1个B.2个C.3个D.4个5.如图,该几何体是由7个大小相同,棱长为1的小正方形搭成,关于该几何体的下列说法正确的是( )A.主视图的面积为4B.左视图的面积为5C.俯视图的面积为5D.三种视图的面积都是56.下列几何体中,主视图是矩形,俯视图是圆的几何体是( )A.B.C.D.7.下面四个几何体中,主视图与俯视图不同的共有( )A.1个B.2个C.3个D.4个8.如图所示,该几何体的主视图为( )A.B.C.D.二、填空题(共5题,共15分)9.如图所示是一个几何体的表面展开图,则该几何体的体积为.10.一个几何体的表面展开图如图所示,则这个几何体是.11.下图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中数据计算这个几何体的侧面积是.12.如图所示为一个长方体,则该几何体主视图的面积为cm2.13.有底面为正方形的四棱柱形容器A和圆柱形容器B,容器材质相同,厚度忽略不计.已知它们的主视图是完全相同的矩形,先将B容器盛满水,再将水全部倒入A容器中,则A容器中水的情况是(填“溢出”“刚好装满”或“未装满”).三、解答题(共3题,共45分)14.一个几何体的三视图如图,根据图示的数据计算该几何体的体积(结果保留π).15.如图是一个几何体的三视图.(1) 写出这个几何体的名称;(2) 根据图中所示数据,求这个几何体的表面积;(3) 若一只蚂蚁要从这个几何体上的点B出发,沿表面爬到AC的中点D处,请你求出最短路程.16.某天,当太阳移动到屋顶斜上方时,太阳光线EF与地面成60∘角,房屋的窗户AB的高为1.5m,现要在窗户外面的上方安装一个水平遮阳篷AC,当AC的宽在什么范围时,太阳光这时不能直接射入室内?参考答案1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】24π10. 【答案】四棱锥11. 【答案】185πcm212. 【答案】2013. 【答案】未装满14. 【答案】12π.15. 【答案】(1) 圆锥.(2) 16π(平方厘米).(3) 3√3厘米.m16. 【答案】√32。
中考复习_投影与视图
![中考复习_投影与视图](https://img.taocdn.com/s3/m/9b8bc50179563c1ec5da713e.png)
投影与视图一、选择题1.(2011天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
2.(2011重庆綦江4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是【答案】C。
【考点】简单组合体的三视图。
【分析】俯视图是从上面看,圆锥看见的是圆和点,两个正方体看见的是两个正方形。
故选C。
3.(2011重庆潼南4分)下面四个几何体中,主视图与其它几何体的主视图不同的是【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形比较即可:A、主视图为长方形;B、主视图为长方形;C、主视图为两个相邻的三角形;D、主视图为长方形。
故选C。
4.(2011浙江舟山、嘉兴3分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(A)两个外离的圆(B)两个外切的圆(C)两个相交的圆(D)两个内切的圆【答案】D。
【考点】圆与圆的位置关系,简单组合体的三视图。
【分析】观察图形可知,两球都与水平线相切,所以,几何体的左视图为相内切的两圆。
故选D。
5.(2011浙江温州4分)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是【答案】A。
【考点】简单组合体的三视图。
【分析】主视图是从正面看,圆柱从正面看是两个圆柱,看到两个长方形。
故选A。
6.(2011浙江绍兴4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是【答案】D。
【考点】简单组合体的三视图。
【分析】从左面看易得第一层有1个正方形,第二层左边有2个正方形,右边有1个正方形。
故选D。
7.(2011浙江金华、丽水3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是A、6B、5C、4D、3【答案】B。
中考数学 投影与视图(含中考真题解析)
![中考数学 投影与视图(含中考真题解析)](https://img.taocdn.com/s3/m/8c6c45120b1c59eef8c7b4b6.png)
投影与视图☞解读考点☞2年中考1.(北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.3.(柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C.考点:由三视图判断几何体.5.(梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(扬州)如图所示的物体的左视图为()A. B. C. D.【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.【答案】D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.9.(德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3【答案】B.考点:由三视图判断几何体.10.(南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B. C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB 方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m/s.试题解析:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴CE OEAM OM=,EG OEBM OM=,∴CE EGAM BM=,即234 1.213.24x xx x=--,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.考点:1.相似三角形的应用;2.中心投影.19.(兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.1.(绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.2.(吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B.【解析】试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B选项不是这个立体图形的三视图.故选B.考点:简单几何体的三视图.4.(十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A .B .C .D .正方体 长方体 球 圆锥【答案】B .考点:简单几何体的三视图.5.(宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )A 2cmB .2cmC .26cm πD .23cm π 【答案】A . 【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm ,高为3cm ,∴根据勾cm .∴侧面积=()2112r l 21cm 22ππ⋅⋅=⨯⨯.故选A .考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理.6.(湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3.【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.考点:简单组合体的三视图。
