实验1NdYAG固体激光器实验

合集下载

Nd_YAG固体脉冲激光器实验研究_王风丽

Nd_YAG固体脉冲激光器实验研究_王风丽

: A b s t r a c t h e e x e r i m e n t s o f N d YAG s o l i d l a s e r w e r e i n t r o d u c e d i n t h e a e r .U s i n t h e T p p p g , , e n e r a l h o t o r a h i c a e r h o t o r a h i c a e r t h e s e n s i t i v e i n f r a r e d a n d t h e e n e r m e t e r g p g p p p p g p p p g y , t h e l i h t t h r e s h o l d o f t h e l a s e r w a s m e a s u r e d a n d t h e l i h t t h r e s h o l d s a r e d i f f e r e n t b e c a u s e o f g g d i f f e r e n t s e n s i t i v i t o f t h e i n s t r u m e n t .T h e w i d t h o f t h e u l s e s w a s o b t a i n e d u s i n t h r e e t h e y p g , , , m e t h o d s s c a t t e r i n r e f l e c t i v e o f t h e K 9g l a s s a n d t r a n s m i t t a n c e o f m u l t i l a e r m i r r o r a n d g y f o u n d t h a t t h e w i d t h o f o b t a i n e d b t h e r e f l e c t i v e o f t h e K 9g l a s s a n d t h e t r a n s m i t t a n c e u l s e s y p o f m u l t i l a e r m i r r o r a r e l a r e r t h a n t h e u l s e s s c a t t e r e d .T h e l i h t s h a e a n d t h e f r e u e n c y g g p q y p , m u l t i l i c a t i o n w e r e a l s o m e a s u r e d . B t h e s e e x e r i m e n t s t h e s t u d e n t s w i l l r a s d e e l t h e p y p g p p y , , , b a s i c a r a m e t e r s t h e o r c o n f i u r a t i o n o f l a s e r o f l a s e r a n d w i l l d o r e s e a r c h t o d e a l w i t h t h e p y g u e s t i o n s f o u n d i n t h e e x e r i m e n t s . q p ; ; ; K e W o r d s o l i d l a s e rl i h t t h r e s h o l d u l s e w i d t h; f r e u e n c m u l t i l i c a t i o n b e a m s h a e s g p q y p p y

Nd:YAG激光器调Q激光束的放大特性

Nd:YAG激光器调Q激光束的放大特性

Nd:YAG激光器调Q激光束的放大特性实验目的:1. 了解固体激光器的自由振荡输出特性2. 了解调Q技术以及调Q激光输出特性3. 了解固体激光器的应用4. 掌握固体激光器的光路调整实验原理:1. 自由振荡激光输出特性通常激光器谐振腔的损耗是不变的,一旦光泵浦使反转粒子数达到或略超过阈值时,激光器便开始振荡,于是激光上能级的粒子数因受激辐射而减少,致使上能级不能积累很大的反转粒子数,只能被限制在阈值反转数附近,当低于阈值时又开始准备第二次振荡。

这使得自由振荡固体激光器的输出是由许多振幅、脉宽和间隔作随即变化的尖峰脉冲组成,尖峰脉宽非常窄(微秒量级),间隔数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续时间。

激光器的输出能量分散在这样一串脉冲中,因而不可能有很高的峰值功率,增大泵浦能量时也无助于峰值功率的提高,只会使小尖峰数量增加。

2. 调Q技术激光上能级最大粒子反转数受到激光器阈值的限制,因此可设法改变激光器的阈值来实现上能级积累大量的反转粒子。

由激光振荡阈值条件可知临界阈值与谐振腔Q值成反比。

Q 值为谐振腔的品质因数,当波长和腔长一定时,Q与谐振腔的损耗成反比,即损耗大,Q值就低,阈值高而不易起振;当损耗小,Q值就高,阈值低而易起振。

调Q技术就是通过某种方法使腔的Q值随时间按一定程序变化的技术。

本实验通过Q 晶体改变谐振腔的阈值(或Q值)。

泵浦开始时,使光腔处于低Q值,即提高振荡阈值使激光器不产生激光振荡,于是上能级反转粒子数便可大量积累,当积累达到最大值时,突然使腔的损耗减小,Q值突增,激光振荡迅速建立,在极短时间内上能级的反转粒子被消耗,受激辐射增强非常迅速,在腔的输出端形成一个峰值功率很高、脉冲宽度很窄的单一脉冲激光。

实验中所用Q晶体为Cr4+:YAG晶体,有自饱和吸收特性,对光的吸收损耗在其饱和之前很大,达到饱和之后则瞬间降低至接近于零,这样就起到了调Q的作用。

这是一种被动调Q技术。

实验装置1. He-Ne激光器2. 小孔光阑3. 1064nm全反凹面镜M14. Cr4+:YAG调Q晶体5. Nd:YAG振荡棒6. 输出镜M27. Nd:YAG放大棒8. 平板玻璃9. 能量计图1 实验光路示意图本实验采用两组Nd:Y AG晶体和泵浦氙灯,前组为振荡级,后组为放大级。

固体激光倍频、调q实验

固体激光倍频、调q实验

固体激光倍频、调q实验声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。

在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。

【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法; (4)学习倍频激光器的调整方法。

【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1) 声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。

超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。

如图1所示。

光栅公式如下式(1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。

当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。

利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。

当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。

在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。

当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。

由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。

声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。

(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。

实验八 脉冲式灯泵浦YAG激光器被动调Q实验

实验八 脉冲式灯泵浦YAG激光器被动调Q实验

实验八脉冲式灯泵浦YAG激光器被动调Q实验实验目的(1)掌握被动调Q Y AG激光器的工作原理与调试方法。

(2)测量脉冲与连续泵浦Y AG激光器的静态输出特性。

(3)分析被动调Q率被动调Q Y AG激光器的动态输出特性。

(4)在被动调Q理论分析的基础上,通过实验研究,针对相应的运转条件和应用需求,设计被动调Q Y AG激光器的光学参数。

实验原理1.固体Nd:Y AG激光器的工作原理。

(1)Nd:Y AG晶体的性质Nd3+:YAG是以三阶钕(Nd3+)离子部分取代Y3Al45O12晶体中Y3+离子的激光工作物质,称为掺钕钇铝石榴石(简称Nd3+:YAG)。

