函数的奇偶性.ppt
合集下载
高一数学函数奇偶性的性质.ppt
![高一数学函数奇偶性的性质.ppt](https://img.taocdn.com/s3/m/089fb87f580102020740be1e650e52ea5518ceeb.png)
时,f (x) 2x ,求 f ( 1 ) 的值.
2
f (1) 5
2
例4 已知f(x)是定义在R上的偶函数,且在
( , 0] 上是增函数,f(-2)=0,求不等式
x f (x)0的解集.
( 2 ,0 ) (2 , )
作业: P39习题1.3A组:6
B组:3
理论迁移
例1 已知f(x)是奇函数,且当 x 0时,
f (x)x2 3x ,求x 当0 时f(x)的解析
式.
f(x)x23x(x0)
例2 设函数 f(x)2x2mx3,已知 f (x 1) 是 偶函数,求实数m的值.
m=-4
例3 已知f(x)是定义在R上的奇函数,且对任
意实数x都有 f(x3)f(x)0,若当x[3,2]
问题提出
1.奇函数、偶函数的定义分别是什么?
2.奇函数和偶函数的定义域、图象分别有 何特征?
3.函数的奇偶性有那些基本性质?
知识探究(一)
思考1:是否存在函数f(x)既是奇函数又是偶 函数?若存在,这样的函数有何特征?
f(x)=0 思考2:一个函数就奇偶性而言有哪几种可能 情形?
思考3:若f(x)是定义在R上的奇函数,那么 f(0)的值如何?
思考2:如果f(x)是定义在R上的任意一个函数, 那么f(x) + f(-x),f(x) - f(-x)奇偶性如 何?
f(x) + f(-x)是偶函数 f(x) - f(-x)是奇函数
思考3:二次函数 f(x)ax2bxc是偶函
数的条件是什么? 一次函数 f(x)kxb是奇函数的条
件是什么?
b=0
f(0)=0
思考4:如果函数f(x)具有奇偶性,a为非零常 数,那么函数af(x),f(ax)的奇偶性如何?
函数的奇偶性PPT精品课件
![函数的奇偶性PPT精品课件](https://img.taocdn.com/s3/m/174b116503020740be1e650e52ea551810a6c99c.png)
∴f(x)为非奇非偶函数
思考3:
在前面的几个函数中有的是奇函数,有的是偶函数,也有非奇非偶函数。那么有没有这样的函数,它既是奇函数又是偶函数呢?
有。例如:函数 f(x)=0
是不是只有这一个呢?若不是,请举例说明。
x
y
0
1
f(x)=0
-1
奇函数 偶函数 既奇又偶函数 非奇非偶函数
01
根据奇偶性, 函数可划分为四类:
例1. 判断下列函数的奇偶性
(1) f(x)=x3+x (2) f(x)=3x4+6x2 +a
解: 定义域为R ∵f(-x)=(-x)3+(-x) = -x3-x = -(x3+x) 即 f(-x)= - f(x) ∴f(x)为奇函数
函数的奇偶性
点此播放讲课视频
在日常生活中,有非常多的轴对称现象,如人与镜中的影关于镜面对称,请同学们举几个例子。
03
而我们所学习的函数图像也有类似的 对称现象,请看下面的函数图像。
除了轴对称外,有些是关于某点对称,如风扇的叶子,如图: 它关于什么对称?
04
点此播放讲课视频
观察下面两组图像,它们是否也有对称性呢?
x
y
O
1
-1
f(x)=x2(1)Fra bibliotek(2)y
x
O
x0
-x0
例如:对于函数f(x)=x3
有 f(-1)=(-1)3=-1 f(1)=1
f(-2)=(-2)3=-8 f (2)=8
f(-x)=(-x)3=-x3
f(-1)= - f(1) f(-2)= - f(2) f(-x)= - f(x)
-x
结论:当自变量x任取定义域 中的一对相反数时,对应的 函数值相等,即f(-x)=f(x)
思考3:
在前面的几个函数中有的是奇函数,有的是偶函数,也有非奇非偶函数。那么有没有这样的函数,它既是奇函数又是偶函数呢?