2023年中考数学复习考点一遍过——投影与视图附答案
![2023年中考数学复习考点一遍过——投影与视图附答案](https://img.taocdn.com/s3/m/5a6d748564ce0508763231126edb6f1aff007117.png)
2023年中考数学复习考点一遍过——投影与视图附答案一、单选题(每题3分,共30分)1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.2.如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥3.如图所示的几何体,其主视图是()A.B.C.D.4.如图是由5个完全相同的小正方体摆成的几何体,则这个几何体俯视图是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm光源,到屏幕的距离为40cm,且幻灯片中图形的高度为8cm,则屏幕上图形的高度为()A.8cm B.12cm C.16cm D.24cm7.如图所示是由5个完全相同的小正方体搭成的几何体,如果将小正方体B放到小正方体A的正上方,则它的()A.左视图会发生改变,其他视图不变B.俯视图会发生改变,其他视图不变C.主视图会发生改变,其他视图不变D.三种视图都会发生改变8.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.9.如图,甲、乙、丙三个几何体均由四个大小相同的正方体组合而成,则下列说法错误的是()A.甲与乙的主视图不同,左视图与俯视图都相同B.甲与丙的主视图不相同,左视图与俯视图都不相同C.甲与丙的主视图与俯视图相同,左视图不相同D.甲、乙和丙的俯视图都相同10.如图,图2是图1长方体的三视图,若用S表示面积,S主视图=a2,S左视图=2a2+a,则S俯视图=()A.a2+a B.2a2C.a2+2a+1D.2a2+a二、填空题(每空3分,共15分)11.台灯照射文具盒所形成的影子属于投影.(填“平行”或“中心”)12.已知同一时刻物体的高与影子的长成正比例.身高1.68m的小明的影子长为0.84m,这时测得一棵树的影长为4m,则这棵树的高为m.13.如图是一个几何体的三视图,则该几何体的体积为.14.如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为。
中考数学复习 《视图与投影》练习题含答案
![中考数学复习 《视图与投影》练习题含答案](https://img.taocdn.com/s3/m/f25e4fcb846a561252d380eb6294dd88d0d23dcd.png)
中考数学复习视图与投影一、选择题1.正方形的正投影不可能是( D )A.线段B.矩形C.正方形D.梯形2.如图由7个小正方体组合而成的几何体,它的主视图是( A )3.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.264.将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG5.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)( B )A.40πcm2B.65π cm2C.80π cm2D.105π cm2【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8 cm,底面半径为10÷2=5(cm),故表面积=πrl+πr2=π×5×8+π×52=65π(cm2).故选B.6.如图是几何体的俯视图,小正方形内所表示数字为该位置小正方体的个数,则该几何体的主视图是( B )二、填空题7.某几何体的主视图和左视图如图所示,则该几何体可能是__圆柱体__.8.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__相同__.(填“相同”“不一定相同”或“不相同”)9.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__个.【解析】综合三视图,可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5(个).10.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为__4__ cm.【解析】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴l=2r,∴侧面积S =πrl=2πr2=162π,解得r=4,l=42,∴圆锥的高h=4 cm.侧三、解答题11.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,求树的高度.解:4 m12.如图是一张铁皮.(单位:m)(1)计算该铁皮的表面积;(2)此铁皮能否做成长方体的盒子?若能,画出它的几何图形,并求出它的体积;若不能,说明理由.解:(1)22 m2(2)能够,图略,6 m313.根据三视图求几何体的表面积,并画出物体的展开图.解:由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成,物体的展开图如图.圆锥、圆柱底面半径为r =5,由勾股定理得圆锥母线长R =52,S 圆锥表面积=12lR =12×10π×52=252π,∴S 表面积=π×52+10π×20+252π=225π+252π=(225+252)π14.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.解:(1)圆锥(2)S 表=S 底+S 侧=π(42)2+π×2×6=16π(cm 2) (3)3 3 cm15.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.解:由三视图可知,密封罐的形状是正六棱柱(如图①),密封罐的高为50,底面正六边形的直径为100,边长为50,图②是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin60°=75003+15000。
中考数学总复习《投影与视图》专项提升训练题-附答案
![中考数学总复习《投影与视图》专项提升训练题-附答案](https://img.taocdn.com/s3/m/47e579bebb0d4a7302768e9951e79b8968026802.png)