它以Nd3+离子作为激活粒子。

图8-1给出了Nd3+:YAG晶体中Nd3+离子的与激光产生过程有关的能级图。

处于基态4I9/2的钕离子吸收光泵发射的相应波长的光子能量后跃迁到4I5/2,2H9/2和4F7/2,4S3/2能级(吸收带的中心波长是810nm和750nm,带宽为30nm),然后几乎全部通过无辐射跃迁迅速降落到4F3/2能级。

4F3/2能级是一个寿命为0.23ms的亚稳态能级。

处于4F3/2能级的Nd3+离子可以向多个较低能级跃迁并产生辐射,其中几率最大的是4F3/2至4I11/2的跃迁(波长为1064nm)。

图8-1 Nd3+:YAG激光的激发机理(2)静态运转特性分析(a)脉冲运转→驰豫振荡(尖峰效应)暂态过程。

(b)连续运转→阈值条件(增益饱和)稳态过程。

按“激光原理与技术”中有关章节的分析,结合实验得出:仅仅依靠增加泵浦能量与功率,不能获得窄脉宽,高峰值功率的激光脉冲的结论。

2.Cr:YAG饱和吸收被动调Q原理自饱和被动式调Q激光器由于器件结构简单,对激光器无电磁干扰,应用十分广泛,但由于通常的染料调Q介质,导热率极低,使其应用范围受到局限,只能用于低重复率的脉冲调Q激光器中。

近年来,由于激光晶体技术的进步,我国已生产出可用于高重复率调Q的多掺Y AG晶片,制成了被动式的Q开关器件,兼备声光和染料调Q的长处,在激光医疗、激光打标和非线性光学等领域获得广泛的应用。

YAG激光器自由运转调Q和倍频实验

YAG激光器自由运转调Q和倍频实验

Nd:YAG激光器自由运转及调Q实验【实验目的】1.了解固体激光器的结构及工作原理(自由运转和染料调Q),掌握其调整方法;2.了解固体激光器的主要参数的测试技术;3.观察调Q脉冲经过KTP晶体实现倍频现象,了解倍频中相位匹配特性。

【实验原理】一、自由振荡1.固体激光器组成固体激光器主要由工作物质,泵浦光源和光学谐振腔三大部分组成。

常用的工作物质有红宝石,掺钕钇铝石榴石(Nd:YAG),钛宝石等晶体和钕玻璃等。

谐振腔常用两个平面或球面反射镜。

泵浦光源常用氙灯、氪灯、高压汞灯,碘钨灯。

在本实验中,激光器的主要元件为:①工作物质:掺钕钇铝石榴石(Nd:YAG);②光学谐振腔:双氙灯,双椭圆聚光腔,重复脉冲电源;③谐振腔镜:双色镜,部分反射镜。

2.自由振荡固体激光器的输出特性自由振荡激光器输出激光脉冲的特点是具有尖峰结构,即由许多振幅、脉宽和间隔作随机变化的尖峰脉冲组成。

每个尖峰的宽度约为0.1~1 μs,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续的时间。

这种现象称为激光器的弛豫振荡。

产生弛豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子密度增加而发射激光。

随着激光的发射,上能级粒子数被大量消耗,导致粒子反转数降低,当低于阈值水平时,激光振荡就停止,这时,由于光泵的继续抽运,上能级粒子反转数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦结束。

可见每个脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,从这个作用过程可以看出,增加泵浦功率也是无助于峰值功率的提高,而只会使小尖峰的个数增加。

二、调Q 的概念在激光技术中 ,用品质因数 Q 来描述与谐振腔损耗有关的特性。

Q 值定义为2Q v π=腔内存储的激光能量每秒损耗的能量用W 表示腔内存储的能量,δ表示腔的单程损耗,且设谐振腔长度为L,工作介质折射率n,光速c,则Q 值可表示为22/W nLQ v Wc nL ππδδλ==式中λ0为真空激光波长。

YAG激光器调Q实验

YAG激光器调Q实验

做关门实验, 做关门实验,使激光输出能 Applied Physics, Electronic Eຫໍສະໝຸດ gineering 量最小。 量最小。
4
实验仪器
• • • • • • • • • • YAG晶体 YAG晶体 前腔镜和后腔镜 激光电源:(含电源、 开关、手动快门) :(含电源 激光电源:(含电源、Q开关、手动快门) 水箱 导轨、 导轨、滑块和支架 辅助激光器 能量计 光阑 起偏器 KDP晶体 晶体( 开关) KDP晶体(Q开关)
12/13/2010
Changsha University
Applied Physics, Electronic Engineering 5
实验内容
做激光调腔实验,使输出地静态激光最强。 1. 做激光调腔实验,使输出地静态激光最强。 将偏振片插入光路。再插入Q开关,调整Q开关的俯仰, 2. 将偏振片插入光路。再插入Q开关,调整Q开关的俯仰,使Q开关的 反射像与激光晶体的反射像重合。 反射像与激光晶体的反射像重合。 微调两块谐振腔片,使激光器静态激光输出最强。 3. 微调两块谐振腔片,使激光器静态激光输出最强。 将电源改到关门状态(HV)进行关门实验 转动Q开关使最小。 进行关门实验。 4. 将电源改到关门状态(HV)进行关门实验。转动Q开关使最小。 将电源改到调Q状态,按快门,输出巨脉冲激光。用胶片接受光斑, 5. 将电源改到调Q状态,按快门,输出巨脉冲激光。用胶片接受光斑, 与静态激光光斑比较 。 6. 7. 8. 9. 用能量计测量巨脉冲, 用能量计测量巨脉冲,微调两块谐振腔片 ,使巨脉冲激光最强。 。 改变电压,分别测量几组静、动态输出能量,并填入P26表1。 改变电压,分别测量几组静、动态输出能量,并填入P26表 P26 被动调Q技术自己先对照指导书去做。 被动调Q技术自己先对照指导书去做。