有。例如:函数 f(x)=0
是不是只有这一个呢?若不是,请举例说明。
x
y
0
1
f(x)=0
-1
奇函数 偶函数 既奇又偶函数 非奇非偶函数
01
根据奇偶性, 函数可划分为四类:
例1. 判断下列函数的奇偶性
(1) f(x)=x3+x (2) f(x)=3x4+6x2 +a
解: 定义域为R ∵f(-x)=(-x)3+(-x) = -x3-x = -(x3+x) 即 f(-x)= - f(x) ∴f(x)为奇函数
函数的奇偶性
点此播放讲课视频
在日常生活中,有非常多的轴对称现象,如人与镜中的影关于镜面对称,请同学们举几个例子。
03
而我们所学习的函数图像也有类似的 对称现象,请看下面的函数图像。
除了轴对称外,有些是关于某点对称,如风扇的叶子,如图: 它关于什么对称?
04
点此播放讲课视频
观察下面两组图像,它们是否也有对称性呢?
x
y
O
1
-1
f(x)=x2(1)Fra bibliotek(2)y
x
O
x0
-x0
例如:对于函数f(x)=x3
有 f(-1)=(-1)3=-1 f(1)=1
f(-2)=(-2)3=-8 f (2)=8
f(-x)=(-x)3=-x3
f(-1)= - f(1) f(-2)= - f(2) f(-x)= - f(x)
-x
结论:当自变量x任取定义域 中的一对相反数时,对应的 函数值相等,即f(-x)=f(x)
函数的奇偶性ppt
![函数的奇偶性ppt](https://img.taocdn.com/s3/m/8cc1aa8864ce0508763231126edb6f1aff0071a6.png)
特点
奇函数的图像关于原点对称,即对于任意一个x ,都有$f(-x)=-f(x)$。
3
示例
常见的奇函数包括正弦函数、余弦函数等。
偶函数
定义
如果对于函数f(x)的定义域内 任意一个x,都有f(-x)=f(x), 那么函数f(x)就称为偶函数。
特点ห้องสมุดไป่ตู้
偶函数的图像关于y轴对称,即对 于任意一个x,都有$f(-x)=f(x)$ 。
奇函数与偶函数的图像特点
奇函数图像特点
奇函数的图像关于原点对称,即以原点为中心,在左右两侧扩展。
偶函数图像特点
偶函数的图像关于y轴对称,即以y轴为中心,在上下两侧扩展。
如何由函数奇偶性判断函数图像
判断函数表达式
根据函数表达式可以初步判断其奇偶性,从而推断其图像的大致特点。
判断定义域
对于具有奇偶性的函数,其定义域通常是关于原点对称的,因此可以根据定义域 的对称性进一步判断。
对称中心
有些函数在其定义域内具有对称中心,可以根据对称中心,利用奇偶性进行 函数值的求法。
利用奇偶性和周期性求函数值
周期性
有些函数在其定义域内具有周期性,可以根据函数的周期,利用奇偶性进行函数 值的求法。
半周期
对于具有周期性的函数,其半周期内的函数值也可以利用奇偶性进行求法。
06
利用奇偶性进行函数最值求解
利用奇偶性和周期性求解函数最值
奇偶性+周期性
对于具有奇偶性和周期性的函数,可以充分利用周期性和奇偶性来求解函数的最值。例如,对于一个以2π为 周期的周期函数,其在一个周期内的图像关于原点对称,可以利用这个性质和函数的周期性来找到函数的最小 值和最大值。
奇偶性+周期性+复合函数
奇函数的图像关于原点对称,即对于任意一个x ,都有$f(-x)=-f(x)$。
3
示例
常见的奇函数包括正弦函数、余弦函数等。
偶函数
定义
如果对于函数f(x)的定义域内 任意一个x,都有f(-x)=f(x), 那么函数f(x)就称为偶函数。
特点ห้องสมุดไป่ตู้
偶函数的图像关于y轴对称,即对 于任意一个x,都有$f(-x)=f(x)$ 。
奇函数与偶函数的图像特点
奇函数图像特点
奇函数的图像关于原点对称,即以原点为中心,在左右两侧扩展。
偶函数图像特点
偶函数的图像关于y轴对称,即以y轴为中心,在上下两侧扩展。
如何由函数奇偶性判断函数图像
判断函数表达式
根据函数表达式可以初步判断其奇偶性,从而推断其图像的大致特点。
判断定义域
对于具有奇偶性的函数,其定义域通常是关于原点对称的,因此可以根据定义域 的对称性进一步判断。
对称中心
有些函数在其定义域内具有对称中心,可以根据对称中心,利用奇偶性进行 函数值的求法。
利用奇偶性和周期性求函数值
周期性
有些函数在其定义域内具有周期性,可以根据函数的周期,利用奇偶性进行函数 值的求法。
半周期
对于具有周期性的函数,其半周期内的函数值也可以利用奇偶性进行求法。
06
利用奇偶性进行函数最值求解
利用奇偶性和周期性求解函数最值
奇偶性+周期性
对于具有奇偶性和周期性的函数,可以充分利用周期性和奇偶性来求解函数的最值。例如,对于一个以2π为 周期的周期函数,其在一个周期内的图像关于原点对称,可以利用这个性质和函数的周期性来找到函数的最小 值和最大值。
奇偶性+周期性+复合函数
函数的奇偶性对称性周期性课件共19张PPT
![函数的奇偶性对称性周期性课件共19张PPT](https://img.taocdn.com/s3/m/6b99a8d7cd22bcd126fff705cc17552707225e9a.png)
(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!