中考数学总复习《投影与视图》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.2.(2023·衡阳)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从左面看到的图形的是()A.B.C.D.3.(2023·烟台)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.4.(2023·苏州)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能...是()A.长方体B.正方体C.圆柱D.三棱锥5.(2023·天津市)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(2023·温州)截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A.B.C.D.7.(2023·绍兴)由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.8.(2023·台州)如图是由5个相同的正方体搭成的立体图形,其主视图是().A.B.C.D.9.(2023·宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.10.(2023·嘉兴)如图的几何体由3个同样大小的正方体搭成,它的俯视图是()A.B.C.D.11.(2023·金华)某物体如图所示,其俯视图是()A.B.C.D.12.(2023·泸州)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱13.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.14.(2023·丽水)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体,它的主视图是()A.B.C.D.15.(2023·随州)如图是一个放在水平桌面上的圆柱体,该几何体的三视图中完全相同的是()A.主视图和俯视图B.左视图和俯视图C.主视图和左视图D.三个视图均相同16.(2023·武汉)如图是由4个相同的小正方体组成的几何体,它的左视图是()A.B.C.D.17.(2023·广安)如图,由5个大小相同的小正方体搭成的几何体,它的俯视图是()A.B.C.D.18.(2023·眉山)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6 B.9 C.10 D.14 19.(2023·遂宁)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是()A.正方体B.圆锥C.圆柱D.四棱锥20.(2023·连云)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.21.(2023·凉山)如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.22.(2023·自贡)如图中六棱柱的左视图是()A.B.C.D.23.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.二、填空题24.(2023·成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.参考答案一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解析】【解答】A、∵不是几何体的主视图,∴A不符合题意;B、∵不是几何体的主视图,∴B不符合题意;C、∵是几何体的主视图,∴C符合题意;D、∵不是几何体的主视图,∴D不符合题意;故答案为:C.【分析】利用三视图的定义逐项判断即可。
2023年中考数学一轮复习:投影与视图(含解析)
![2023年中考数学一轮复习:投影与视图(含解析)](https://img.taocdn.com/s3/m/0ca884ad8662caaedd3383c4bb4cf7ec4afeb61a.png)
2023年中考数学一轮复习:投影与视图一、单选题1.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是()A.B.C.D.2.如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是()A.主视图不变B.俯视图改变C.左视图不变D.以上三种视图都改变3.两个完全相同的长方体,按如图方式摆放,其主视图为()A.B.C.D.二、填空题4.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用个正方体,最多需用个正方体;5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.6.如图所示,水平放置的长方体的底面是长为4 cm、宽为2 cm的长方形,它的主视图的面积为12 2cm,则长方体的体积等于3cm.三、综合题7.下面图(1),图(2)分别是两种不同情形下旗杆和木杆的影子.(1)哪个图反映了阳光下的情形?(2)若同一时刻阳光下,木杆的影子长为0.8米,旗杆的影子长为7.2米,木杆的高为1.5米,求旗杆的高度.8.如图是由10个同样大小的小正方体搭成的物体,(1)请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.9.如图是小明用10块棱长都为3cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.10.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)11.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=,b=;(2)先化简,再求值:()()2223252ab a b ab a ab⎡⎤------⎣⎦.12.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.13.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.14.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m.15.如图,在平整的地面上,用10个棱长都为2cm的小正方体堆成一个几何体.(1)画出这个几何体的三视图;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.16.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数. 17.如图,是由6个大小相同的小正方体块搭建的几何体,其中每个小正方体的棱长为l厘米.(1)如果在这个几何体上再添加一些小立方体块,并保持俯视图和左视图不变,最多可以再添加个小立方块.(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.晚上,小亮在广场乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯P照射下的影子BC(请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m=,测得小亮影长2BC m=,小亮与灯杆的距离13BO m=,请求出灯杆的高PO.19.