NdYAG固体激光器谐振腔

NdYAG固体激光器谐振腔

课程设计报告课程名称:课程设计设计题目:Nd:YAG固体激光器谐振腔院系:物理系班级:09光信息科学与技术2班姓名:黄国辉学号:200930461371指导老师:李润华老师完成时间:2012-05-05设计要求工作物质物理固体工作物质基础性质分析详述Nd3+:YAG晶体理论依据泵浦源设计方案课程设计模块聚光腔基础理论方案设计谐振腔基础理论方案设计方案评估电光调Q冷却系统总体设计总结附录11设计要求对于给定一个长15cm, 直径6mm的Nd:YAG棒(折射率 n=1.82)和长3cm, 通光口径为8mm 的KD*P电光调Q晶体(n=1.51),设计一个完整的紧凑型谐振腔, 要求画出结构图, 给出谐振腔镜R1和R2的尺寸和总的腔长L,计算出光腰的位置,光斑尺寸大小和发散角,以及两个腔镜上的光斑尺寸. (忽略热透镜效应)要求:●腔长尽量短●要给各元件留一定的安放空间●考察谐振腔的稳定性●考察谐振腔的抗扰动的能力●考察腔模的光学特征(比如发散角、束腰的半径等参数,并最佳化)●最好能用图表来说明问题。

评分就是根据这些参数来看设计的优劣。

●注意波长为1.064微米.2工作物质物理性质分析2.1固体工作物质基础●综述固体激光工作物质由激活离子和基质组成,激活离子的能级结构决定了激光的光谱特性和荧光寿命等激光特性。

基质主要决定了工作物质的物理特性,化学特性。

●激活离子激活离子是发光中心,离子的电子阻态中,未被填满壳层的电子处于不同轨道和自旋运动状态,形成一系列能级。

目前可用作激活离子的元素共有19种,可分为四类:(1)过渡族金属离子如Cr3+,Ni3+,Co3+(2)三价稀土金属离子如Nd3+,Pr3+,Sm3+(3)二阶稀土金属离子如Sn2+,Dy2+,Tm3+(4)锕系离子多为人工放射元素,不易制备●基质材料工作物质的基质材料应能为激活离子提供合适的配位场,并具有优良的机械热性能及高光学质量,常用的基质材料分为晶体和玻璃两大类2.2详述Nd3+:YAG晶体●表1:YAG的基本理化特性激光特性图1:Nd3+:YAG 的能级结构室温下Nd 3+:YAG 有三条荧光谱线,中心波长和对应的能级跃迁分支比为:~0.94um (4F3/2 4I 9/2)25%~1.06um (4F 3/2 4I 11/2)60%~1.35um (4F 3/2 4I 13/2)14%其中最强的是1.06um 的荧光谱线。

Nd-YAG激光器特性实验

Nd-YAG激光器特性实验

Nd-YAG 激光器特性实验1 Nd-YAG 倍频实验测得的3组倍频前和倍频后的能量如下所示:根据倍频效率2w w 算出平均值如下:η1=(172.0-144.7)/172.0×100%= 15.8% η2=(170.8-149.2)/170.8×100%=12.6% η3= (170.4-148.3) /170.4×100%= 12.9% η=η1+η2+η33=13.7%Q 开关处于ON 状态下,650V-800V 测得的倍频前和倍频后的数据如下:2 氦氖激光束半径和发散角测量1. 峰值功率为0.31uW,降至1/e2处的功率为0.041uW,从而得到光斑的半径为:r=(4.95-2.0)/2(mm)=1.475mm.2. 光斑距离束腰处距离Z=2080mm.发散角θ=2r/Z=(2×1.475)/2080(rad)= 0.001418 rad.3. 对于理论值,W0 =√Lλπ(RL−1)1/4=0.284mm从而理论上的发散角为:θ0=2λπw0=2×632.8×10^−6= 0.00142 rad3.14×0.284×100%实验误差: R=θ−θ0θ0= 0.00142−0.001418×100%0.00142= 0.141%3 Nd-YAG激光器输出激光脉宽和峰值功率测量E根据公式P =可算出激光脉冲的功率,其中τ取25us,得到实验结果分析:1. 数据处理由图可得功率与工作电压的关系:P (W) = 45.453[U (V) - 506.5672V)]2. 实验现象分析:(1)由于工作电压较小时,与阈值电压大小差不多,所以会出现输出功率不稳定的现象;(2)由于激光器脉冲宽度很窄。

所以好、只有灵敏度很高的仪器才能捕捉到较好的图像用于观察。

3. 影响因素讨论:(1)读取示数时的误差。

(2)实验仪器的系统误差。

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性和声光调Q实验实验目的1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计算;2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则;3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解激光器在连续和调Q脉冲工作状态下的激光功率输出特性,4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。

实验原理1. 固体Nd:YAG激光器工作原理固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。

激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。

目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。

由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。

本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。

Nd3+:YAG产生受激辐射的能级如图4-1所示。

激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。

当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。

基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

图4-1 四能级系统结构示意图在集居数反转状态的物质称为激活介质。

激光原理实验介绍

激光原理实验介绍

实验一 Nd3+:YAG激光器的安装与调试实验二Nd3+:YAG激光器参数测量实验三高斯光束远场发散角测量实验一Nd3+:YAG激光器的安装与调试一、实验目的1、通过对Nd3+:YAG激光器的安装与调试熟悉固体激光器的结构与工作原理。

2、学会调整光学谐振腔的基本方法。

3、要求将激光器调整到有最佳输出状态。

二、仪器设备YAG棒脉冲氙灯半反镜透过率激光电源水冷设备光学平台及支架黑相纸红光LED指示光源光源小孔光阑三、实验原理1、固体激光器基本结构固体激光器主要由工作物质,激励源与光学谐振腔三部分组成。

本实验用激光器,泵灯为脉冲氙灯,聚光腔采用镀银金属腔。

聚光腔的作用是使光泵发出的光更有效地集中照射到工作物质上,从而提高激光器的总体效率。

储能电容c=100F。

谐振腔为平行平面腔,一块全反镜,一块输出镜,反射率R=20%。

激光器工作时两镜面要严格平行,且与工作介质轴线严格垂直。

激光器分单脉冲与重复脉冲两种输出方式,重复频率1次/秒~10次/秒可调。

2、 工作物质图2、Nd 3+离子能级图Nd 3+:YAG 激光器的工作物质是一种人工晶体。

它的基质是钇铝石榴石,其分子式为:Y 3Al 5O 12,Nd 3+是掺杂离子,起激光作用的正是Nd 3+离子,是四能级结构,在光泵作用下,处于基态E 1的大量粒子被抽运到E 4能级。