函数的奇偶性ppt课件
![函数的奇偶性ppt课件](https://img.taocdn.com/s3/m/f9f3455953ea551810a6f524ccbff121dc36c515.png)
例4.1若函数f x ax21 bx 3x b是偶函数,定义域
a 1,2a,则实数a _3__,b _-_3_.
2已知函数f x x 1x a为奇函数,则实数a _-_1_.
x
例5.已知函数y=f(x) 在R上是奇函数,而且在 (0,+∞)上是增函数,判断y=f(x)在(-∞,0)的单调 性,并证明你的判断.
观察函数f(x)=x和f(x)=1/x的图像回答问题
(1)这两个函数图象有什么共同特征? (2)填函数值对应表
x f(x)=x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x
-3 -2 -1 1 2 3
f(x)=
1 x
13
1 2
-1
1
11 23
2.奇函数的概念
如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
练习:已知函数y=f(x)是偶函数,它在y 轴右边的图象如图,画出y=f(x)在 y轴左 边的图象.
解:
y
O
x
变式:若f(x)是奇函数呢?
例2. 判断下列函数的奇偶性
(1) y x2(2 x 3);
2 f x x3 2x
3 f x 2x4 3x2
4 f x x 2
(5)
f
x
x x
1, 1,
x x
0 0
注:奇、偶函数的定义域一定关于原点对称,
若函数的定义域不关于原点对称,则不具有奇偶性。
判断函数奇偶性的两种方法: (1)定义法:
(2)图象法:
利用函数的奇偶性求解析式
课堂篇 究学习
例3. 已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,
函数的奇偶性课件(共15张PPT)
![函数的奇偶性课件(共15张PPT)](https://img.taocdn.com/s3/m/636d3701910ef12d2bf9e7ea.png)
图象关于原点中心对称
第9页,共15页。
三、知识应用,巩固提高
例1、判断下列函数奇偶性.
(1)f (x)x3
解:1) (该函数定义域 , 为 ) (
且对 x ( 于 , 任 ) ,都 意 x 有 (, ) 且 f( x ) ( x )3 x 3 f(x )
该函数是奇函数
( 2) f(x)2x21
问1:仔细观察这两个图,从对称的角度思考 指导观察,形成概念
课前学生利用几何画板制作两个函数图像
问2:从数值角度研究图像的这种特征,自变量与函数值之间有何规律?
通过取值
发现特征
第7页,共15页。
二、指导观察,形成概念
课前学生利用几何画板制作两个函数图像
问3:如何用符号语言来刻画?
该函数是非奇非偶函数 观察学生制作的两个图像思考以下问题:
一、设疑导入,观图激趣
四、归纳小结,布置作业
(2) 如果定义域没有关于原点对称,则函数肯定是 通过解析式给出严格证明 都有f(-x)=-f(x)成立,则称函数f(x)为奇函数.