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无.盖.纸盒.操作探究:(1)若准备制作一个无盖..的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖..正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖..正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无.盖.长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高以及底面积,当小正方形边长为4cm时,求纸盒的容积.20.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)21.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加个正方体纸盒.22.阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A.6.5米B.5.75米C.6.05米D.7.25米(4)你能计算出丁树的高度吗?试试看.23.如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为 (cm)x ,折成的长方体盒子的容积为 ()3cm V ,直接写出用只含字母x 的式子表示这个盒子的高为 cm ,底面积为 2cm ,盒子的容积 V 为3cm ,(2)为探究盒子的体积与剪去的小正方形的边长 x 之间的关系,小明列表分析:填空:①m = , n = ;②由表格中的数据观察可知当 x 的值逐渐增大时, V 的值 .(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)24.如图,A 、B 、C 分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.(1)请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.(2)若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.25.测量金字塔高度:如图1,金字塔是正四棱锥 S ABCD -,点O是正方形 ABCD 的中心 SO 垂直于地面,是正四棱锥 S ABCD - 的高,泰勒斯借助太阳光.测量金字塔影子 PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 S ABCD - 表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 ABCD 的边长为 80m ,金字塔甲的影子是 50m PBC PC PB ==, ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.(2)测量乙金字塔高度:如图1,乙金字塔底座正方形 ABCD 边长为 80m ,金字塔乙的影子是PBC , 75PCB PC ∠=︒=, ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.答案解析部分1.【答案】B【解析】【解答】将A、C、D折叠,发现都不能合成切口,只有B选项折叠后两个剪去的三角形与另一个剪去的三角形交于一点,与题目中的题设一致,故答案为:B.【分析】利用正方体的展开图定义和特征逐项判断即可。
投影与视图中考考题目汇总
![投影与视图中考考题目汇总](https://img.taocdn.com/s3/m/fbbb421d3968011ca30091bc.png)
投影与视图中考考题汇总1.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .32.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( )A .2πB .12π C . 4πD .8π3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( ).4.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )5.如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是 ( )6.一个几何体的主视图、左视图、俯视图完全相同,它一定是 (A)圆柱(B )圆锥第12题图42 2 4左视图右视图 俯视图ABD C(C)球体(D)长方体7.如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A. 3个B. 4个C. 5个D. 6个8.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()9.下列几何体:其中,左视图是平等四边形的有()A.4个B.3个C. 2个D.1个`10.如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3个B.4个C.5个D.6个11.从不同方向看一只茶壶,你认为是俯视效果图的是()(第8题)A B CD(第4题图)12.如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .23B .3C .2D .113.如图所示的物体的府视图是14.如下图,下列几何体的俯视图是右面所示图形的是( )15.由5个相同的正方体搭成的几何体如图所示,则它的左视图是( )A. B. C. D.主视方向16.下列四个几何体中,主视图是三角形的是( )17.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )主视方向A. B. C. D. (第4题)A.B. C. D.18.如图,下列水平放置的几何体中,主视图不是..长方形的是( )19.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆(D )两个内切的圆20.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .321.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).22.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是A .B .C .D .23.如图3,是由四个相同的小正方形组成的立体图形,它的左视图是( )21 1 1水平面主视方向(第5题)A .B .C .D .24.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1B .2C .3D .425.下列所给的几何体中,主视图是三角形的是( )26.右图是一个几何体的三视图,则这个几何体是俯视图左视图主视图A .圆锥B .圆柱C .长方体D . 球体 27.如图,是某几何体的三视图及相关数据,则下面判断正确的是A .a c >B .b c >C .2224a b c += D .222a b c +=图3主视方向A B CD正面A .B .C .D .28.