由于E 4能级寿命很短,约10-8s ,因而很快弛豫到E 3能级。

E 3能级是个亚稳态,寿命在10-3~10-4s ,因而可大量积累粒子,结果在E 3与E 2之间形成了粒子数反转分布,构成了产生光放大的必要条件。

E 3粒子向E 2跃迁,辐射32=(E 3-E 2)/h 频率的光子。

经谐振腔反射镜反射,沿轴向的光子返回工作介质中,由于粒子数反转的形成,这些光子与E 3能级粒子作用,将产生受激辐射,受激辐射的光子与入射光子频率相同,方向相同,偏振态相同,因而使腔内同频同方向光辐射增强,最终形成激光输出。

实验1NdYAG固体激光器实验

实验1NdYAG固体激光器实验

实验1NdYAG固体激光器实验hv21(a) 2 1 (b) 2 E 1(c) 图1、光与物质作⽤的吸收过程Nd :YAG 固体激光器实验⼀、实验内容与器件1、了解半导体激光器的⼯作原理和光电特性2、掌握半导体泵浦固体激光器的⼯作原理和调试⽅法⼆、实验原理概述1. 激光产⽣原理光与物质的相互作⽤可以归结为光与原⼦的相互作⽤,有三种过程:吸收、⾃发辐射和受激辐射。

如果⼀个原⼦,开始处于基态,在没有外来光⼦,它将保持不变,如果⼀个能量为hv 21的光⼦接近,则它吸收这个光⼦,处于激发态E 2。

在此过程中不是所有的光⼦都能被原⼦吸收,只有当光⼦的能量正好等于原⼦的能级间隔E 1-E 2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会⾃发地返回到基态,并放出光⼦。

⾃发辐射过程与外界作⽤⽆关,由于各个原⼦的辐射都是⾃发的、独⽴进⾏的,因⽽不同原⼦发出来的光⼦的发射⽅向和初相位是不相同的。

处于激发态的原⼦,在外的光⼦的影响下,会从⾼能态向低能态跃迁,并两个状态间的能量差以辐射光⼦的形式发射出去。

只有外来光⼦的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光⼦与外来光⼦的频率、发射⽅向、偏振态和相位完全相同。

激光的产⽣主要依赖受激辐射过程。

激光器主要有:⼯作物质、谐振腔、泵浦源组成。

⼯作物质主要提供粒⼦数反转。

hv 21 2 E 1(a) E 2E 1(b)hv 21 hv 21图2、光与物质作⽤的受激辐射过程泵浦过程使粒⼦从基态E 1抽运到激发态E 3,E 3上的粒⼦通过⽆辐射跃迁(该过程粒⼦从⾼能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光⼦),迅速转移到亚稳态E 2。

E 2是⼀个寿命较长的能级,这样处于E 2上的粒⼦不断积累,E 1上的粒⼦⼜由于抽运过程⽽减少,从⽽实现E 2与E 1能级间的粒⼦数反转。

激光产⽣必须有能提供光学正反馈的谐振腔。

处于激发态的粒⼦由于不稳定性⽽⾃发辐射到基态,⾃发辐射产⽣的光⼦各个⽅向都有,偏离轴向的光⼦很快逸出腔外,只有沿轴向的光⼦,部分通过输出镜输出,部分被反射回⼯作物质,在两个反射镜间往返多次被放⼤,形成受激辐射的光放⼤即产⽣激光。