定义域不关于原点对称的函 数都是非奇非偶函数
( 4) f(x)x1 三、知识应用,巩固提高
函数的奇偶性
第1页,共15页。
一、设疑导入,观图激趣
第2页,共15页。
故宫博物院
埃菲尔铁塔
第3页,共15页。
探讨数学中的美
Y
p2(-3,2)
o
p(3,2)
泰姬陵竣工于
1654年,是莫卧 儿王朝皇帝沙贾
问汗:为点皇P后关阿于姬x 曼轴·,芭y奴轴耗,巨原资点 所对造称。的如对今称这点座 奇坐迹标建是筑多已少成?为 印度的象征。
X
p3(-3,-2)
第9页,共15页。
三、知识应用,巩固提高
例1、判断下列函数奇偶性.
(1)f (x)x3
解:1) (该函数定义域 , 为 ) (
且对 x ( 于 , 任 ) ,都 意 x 有 (, ) 且 f( x ) ( x )3 x 3 f(x )
该函数是奇函数
( 2) f(x)2x21
问1:仔细观察这两个图,从对称的角度思考 指导观察,形成概念
课前学生利用几何画板制作两个函数图像
问2:从数值角度研究图像的这种特征,自变量与函数值之间有何规律?
通过取值
发现特征
第7页,共15页。
二、指导观察,形成概念
课前学生利用几何画板制作两个函数图像
问3:如何用符号语言来刻画?
该函数是非奇非偶函数 观察学生制作的两个图像思考以下问题:
一、设疑导入,观图激趣
四、归纳小结,布置作业
(2) 如果定义域没有关于原点对称,则函数肯定是 通过解析式给出严格证明 都有f(-x)=-f(x)成立,则称函数f(x)为奇函数.
定义域不关于原点对称的函 数都是非奇非偶函数
( 4) f(x)x1 三、知识应用,巩固提高
函数的奇偶性
第1页,共15页。
一、设疑导入,观图激趣
第2页,共15页。
故宫博物院
埃菲尔铁塔
第3页,共15页。
探讨数学中的美
Y
p2(-3,2)
o
p(3,2)
泰姬陵竣工于
1654年,是莫卧 儿王朝皇帝沙贾
问汗:为点皇P后关阿于姬x 曼轴·,芭y奴轴耗,巨原资点 所对造称。的如对今称这点座 奇坐迹标建是筑多已少成?为 印度的象征。
X
p3(-3,-2)
3.2.1 函数的奇偶性 课件(共26张PPT)(2024年)
![3.2.1 函数的奇偶性 课件(共26张PPT)(2024年)](https://img.taocdn.com/s3/m/de2215bbcf2f0066f5335a8102d276a2002960d2.png)
f(x)
g(x) f(x)+g(x) f(x)-g(x)
偶函数 偶函数 偶函数
f(x)g(x
)
f[g(x)]
注
意:f[g(x)]
偶函数 偶函数 偶函数 中,g(x)的
偶函数 奇函数 不能确定 不能确定 奇函数 偶函数 值域是f(x)
奇函数 偶函数 不能确定 不能确定 奇函数 偶函数 的定义域
奇函数 奇函数 奇函数
活动二:新知探究
偶函数的定义:
一般地,设函数 f(x)的定义域为 I ,如果∀x∈I,都
有-x∈I,且f(-x)=f(x), 那么函数 f(x)就叫做偶函数.
活动二:新知探究
偶函数的几点说明:
(1)偶函数的定义域必关于原点对称,即若 x 是定义域内的
一个值,则 –x 也一定在定义域内.
(2)“函数 f(x)为偶函数”是“函数 f(x)图象关于y轴对
奇函数 偶函数 奇函数 的子集.
活动二:新知探究
类比函数单调性,你能用符号语言精确地描述“函数图象
关于y轴对称”这一特征吗?
不妨取自变量的一些特殊值,观察相应函数值的情况
x
···
-3
-2
-1
0
1
2
3
···
f(x)=x²
···
9
4
1
0
1
4
9
···
g(x)=2-|x|
···
-1
0
1
2
1
0
-1
···
可以发现,当自变量取一对相反数时,相应的两个函数值相等.
称”的充要条件.