如图,空心圆柱的左视图是( )29.如图所示的几何体的俯视图是30.由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( )A .18B .19C .20D .2131.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是12213ABCD32.如图所示的几何体的正视图是( )主视图 俯视图ac2b第10题33.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )A .B .C .D .34.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A. B. C. D. 图甲 图乙 第3题图 35.如图所示的几何体的主视图是( )A. B. C. D.36.下列水平放置的几何体中,俯视图是矩形的是37.由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是A .B.C.D.(第6题图)38.如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是39.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( ) A .66 B .48 C .48236 D .5740.如图所示,下列几何体中主视图、左视图、俯视图都相同的是41右图是某物体的直观图,它的俯视图是A .B .C .D .A BCD42.如图(1)所示的几何体的俯视图是43.如图所示的几何体的主视图是( )A .B .C .D .44.一个几何体的三视图如图所示,则这个几何体是主视图 左视图 俯视图(第4题图)(A )圆柱 (B )三棱锥 (C )球 (D )圆锥 45.如图是一个几何体的实物图,则其主视图是46.有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块47.如图所示的几何体的左视图是( )图2主视图左视图俯视图图DCBA48.下面四个几何体中,俯视图为四边形的是49.一个几何体的三视图如图所示,那么这个几何体是()50.已知某几何体的三个视图(如图),此几何体是( )A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱51.如图是由五个相同的小正方体搭成的几何体,它的主视图是()52.如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是6题图A B C D第5题图A CB D正面A B C DA.B.C. D(第10题)53.下图是五个相同的小正方体搭成的几何体,其左视图是()A. B.C.D.54.下面四个几何体中,主视图是四边形的几何体有圆锥圆柱球正方体A1个B2个C3个D4个55.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.56.一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥57.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为A.8cm B.20cm C.3.2 cm D.10cm左视图俯视图主视图58. 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是( ).A.越来越小B.越来越大C.大小不变D.不能确定59.一个圆锥体按如图所示摆放,它的主视图是( ).60.如图是正方体的展开图,则原正方体相对 两个面上的数字之和的最小值的是 .61.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个62.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .63.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个.主视图 左视图64. 5个棱长为1的正方体组成如图5的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位)(2)画出该几何体的主视图和左视图65.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为66.图(十一)为一直角柱,其中两底面为全等的梯形,其面积和为16;四个侧面均为长方形,其面积和为45.若此直角柱的体积为24,则所有边的长度和为何?正面图5A.30 B.36 C.42 D.48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影与视图中考考题目汇总
投影与视图中考考题汇总
1.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()
A.6 B.5 C.4 D.3
2.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为()
A.2πB.1
2
πC.4πD.8π
3.
如图所示,下列几何体中主视图、左视图、俯视图都
第
2 2
左右
俯
4.在下列几何体中,主视图、左视图与俯视图都是相同的
圆,该几何体是 ( )
5.如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是 ( )
6.一个几何体的主视图、左视图、俯视图完全相同,它一定是
(A)圆柱 (B )圆锥 (C )球体 (D )长方体
7.如图,是有几个相同的小正方体搭成的几何体的三种
A
B
D
C
视图,则搭成这个几何体的小正方体的个数是()
A. 3个
B. 4个
C. 5个
D. 6个
(第8题)
8.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()
9.下列几何体:
A.4个
B.3个
C. 2个
D.1个`
10.如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()
A .3个
B .4个
C . 5个
D .6个
11.从不同方向看一只茶壶,你认为是俯视效果图的是( )
12.如图是一个正六棱柱的主视图和左视图,则图中的a
=( )
A .2
3 B
.3
C .2
D .1
13.如图所示的物体的府视图是
14.如下图,下列几何体的俯视图是右面所示图形的是( )
A
B
C
D
(第4
15.由5个相同的正方体搭成的几何体如图所示,则它的
左视图是( )
A. B. C. D.
主视方向
16.下列四个几何体中,主视图是三角形的是( )
17.如图所示的物体由两个紧靠在一起的圆柱体组成,它
的主视图是( )
18.如图,下列水平放置的几何体中,主视图不是..
长方形的是( )
主视方向
A B C D (第
A B C D
19.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆 (D )两个内切的圆
20.如图是六个棱长为1的立方块组成的一个几何体,
其俯视图的面积是( )
A .6
B .5
C .4
D .3 21.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( )
.