NdYAG激光器的特性试验:电光调Q及倍频技术

NdYAG激光器的特性试验:电光调Q及倍频技术

、实验目地:1、掌握电光Q开关地原理及调试方法•2、学会电光Q开关装置地调试及主要参数地测试3、掌握倍频地基本原理和调试技能.4、了解影响倍频效率地主要因素.二、实验原理1.电光调Q调Q技术地发展和应用,是激光发展史上地一个重要突破.一般地固体脉冲激光器输出地光脉冲,其脉宽持续在几us甚至几ms,其峰值功率也只有 kw级水平,因此,压缩脉宽,增大峰值功率一直是激光技术所需解决地重要课题 . 调Q技术就是为了适应这种要求而发展起来地.b5E2RGbCAP调Q基本概念:用品质因数Q值来衡量激光器光学谐振腔地质量优劣,是对腔内损耗地一个量度.调Q技术中,品质因数Q定义为腔内贮存地能量与每秒钟损耗地能量之比,可表达为:式中V o为激光地中心频率.如用E表示腔内贮存地激光能量,丫为光在腔内走一个单程能量地损耗率•那么光在这一单程中对应地损耗能量为丫 E.用L表示腔长;n为折射率;c 为光速.则光在腔内走一个单程所用时间为nL/c.由此,光在腔内每秒钟损耗地能量为丫 Ec/nL.这样Q值可表示为p1EanqFDPw式中为真空中激光波长.可见Q值与损耗率总是成反比变化地,即损耗大Q 值就低;损耗小Q值就高.固体激光器由于存在弛豫振荡现象,产生了功率在阈值附近起伏地尖蜂脉冲序列, 从而阻碍了激光脉冲峰值功率地提高 .如果我们设法在泵浦开始时使谐振腔内地损耗增大 ,即提高振荡阈值 ,振荡不能形成 , 使激光工作物质上能级地粒子数大量积累 .当积累到最大值(饱和值时 >,突然使腔内损耗变小 ,Q 值突增.这时, 腔内会像雪崩一样以飞快地速度建立起极强地振荡 , 在短时间内反转粒子数大量被消耗 ,转变为腔内地光能量 ,并在透反镜端面耦合输出一个极强地激光脉冲 .通常把这种光脉冲称为巨脉冲•调节腔内地损耗实际上是调节Q值,调Q技术即由此而得名.也称为Q突变技术或Q开关技术.DXDiTa9E3d用不同地方法去控制不同地损耗,就形成了不同地调Q技术.有转镜调Q技术 , 电光调 Q 技术、可饱和染料调 Q 技术、声光调 Q 技术、透射式调 Q 技术 . RTCrpUDGiT本实验以电光Q开关激光器地原理、调整、特性测试为主要内容.利用晶体地电光效应制成地 Q 开关, 具有开关速度快;所获得激光脉冲峰值功率高 , 可达几Mw 至Gw脉冲宽度窄,一般可达ns至几十ns,器件地效率高,可达动态效率 1%, 器件输出功率稳定性较好 , 产生激光时间控制程度度高 , 便于与其它仪器联动,器件可以在高重复频率下工作等优点.所以这是一种已获广泛应用地 Q 开关 . 5PCzVD7HxA YAG棒在闪光灯地激励下产生无规则偏振光,通过偏振器后成为线偏振光,若起偏方向与KDP晶体地晶袖x(或y>方向一致,并在KDP上施加一个V1/4地外加电场.由于电光效应产生地电感应主轴X'和y '与入射偏振光地偏振方向成450角, 这时调制器起到了一个1/4 波片地作用 , 显然,线偏振光通过晶体后产生了n /2地位相差,可见往返一次产生地总相差为n ,线偏振光经这一次往返后偏振面旋转了90°, 不能通过偏振器 . 这样, 在调制晶体上加有 I/4 波长电压地情况下, 由介质偏振器和 KD*P 调制晶体组成地电光开关处于关闭状态 , 谐振腔地 Q 值很低 , 不能形成激光振荡 . jLBHrnAILg虽然这时整个器件处在低 Q值状态,但由于闪光灯一直在对 YAG棒进行抽运, 工作物质中亚稳态粒子数便得到足够多地积累 , 当粒子反转数达到最大时 , 突然去掉调制品体上地 l /4 波长电压 , 即电光开关迅速被打开 , 沿谐振腔轴线方向传播地激光可自由通过调制晶体 ,而其偏振状态不发生任何变比 ,达时谐振腔处于高Q值状态,形成雪崩式激光发射.XHAQX74J0X2•倍频技术原子是由原子核和核外电子构成.当频率为w地光入射介质后,引起介质中原子地极化,即负电中心相对正电中心发生位移r形成电偶极矩er ,其中e是负电中心地电量.我们定义单位体积内原子偶极矩地总和为极化强度矢量P= Nm,N是单位体积内地原子数.极化强度矢量和入射场地关系式为LDAYtRyKfE其中 ------- f…分别称为线性极化率、二级非线性极化率、三级非线性极化率….并且在一般情况下-------- …,每增加一次极化,值减小七八个数量级•由于人射光是变化地,其振幅为——I ,所以极化强度也是变化地.根据电磁理论,变化地极化场可作为辐射源产生电磁波一一新地光波.在入射光地电场比较小时(比原于内地场强还小 >, -----)等极小,P与E成线性关系为----- 1 ,新地光波与入射光具有相同地频率,这就是通常地线性光学现象•但当入射光地电场较强时,不仅有线性现象,而且非线性现象也不同程度地表现出来•新地光波中不仅含有入射地基波频率,还有二次谐波、三次谐波等频率产生,形成能量转移,频率变换•这就是只有在高强度地激光出现以后,非线性光学才得到迅速发展地原因•设有下列两波同时作用于介质:Zzz6ZB2Ltk介质产生地极化强度应为二列光波地叠加.有尸=工⑵[如 cos(3] I 十&z)+X^cos 十-X tZi[j4?aos1(<»l t++盅 cos? 爲z)+ 24^,005 +jt(j)oos (ftjjt+fcjz)].经推导得出,二级非线性极化波应包含下面几种不同频率成分:P切=p眉5 [2〔附+局刃],y (1J尸如=N-盅8时2(呼+Q)L吒,g = 十5”十% + 丘訂工L从以上看出,二级效应中含有基频波地倍频分量(2 i>. (2 2>、和频分量(1十2>、差频分量(1 —2>和直流分量.故二级效应可用于实现倍频、和频、差频及参量振荡等过程.当只有一种频率为地光人射介质时,那么二级非线性效应就只有除基频外地一种频率(2 >地光波产生,称为二倍频或二次谐波 .dvzfvkwMIl为了获得最好地倍频效果,除了入射光要足够强<功率密度高)、晶体地非线性极化细述要大外,还要使特定偏振方向地线偏振光以某一特定角度入射,这个特定地角度由相位匹配条件决定.rqyn14ZNXI从理论分析可得倍频效率地关系式如下L为倍频晶体地通光长度,只有当△ K= 2K1 — & = 4n /入i(n co -n2 co >=0,即n3 = n2o时,效率最高.我们将之称为位相匹配条件.EmxvxOtOco怎样实现相位匹配呢?对于介质,由于存在正常色散效应,是不能实现相位匹配地.对于各向异性晶体,由于存在双折射,可以利用不同偏振态之间地折射率关系实现相位匹配.SixE2yXPq5目前常用地负单轴晶体,如KDP它对基频光和倍频光地折射率可以用图 3 —1地折射率面来表示.图中实线是倍频光地折射率面,虚线是基频光地折射率面.球面为0光折射率面,椭球为e光折射率面.折射率面地定义为,它地每一根矢径长度<从原点到曲面地距离)表示以此矢径方向为波法线方向地光波地折射率.从图中可以看出如果基频光矢o光,倍频光是e光,那么当波面沿着跟光轴成9角地方向传播时,二者折射率相同,9称为相位匹配角.这种方法成为第一类角度相位匹配,即图2- 1负单轴晶体地折射率面三、实验装置1•调Q技术图2-2实验装置图KDP:倍频晶体<或KTPM1:输出镜<输出透过率T=80%YAG闪光灯、聚光腔和 YAG棒组件B:布氏角偏振片Q:调Q晶体<布氏角偏振片与调Q晶体组成调Q单元)M2:全反射镜<M1和M2组成激光谐振腔)2•倍频技术实验装置见图3- 2,并说明如下:6图2-3实验装置①一④构成 YAG激光器振荡级•其中:①是 1.06微M全反射镜;②是DKDF电光调Q晶体及介质膜起偏器;③为 YAG激光器地主体•包括 YAG棒、氙灯、聚光腔和冷却系统;④是输出端平面反射镜•对 1.06微M激光T= 80%经边束调制地YAG调Q激光器产生地1.06微M激光是全偏振光,通常为偏振方向在竖直方向上地O光,以满足倍频晶体相位匹配地要求.kavU42VRUs⑤KTP倍频晶体,将1.06微M地红外激光转变成0.53微M地绿光•晶体地入射面镀有对1.06微M地增透膜,出射面镀有对0.53微M地增透膜,倍频效率约5%〜15% .KTP晶体易损伤,操作时要细心.y6v3ALoS89⑥能量计.四、实验内容与步骤1•调Q技术1、用He-Ne激光束或自准直平行光管,调整激光器各光学元件地高低水平位置,使各光学元件地对称中心基本位于同一直线上.再调整各光学元件地俯仰方位,使介质膜反射镜、偏振器、电光晶体地通光面与激光工作物质端面相互平行不平行度小于一弧分.M2ub6vSTnP2 、启动电源,在不加/4晶体电压情况下,工作电压取550V,反复调整两块谐振腔片,使静态激光输出最强,记下输出激光能量.一般称不加调Q元件地激光输出为静态激光,而加调Q元件地激光输出为动态激光或巨脉冲激光.0YujCfmUCw3、关门实验,加上偏振片及调Q晶体,给电光晶体加上恒定地/ 4电压(V /4>,绕光轴转动KDP晶体,充电并打激光,反复微调电光晶体,直至其x、y 轴有偏振器地起偏方向平行.同时适当微调电压 V /4,直到激光器几乎不能振荡为止(出光明显比静态激光能量低 >.此即说明电光 Q开关已处于关闭状态(低Q值状态 >.eUts8ZQVRd4、接通电光晶体地退压电路,打动态激光,微调闪光灯开始泵浦至退去V /4电压之间地延迟时间电位器,一面观察激光强弱,一面微调延迟电位器旋钮,直到激光输出最强.记下巨脉冲能量值.sQsAEJkW5T5、改变脉冲泵浦能量,每增加工作电压50V测量一次,用能量计分别测出几组静、动态输出能量.一直测到800V,计6组数据.GMslasNXkA2.倍频技术由于本实验具有强光和高压电,为保证安全,必须首先仔细阅读实验室注意事项、然后才开始操作.1调整激光器出射光方向,使其和基座导轨同方向并与导轨上各光学器件处于等高地水平方向,这样便于接收调节•检测YAG激光器输出光能量是否正常微调YAG放大器基座,与激光器保持共轴,使输出能量最佳•对1.06微M不可见地红外激光除可用能量计准确测定其能量值外.还可用烧斑纸对光地有无和能量地大小进行粗略捡查.TlrRGchYzg2、将倍频晶体、能量计放置在同一水平高度上.使KTP晶体处于o+o->e地第一类相位匹配方式.3、由于晶体切割时,截面地法线与晶体地光轴夹角即为该晶体地相位匹配角,入射光只要垂直射到晶体上,就可获得最好地倍频效果.转动倍频晶体,使 1.06微M地基频光以不同角度入射于晶体.从光强地变化中也可看出,当倍频光由弱地圆环或散开地光斑缩为一耀眼地光点时,即达到了最佳匹配状态.鉴于光束地发散,能量计与倍频晶体一般保持在 10cm处.在测量地过程中,能量计放置地角度也会随着出射光方向地改变稍有变化.7EqZcWLZNX4、将倍频晶体固定在最佳倍频位置,用能量计分别测出1.06微M地输人光强及0. 53微M地倍频光强、计算出倍频效率——:反复测三遍.取平均结果.lzq7IGf02E五、实验报告要求1.利用公式分别计算出在同一泵浦能量下地动态与静态激光输出能量之比称为动静比.耳=动态激光输出能量/静态激光输出能量zvpgeqJIhk2.总结相位匹配原理,对实验数据进行列表整理六、思考题1.试述改变退压延迟时间t o和加在晶体上地电压值为什么会影响调Q激光器地输出?2.如何知道本实验地倍频为第一类相位匹配?若改用第二类相位匹配,应如何做?。