活动二:新知探究
1
探究:观察函数 f(x)=x和g(x)= 的图象,你能发现这两个函数
函数的奇偶性(数学教学课件)课件
![函数的奇偶性(数学教学课件)课件](https://img.taocdn.com/s3/m/9fc8f74c6d85ec3a87c24028915f804d2a16876a.png)
附录
奇函数举例
偶函数举例
数学符号标记
一些常见的奇函数示例及其图像。 一些常见的偶函数示例及其图像。 一些相关的数学符号和标记。
函数的奇偶性(数学教学 课件)ppt课件
本次课程将深入讲解函数的奇偶性概念及其应用。通过丰富的实例和图像, 我们将带您领略数学中的奥秘。
奇偶函数的定义
定义式
奇函数的定义和性质以及其与偶函数的关系。
函数图像
奇函数和偶函数的图像有什么特点,如何自行对称。
奇偶函数的性质
1
合成
如何通过奇函数和偶函数的合成得到一个新的函数。
奇阳偶阴
如何快速判断一个函数在正数和负数轴上的取值。
经典例题
1
解析式判断
看到一个函数的解析式,如何快速判断其是奇函数还是偶函数。
2
化简函数
如何通过奇偶性来化简给定函数。
总结
定义和性质
奇偶函数的基本概念和数学 性质。
判断方法
如何快速、有效地判断一个 函数的奇偶性。
应用场景
奇偶函数在数学和工数,偶数次幂的函数是偶函数。
3
积分
在奇函数或偶函数的范围内进行积分,得到什么样的结果。
如何判断函数的奇偶性
函数公式
如何看出一个函数的公式是奇函数还是偶函数。
图像判断
如何通过图像的对称性判断一个函数的奇偶性。
奇偶函数的应用
加减乘
如何通过奇函数和偶函数的性质来化简函数的加减 和乘积。
函数的奇偶性ppt课件
![函数的奇偶性ppt课件](https://img.taocdn.com/s3/m/71b9bc9b88eb172ded630b1c59eef8c75fbf95a1.png)
2.4.1函数的奇偶性
北师大版(2019)必修第一册
学习目录
PARENT CONFERENCE DIRECTORY
壹
学习目标
叁
题型突破
Learning Objectives
Breakthrough in question types
贰
探索新知
肆
当堂检测
Explore new knowledge
Classroom test
PART 01
学 习 目 标
01
学习目标
01
结合具体函数,了解奇偶性的概念和几何意义
02
掌握函数奇偶性的判断和证明方法
03
会用奇、偶函数图象的对称性解决简单问题
PART 02
探 索 新 知
02
探索新知
情境导学
(1)这些图形是什么对称图形?
(2)对称轴分别在哪里?
02
探索新知
情境导学
(1)这些图形是什么对称图形?
关于原点对称,那么它是奇函数,如果一个函数的图象关于y轴对称,那么它是偶函数.
2.若奇函数在x=0处有定义,则其图象一定过原点.
3.对于偶函数f(x),我们有f(x)=f(|x|)
02
探索新知
例2 根据定义,判断下列函数的奇偶性:
(1)f(x)= -2x5 ;
1
(3)h(x)= 2 ;
(2)g(x)=x4+2;
证明:根据函数关于点A(a,b)中心对称的定义,p(x,y)的对称点p′(x′,y′)有如
下等式
+′
2
= ,
+′
2
= .我们得到:x′=2a-x,y′=2b-y
北师大版(2019)必修第一册
学习目录
PARENT CONFERENCE DIRECTORY
壹
学习目标
叁
题型突破
Learning Objectives
Breakthrough in question types
贰
探索新知
肆
当堂检测
Explore new knowledge
Classroom test
PART 01
学 习 目 标
01
学习目标
01
结合具体函数,了解奇偶性的概念和几何意义
02
掌握函数奇偶性的判断和证明方法
03
会用奇、偶函数图象的对称性解决简单问题
PART 02
探 索 新 知
02
探索新知
情境导学
(1)这些图形是什么对称图形?
(2)对称轴分别在哪里?
02
探索新知
情境导学
(1)这些图形是什么对称图形?
关于原点对称,那么它是奇函数,如果一个函数的图象关于y轴对称,那么它是偶函数.
2.若奇函数在x=0处有定义,则其图象一定过原点.