22.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是
主视方向
(第5题)
A .
B
C .
D .
A .
B .
C .
D .
23.如图3,是由四个相同的小正方形组成的立体图形,
它的左视图是( )
24.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1 B .2 C .
3
D .
4
25.下列所给的几何体中,主视图是三角形的是( )
26.右图是一个几何体的三视图,则这个几何体是
图
主视方向
A B C D
2 1 1 1 正面
俯视图
左视图
主视图
A .圆锥
B .圆柱
C .长方体
D . 球体
27.如图,是某几何体的三视图及相关数据,则下面判断
正确的是 A .a c
> B .b c >
C .
222
4a b c +=
D .2
22
a
b c +=
28.如图,空心圆柱的左视图是( )
29.如图所示的几何体的俯视图是
a c
2
第
30.由n 个相同的小正方体堆成的几何体,其视图如下所
示,则n 的最大值是( ) A .18 B .19 C .20 D .21
31.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是
1221
3
A B C D
32.如图所示的几何体的正视图是( )
33.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )
A .
B. C. D.
(第6题图) 主俯
A.B.C.
D.
34.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().
A. B. C. D. 图甲图乙
第3题图
35.如图所示的几何体的主视图是()
A. B. C. D.
36.下列水平放置的几何体中,俯视图是矩形的是
37.由四个相同的小正方体搭建了一个积木,它的三视图
如右图所示,则这个积木可能是
38.如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是
39.一个长方体的三视图如图所示,若其俯视图为正方
形,则这个长方体的表面积为( )
A .66
B .48
C .48
236
D .57
A
B C D
40.如图所示,下列几何体中主视图、左视图、俯视图都
41右图是某物体的直观图,它的俯视图是
A.B.C.D.42.如图(1)所示的几何体的俯视图是
43.如图所示的几何体的主视图是()
A .
B .
C .
D .
44.一个几何体的三视图如图所示,则这个几何体是
主视图 左视图 俯视图
(第4题图)
(A )圆柱 (B )三棱锥 (C )球
(D )圆锥
45.如图是一个几何体的实物图,则其主视图是
46.有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有
A.3块
B.4块
C.6块
D.9块
47.如图所示的几何体的左视图是( ) 图主视
左视俯视图
D C B A
48.下面四个几何体中,俯视图为四边形的是
49.一个几何体的三视图如图所示,那么这个几何体是
( )
50.已知某几何体的三个视图(如图),此几何体是(
)
A.正三棱柱
B. 三棱锥
C. 圆锥
D. 圆柱
51.如图是由五个相同的小正方体搭成的几何体,它的主
视图是( ) A
B A . B .
C . D
(第10题)
52.如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是
53.下图是五个相同的小正方体搭成的几何体,其左视图是()
A
.
B.C.
D.
54.下面四个几何体中,主视图是四边形的几何体有
圆锥圆柱球正方体
A1个B2个C3个D4个
6题图
A C
第5
A C
B D
正
55.如图是几个小立方块所搭的几何体俯视图,小正方形
中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()
A.B.C.D.
56.一个几何体的三视图如下图所示,这个几何体是
A.球
B. 圆柱
C.长方体
D.圆锥
57.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为
A.8cm B.20cm C.3.2 cm D.10cm
58. 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,
左视俯视
主
圆形阴影的大心的变化情况是( ).
A.越来越小
B.越来越大
C.大小不变
D.不能确定
59.一个圆锥体按如图所示摆放,它的主视图是( ).
60.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的
.
是
61.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个
62.如图是由若干个大小相同的小正方体堆砌而成的几
何体,那么其三种视图中面积最小的是
.
63.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有个.
主视图左视图64. 5个棱长为1的正方体组成如图5的几何体.
(1)该几何体的体积是(立方单位),表面积是(平方单位)
(2)画出该几何体的主视图和左视图
65.如图,立方体的六个面上标着连续的整数,若相对的
正
两个面上所标之数的和相等,则这六个数的和为
66.图(十一)为一直角柱,其中两底面为全等的梯形,其面积和为16;四个侧面均为长方形,其面积和为45.若此直角柱的体积为24,则所有边的长度和为何?
A.30 B.36 C.42 D.48。