YAG激光实验装置实验讲义讲解

YAG激光实验装置实验讲义讲解

实验一 Nd 3+:YAG 激光器的阈值与斜效率测量一、实验目的1. 了解并掌握激光形成机理2. 了解激光阈值的概念,学会测量阈值3. 测量输入输出曲线及其斜效率的计算二、实验原理1. 普通光源的发光—受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。

激发的过程是一个“受激吸收”过程。

处在高能级(E 2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。

辐射光子能量为12E E h -=ν这种辐射称为自发辐射。

原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外末位相、偏振状态也各不相同。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。

于是在上、下两个能级上的原子数密度比为]/)(exp[/1212kT E E N N --∝式中k 为波耳兹曼常量,T 为绝对温度。

因为E 2>E 1,所以N 2<N 1。

例如,已知氢原子基态能量为E 1=-13.6eV ,第一激发态能量为E 2=-3.4eV ,在20℃时,kT≈0.025eV,则0)400exp(/12≈-∝N N可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。

一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。

Nd-YAG陶瓷激光器原理、性能与应用

Nd-YAG陶瓷激光器原理、性能与应用

Nd-YAG陶瓷激光器原理、性能与应用1 前言固体激光器是最重要的一种激光器,不但激活离子密度大,振荡频带宽,能产生谱线窄的光脉冲,而且具有良好的机械性能和稳定的化学性能。

其体积小、效率高、性能稳定等特点使其成为当前光电子技术领域的一个研究热点。

对于固体激光器来说有 3 种重要的激光介质:单晶、玻璃和陶瓷。

单晶工作物质的激光器体积小,性能可靠、稳定,并适用于各种连续和脉冲激光器件。

但提拉法生长单晶由于其生长周期长、价格昂贵、尺寸小及掺杂浓度低,使其性能和应用范围受到限制。

多年来材料科学工作者一直试图用玻璃、微晶玻璃、多晶陶瓷作为激光工作物质来替代单晶。

激光玻璃的突出优点是制备成本低,易实现大尺寸以及高的光学均匀性,但是,玻璃的热导率[一般低于 1 W/(m?K)] 远低于绝大多数激光晶体的,导致激光玻璃在以高平均功率工作时,材料内部产生大的热致双折射和光学畸变;这一点在强激光领域应用时表现得尤其突出,而且其激光效率与单晶材料相比也较低。