3.对于偶函数f(x),我们有f(x)=f(|x|)
02
探索新知
例2 根据定义,判断下列函数的奇偶性:
(1)f(x)= -2x5 ;
1
(3)h(x)= 2 ;
(2)g(x)=x4+2;
证明:根据函数关于点A(a,b)中心对称的定义,p(x,y)的对称点p′(x′,y′)有如
下等式
+′
2
= ,
+′
2
= .我们得到:x′=2a-x,y′=2b-y
函数的奇偶性课件(共14张PPT)
![函数的奇偶性课件(共14张PPT)](https://img.taocdn.com/s3/m/f424cf2f6c175f0e7cd137e2.png)
y
则f (x) f (x) 2x
即2 f (x) 2x
2
即f (x) x
-2 o
2
x
故解集为:- 2,-1 0,1
-2
高中数学必修1同步辅导课程——函数的奇偶性
变式2:定义在R 上的函数 f (x), 对任意x, y R都有 f (x y) f (x) f ( y) 1, 且x 0时,f (x) 1, f (1) 2
f (x)单调递减,则f (1 m) f (m) 成立的 m 取值范围 是 ________。
高中数学必修1同步辅导课程——函数的奇偶性
例2:定义在 3,3 上的函数 f (x), g(x)分别为偶函数、
奇函数,图像如下,则不等式 f (x) 0的解集是:
g(x)
(_2_,_1_)__(_0_,1_) __(_2,_3_) 。
(1)求证:f (x)是R上的增函数; (2)解不等式: f (3x 1) 7; (3)求证:g(x) f (x) 1是奇函数。
高中数学必修1同步辅导课程——函数的奇偶性
课堂总结:
1:函数奇偶性的定义: “数”与“形”的特征
2:利用函数的奇偶性求值、求解析式
3:函数奇偶性与单调性的联系: “模拟图像”
题型三:奇偶性与单调性的联系:
例:已知函数 y f (x)(x 0)为奇函数,在 x 0,
上为单调增函数,且 f (1) 0 ,则不等式 f (2x 1) 0 解集为__________.
高中数学必修1同步辅导课程——函数的奇偶性
变式:定义在 2,2上的偶函数 f (x),当x 0 时,
高中数学必修1同步辅导课程——函数的奇偶性
函数的奇偶性(共22张PPT)
![函数的奇偶性(共22张PPT)](https://img.taocdn.com/s3/m/7db7c7b950e79b89680203d8ce2f0066f53364b0.png)
判断或证明函数奇偶性的基本步骤:
,且
,上则这的个函图数(叫像做偶。,函0数).
教材第39页,习题组,第3题;
(2)试讨论:奇函数和偶函数的定义域的特征.
y
f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1)
(1)函数具有奇偶性:定义域关于原点对称。
对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量
解:
y
相等
0
x
例3、已知函数y=f(x)是奇函数,它在y轴右边的图象如下图,
画出在y轴左边的图象.
y
相等
0
x
,则这个函数叫练奇函习数. :(1)已知函数y=f(x)是 ( ,0)(上0,的奇) 函数,它
在 上的(0图,像)如图所示,画出它在 偶函数定义:设函数
的定义域为 ,如果对定义域 内的任意一个 都有
函数的奇偶性是函数的整体性质;
3
(2)求函数y=f(x)在 从生活中这些图片中你感受到了什么
猜想 : f(-x) ____ f(x)
(0,上) 的函数
这些函数图像体有何共同特点呢?
解析式,在 (,0上) 呢? 定义域应该关于原点对称.
作出函数f(x)=x2图象,再观察表,你看出了什么?
1
如果一个函数的图象关于y轴对称,那么它的定义域应该有什么特点?
-2
(3) f(x)= 3
(4) f(x)=
偶函数定义:设函数
的定义域为 ,如果对定义域 内的任意一个 都有
f(-x)= - f(x)
作出函数f(x)=x2图象,再观察表,你看出了什么?
,且
,则这0个函数叫做偶2 函数. -1
函数的奇偶性(数学教学课件)课件
![函数的奇偶性(数学教学课件)课件](https://img.taocdn.com/s3/m/192a763f8f9951e79b89680203d8ce2f006665f3.png)
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
函数的的奇偶性PPT教学课件
![函数的的奇偶性PPT教学课件](https://img.taocdn.com/s3/m/5ffc911c770bf78a642954c5.png)
又∵f(x)在(-1,1)上为减函数, ∴
1-a>a2-1 -1<1-a<1 -1<a2-1<1,解得0<a<1.