而且玻璃的硬度不够高、荧光线宽较宽和激光振荡阈值较高,不利于作为高性能的激光材料。

激光透明陶瓷具有很多单晶和玻璃所不具备的优点:和单晶相比,透明陶瓷具有掺杂浓度高,掺杂均匀性好,烧结温度低,周期短,成本低,质量可控性强,尺寸大,形状自由度大以及可以实现多层多功能激光器等优点;和玻璃相比,透明陶瓷具有单色性好,结构组成更为理想,热导率高和可承受的辐射功率高等优点。

由于陶瓷是多晶,其内部的晶界、气孔、晶格的不完整性等都会导致材料的不透明性及增加光的散射损失,因此将其用于激光介质存在一定困难。

为了制备和单晶激光性能相当的高品质、高透明度的激光陶瓷,人们做了大量的研究工作。

在所有的材料中,立方晶系的晶体,譬如石榴石型的晶体和稀土倍半氧化物,它们在沿光轴方向上的折射率差等于零而且可以提供低对称性的格位,是制备透明陶瓷的最佳选择,其中最具代表性的是Nd:YAG 透明陶瓷。

2 激光的产生原理2.1 理论基础【波尔兹曼统计分布】根据统计力学原理,大量相同粒子( 原子、离子、分子) 集合处于热平衡温度下,粒子数按能级的分布服从波耳兹曼分布规律,即NJN i * exp[-(E 2- E i )/kT]其中2、Ni分别为能级E2和E i上的粒子数。

固体激光倍频、调q实验

固体激光倍频、调q实验

固体激光倍频、调q实验声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。

在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。

【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法; (4)学习倍频激光器的调整方法。

【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1) 声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。

超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。

如图1所示。

光栅公式如下式(1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。

当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。

利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。

当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。

在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。

当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。

由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。

声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。

(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。

固体激光器综合实验资料

固体激光器综合实验资料

实验一固体激光器综合实验一. 主要功能和特点此套系统适用于光信息科学与技术、电子科学与技术、应用物理等相关专业。

可测量阈值、转换效率,倍频效率等参量,开设电光调Q ,选模等实验。

使学生全面了解激光原理和激光技术,掌握电光调Q 系统的调试方法。

电光调Q 固体脉冲激光器外罩机壳,整体美观大方,并可保护内部装置。

系统结构紧凑,采用内置三角导轨,具有良好的稳定性。

所有器件均采用标准件,互换性强,并且都可以拆卸,便于学生动手装调。

本装置的准直光源采用650nmLD 代替传统的He-Ne 激光器,具有体积小、使用安全、调节方便、光强可调等优点。

本装置采用脉冲氙灯泵浦Nd 3+:YAG 输出1064nm 激光,经倍频后可以输出532nm 激光。

采用P KD *电光晶体进行电光调Q ,可实现ns 级脉宽激光的输出。

二: 实验原理(一): 激光原理简介 1:激光原理(1)自发辐射根据已知的理论,原子只能存在分立的能态,处在不同能态的原子具有不同的能量。

若原子处于内部能量最低的能量状态,称此原子处于基态,其它比基态能量高的状态,都叫做激发态。

在热平衡时,材料中处于下能态的原子数远比上能态的多,电磁波与其发生作用,能使原子从低能级上升到高能级。

这种原子在两个能级之间的变化叫做跃迁。

可以说,处于基态的原子,从外界吸收能量以后,将跃迁到能量较高的激发态。

在高能态上的原子是不稳定的,它总是力图使自己处于最低的能量状态;即使在没有任何外界作用的情况下,它也有可能从高能态2E 跃迁到低能态并把相应的能量释放出来。

这种在没有外界作用的情况下,原子从高能态向低能态的跃迁方式有两种:一种是在跃迁过程中,释放的能量以热量的形式放出,这称为无辐射跃迁;另一种跃迁过程中,释放出的能量是通过光辐射的形式放出,这称为自发辐射跃迁。

辐射的光子能量满足波尔关系:γh E E 12=- 1 (1.1)图2.1 自发辐射图2.2 受激吸收图2.3受激辐射原子自发辐射的特点是原子的自发辐射几率A21只与原子本身性质有关,与外界辐射场无关。

全固态单模Nd_YAG激光器输出特性优化的实验研究

全固态单模Nd_YAG激光器输出特性优化的实验研究
第 31 卷
第 2期
2007 年 4月
激 光 技 术 LASER TECHNOLOGY
Vo. l 31, N o . 2 A pr i, l 2007
文章编号 :
1001 3806( 2007) 02 0144 03
全固态单模 Nd YAG 激光器输出特性优化的实验研究
李斌成 ( 中国科学院 光电技 术研究所 , 成都 610209) 摘要 : 为了实现高功率全固 态激光器的高输出光束质量 , 使用 1mm 直径 N d YAG 激光棒和单 一二极管激 光模块侧 面抽运的简单激光腔设 计来实现功率高于 10W、 光束质量接 近衍射极 限的 T EM 00 模输 出。通过 使用小口 径激光 棒抑制 高阶横模振荡、 曲面后反镜和负透镜组合补偿热透镜效应和实验优化后反镜 的曲率半径、 负透镜的焦距以及激 光腔腔长 等结构参数使激光器输出功率和 光束圆率同时 达到 最大 , 实现 了平 均功率 10. 8 W、 脉 冲宽度 15ns 、 光斑 圆率 98. 8% 0. 8 %、 M 2 值为 1 . 1 的近衍射极限光束输出。结果表明 , 通过使用小口径激光 棒提高激光器输出光束质量工程上可行。 关键词 : 激光器 ; 光束质量 ; 激光腔设 计 ; 激光二极管侧面抽运 中图分类号 : TN 248 . 1 文献标识码 : A
因此本设计不适合激光器工作在khz之下采用1mm直径激光棒抑制高阶横模振荡和单一二极管激光模块侧面抽运的简单结构通过使用曲面后反镜和负透镜组合补偿热透镜效应实现了功率高10w光束质量接近衍射极限的tem00模光束输出在此设计的基础上对高于10w的输出光束进一步放1064nm的光束实现了二倍频和三倍频单横模输出532nm355nm波长的输出功率在无放大级时分别达到了5w达到了15w10w光斑圆率优于90gowerindustriaapplicationlaseicromachticsexpress20005667