(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m),可得g(|1m|)<g(|m|),
又当x≥0时,g(x)为减函数,得到
|1-m|≤2 |m|≤2
1 解之得-1≤m< 2
(4)f(x)= 1 x2 x2 1
.
x
11
(1)x x 定1 1
(x)2 1 x2 x2
义 域 为
x1 x
得x2 1
(
3 )
函
数
的
定
义
域
为
A
=
{
学点二 由奇偶性求函数解析式 设f(x)是定义在R上的奇函数,当x>0时,f(x)= x2 +x+1,求 函数解析式. 【分析】由奇函数的图象关于原点对称,找x≥0和x<0时解析 式间的联系.
(2)如果一个函数的定义域关于原点不对称,那么这个 函数既不是奇函数,也不是偶函数.
(3)定义域关于原点对称,满足f(-x)=-f(x)=f(x)的函数, 既是奇函数,又是偶函数,如f(x)=0,x∈R.
判断下列函数的奇偶性:
1
1
(1)f(x)=x+ (3)f(x)=x+
xx
;
1
;
(2)f(x)=x2+ x2 ;
|1-m|>|m|,.
1.在函数的奇偶性中应注意什么问题?
(1)对于函数奇偶性的理解
①函数的奇偶性与单调性的差异:函数的奇偶性是相对于函数 的整个定义域来说的,这一点与函数的单调性不同.从这个意 义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是 函数的“整体”性质,只有对函数定义域内的每一个值x,都 有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇(或偶)函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 一个函数是奇函数的充要条件是,它的图象是以坐标 原点为对称中心的中心对称图形; 一个函数是偶函数的充要条件是,它的图象是以y轴为 对称轴的轴对称图形。
课堂小结: 3、对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是 偶函数;是偶函数但不是奇函数;既是奇函数又是偶函数;既不是奇 函数也不是偶函数。
(1)
(2)
y g (x) 4 3 2 1 -3 -2 -1 -1 -2 -3 0 1 2 3 x
(2)
课堂小结:
1、一般地,如果对于函数f(x)定义域中的任意一个x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数; 如果对于函数定义域中的任意一个x,都有f(-x) =f(x) ,那 么函数f(x)就叫做偶函数。
如果对于函数f(x)定义域A中的任意一个x, 都有f(-x) =f(x) ,那么函数f(x)就叫做偶函数。 注意:(1)当 X∈A时,-X ∈A (定义域关于原点对称)
(2)f(-x) = f(x)
1 的图象, x 看看它具有怎样的对称性?
观察函数f(x)=
y
观察函数g(x)=x2的图 象,看看它具有怎样的 对称性?
y
g(x)=x2
o
x
o
x
关于原点成中心对称
关于y轴成轴对称
结论:
函数是奇函数 函数图象关于坐标原点对称
函数是偶函数
函数图象关于y轴对称
例 、判断下列函数的奇偶性:
(1) f(x)=x+x3+x5; (2) f(x)=x2+1;
(3) f(x)=x+1 ; (4) f(x)=x2 ,x∈[-1,2]
(5) f(x)=0
想一想:判断函数奇偶性的大体步骤分哪几步?
可分三步:
1、写出函数的定义域;
2、判断定义域是否关于原点对称; 3、根据f(-x)与f(x)的关系判断 奇偶性。
练习:P60 1、3
1、口答下列各题: (1) 函数f(x)=x是奇函数吗? (2)函数g(x)=2是奇函数还是偶函数? (3)如果y=h(x)是偶函数,当h(-1)=2时, h(1)的值是多少? (1)、 f(x)=x是奇函数
例 、判断下列函数的奇偶性:
(1) f(x)=x+x3+x5; (2) f(x)=x2+1;
(3) f(x)=x+1 ; (4) f(x)=x2 ,x∈[-1,2]
(5) f(x)=0 解:(3)函数f(x)=x+1的定义域为R,
当X∈R时, - X ∈R 又因为f(-x)=(-x)+1 = -(x-1) 而-f(x)= - x - 1
y
f (1) 1
1 f (2) 2Fra bibliotekf (1) 1
1 f ( 2) 2
o
x
1 f ( 3) 3
1 f (3) 3 ……
关于原点成中心对称
1 函数f ( x) 为奇函数 x
1 1 f ( x) f ( x) x x
观察函数g(x)=x2的 图象,看看它具有 怎样的对称性?
4、根据定义判断函数奇偶性的方法和步骤:
第一步,先写出函数的定义域; 第二步,判断函数的定义域是否关于原点对称,若不对称,则函数 既不是奇函数也不是偶函数;若是对称,进行第三步; 第三步,判断 f(-x)与f(x)的关系,若f(-x)= - f(x),则是奇函数,若 f(-x)=f(x),则是偶函数,若f(-x)= - f(x),且f(-x)=f(x),则既是奇函数又 是偶函数,若f(-x) ≠- f(x) ,且f(-x) ≠ f(x),则既不是奇函数也不是偶 函数。 作业:P60 2
(1) f(x)=x+x3+x5; (2) f(x)=x2+1;
(3) f(x)=x+1 ; (4) f(x)=x2 ,x∈[-1,2]
(5) f(x)=0 解:(2)函数f(x)= x2+1的定义域为R,
当X∈R时, - X ∈R 又因为f(-x)= (-x)2+1 = x2+1 = f(x) 所以,函数f(x)= x2+1是偶函数
o
x
……
g(-x) =(-x)2=x2=g(x) 关于y轴成轴对称 函数 g(x)=x2 为偶函 数
定义:
如果对于函数f(x)定义域A中的任意一个x,
都有f(-x) = - f(x) ,那么函数f(x)就叫做奇函数
注意:(1)当X∈A时, - X ∈A(定义域关于原点对称)
(2)f(-x) = - f(x)
y
g(x)=x2
由g(x)=x2求g(-1)、 g(1)、 g(-2)、 g(2)、 g(-3)、 g(3)的值,并思考 g(-x) 与g(x)有怎样的关系? g(-1)= (-1)2=1 g(1) =12=1
g(-2)= (-2)2=4、 g(2)= 22=4、 g(-3)= (-3)2=9、 g(3) = 32 =9、
(5) f(x)=0 解:(1)函数f(x)=x+x3+x5的定义域为R,
当X∈R时, - X ∈R 又因为f(-x)=(-x)+(-x)3+(-x)5 = - x - x 3- x 5 = -(x+x3+x5 ) =- f(x)
所以函数f(x)=x+x3+x5是奇函数。
例 、判断下列函数的奇偶性:
(2)、 g(x)=2是偶函数
(3)、 h(1)= h(-1)= 2
3、已知f(x)是奇函数, g(x)是偶函数,如图(1)、 (2)分别是他们 的局部图象,试求f(-2) ,g(1) ,并把这两个函数的图象补充完整。
y y 3 g (x) 4 3 2 1 -3 -2 -1 -1 -2 -3 0 1 2 3 x
所以f(-x) ≠ -f(x)且f(-x) ≠ f(x)
因此 函数f(x)= x+1既不是奇函数也不是偶函数。
例 、判断下列函数的奇偶性:
(1) f(x)=x+x3+x5; (2) f(x)=x2+1;
(3) f(x)=x+1 ; (4) f(x)=x2 ,x∈[-1,2]
解4) 因为2∈[-1,2],而-2 [-1,2] 所以函数f(x)= x2 ,x∈[-1,2] 既不是奇函数也不是偶函数。 5)函数f(x)= 0的定义域为R, 当X∈R时, - X ∈R 又因为f(-x)= 0, f(-x)= 0 所以f(-x) = -f(x)且f(-x) = f(x) 因此 函数f(x)= 0既是奇函数也是偶函数。
函数的奇偶性
授课人:王秀芹
1 的图象, x 看看它具有怎样的对称性?
观察函数f(x)=
y
观察函数g(x)=x2的图 象,看看它具有怎样的 对称性?
y
g(x)=x2
o
x
o
x
关于原点成中心对称
关于y轴成轴对称
1 观察函数f(x)= 1 的图象, 由f ( x) x ,求f (1), f (1), f (2), x 看看它具有怎样的对称性? f (2), f (3), f (3)的值,并思考 f ( x)与f ( x)有怎样的关系?
2
1 -4 -3 -2 -1 0 1 -1 -2 -3 2 3
f(x)
4 x
(1) f(-2)=- f(2)=-2
(2) g(1)=g(-1)=1
y y 3 2 1 -4 -3 -2 -1 0 1 -1 -2 -3 2 f(x) 3 4 x -3 -2 g (x) 4 3 2 1 -1 -1 -2 -3 0 1 2 3 x