YAG激光实验装置实验讲义

YAG激光实验装置实验讲义

实验一 Nd 3+:YAG 激光器的阈值与斜效率测量一、实验目的1. 了解并掌握激光形成机理2. 了解激光阈值的概念,学会测量阈值3. 测量输入输出曲线及其斜效率的计算二、实验原理1. 普通光源的发光—受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。

激发的过程是一个“受激吸收”过程。

处在高能级(E 2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。

辐射光子能量为12E E h -=ν这种辐射称为自发辐射。

原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外末位相、偏振状态也各不相同。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。

于是在上、下两个能级上的原子数密度比为]/)(ex p[/1212kT E E N N --∝式中k 为波耳兹曼常量,T 为绝对温度。

因为E 2>E 1,所以N 2<N 1。

例如,已知氢原子基态能量为E 1=-13.6eV ,第一激发态能量为E 2=-3.4eV ,在20℃时,kT≈0.025eV,则0)400ex p(/12≈-∝N N可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。

一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

hv
2
1
(a) 2 1 (b) 2 E 1
(c) 图1、光与物质作用的吸收过程
Nd :YAG 固体激光器实验
一、 实验内容与器件
1、了解半导体激光器的工作原理和光电特性
2、掌握半导体泵浦固体激光器的工作原理和调试方法
二、 实验原理概述
1. 激光产生原理
光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔
E 1-E 2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

处于激发态的原子,
在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完
全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

hv 21 2 E 1
(a) E 2
E 1
(b)
hv 21 hv 21
图2、光与物质作用的受激辐射过程
泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。

E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

2 YAG 固体激光器
固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。

固体激光器工作物质是固体激光器的核心。

影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。

实验中,我们采用掺钕钇铝石
榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可
见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。

在本实验中,半导体激光器是用来做固体激光器的泵浦光源。

我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。

图4 3:Nd YAG +晶体的吸收光谱(300K )
YAG 中3Nd +与激光产生有关系的能级结构如图5所示。

它属于四能级系统。

其激光上
能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2
I 相应于1E 。

由于1.06m μ比1.35m μ波长的荧光强约4
倍,在本实验中,我们通过腔镜镀膜,E 1
E 3
E 2
图3、三能级系统示意图
选择让1.06m 的激光产生振荡,并输出。

图5 3:Nd YAG +能级结构
图 6 半导体激光器泵浦固体激光器结构示意图:端面泵浦
本实验系统采用了图6形式的端面泵浦方式,其中YAG 棒左侧镀有1064nm 的全反射膜,凹面镜表面镀有1064nm 的半反膜,透光率约5%,曲率半径250mm 。

这两个反射膜形成了固体激光器的谐振腔。

图7 固体激光器的输出功率与增益系数
固体激光器的三个重要参数是增益、阈值和输出功率。

增益系数定义为:
三、实验方法与步骤
1.半导体激光器的电光特性
在这个实验里,我们主要了解泵浦激光器的使用条件、参数特性。

2)将激光器工作电流调整到0.6-1A 左右,半导体激光器发出808nm激光,观察光斑
形状;调节准直透镜,使808激光成为近似的平行光,且整个光斑落在探测器有效区域内。

3)重新将电流调到最小,确定温度控制在25℃。

仔细缓慢的调整工作电流,以0.1A
为一档,记录电流和激光输出功率之间的对应数据。

4)绘制半导体激光器的I-P曲线,求出激光器的阈值电流。

注意事项:
严禁用眼睛正对激光出射方向!避免反射、散射的激光进入眼睛!
半导体激光器在测量后,应尽快将电流调整到最小值。

长时间在大电流下工作,会缩短激光器寿命,并使温度失控。

2.半导体泵浦固体激光器的安装、调试和研究
在这个实验中,我们将安装调试一台半导体端面泵浦的固体激光器,并对其参数、特性进行一些观察和研究。

1)在第一个实验的基础上,按下图排列、安装相关附件。

应可观察到晶体中有一白线,此为泵浦激光激发的荧光。

前后仔细移动YAG
晶体附件,使白线最亮。

将工作电流调回到0.6A 左右。

4)打开准直激光器电源,调整导轨另一端的准直激光器和小孔屏附件,使经过小
孔屏的650nm红色准直激光打在YAG晶体上,仔细调整准直激光的方向和小孔
屏的位置,使准直激光穿过YAG晶体和泵浦激光的焦点重合。

5)寻找到从YAG晶体全反射表面反射回了的准直激光光点,调整YAG晶体附件上
的两个调整螺钉,使光点(1号光点)回到小孔中,则准直激光垂直于YAG晶
体的全反射表面。

6)将YAG激光的半反射镜附件安装在小孔屏和YAG晶体附件之间,距YAG晶体约
80-100mm。

观察从半反镜反射回的650nm激光光斑情况。

从这个反射镜将反射
回两个光斑,一个是从第一个平面反射回的小光斑,另一个是从第二个突面反
射回的大光斑(2号光点)(半反镜是一个曲率半径为250mm的凹面镜)。

7)而这时,原来在第6步中回到小孔中的1号光点也变化了形状和位置。

调整半
反镜附件上的两个调整螺钉,使2号光点与1号光点尽量重合,这时,YAG激
光器的两个反射镜已相互平行,构成一个激光谐振腔。

8)将泵浦激光器的电流调到2.5A,如果光路调节得较好的话,这时已有1064nm
的激光输出,由于1064nm属于红外激光,我们肉眼看不见,我们可以将红外
显示片放在固体激光器的出光端,看一下显示片上是否有红外光激发的可见荧
光,一般情况下,可看到一个红色或绿色的光斑,说明固体激光器已经起振,
输出1064nm激光。

如果光路调节的很好,泵浦激光器的电流稍微一调大,准
直激光就熄灭了。

这是由于光路调整的非常准确,1064nm的激光穿过小孔屏,进入了准直激光器,抑制了准直激光的发生。

9)如果光路不好,用红外显示片可能观察不到1064nm的激光,这说明固体激光
器没有起振或输出功率太低,主要原因一般是半反镜调整的不好,谐振腔失调。

这时可以在红外显示片的监视下,微调半反镜上的两个调整螺钉,直到显示片
上有光点,固体激光器出光为止。

10)将激光功率计探头安装在固体激光器出光端,用于探测1064nm激光的功率。

11)仔细调整半反镜,选择功率计适当的档位监视其功率变化,将功率调到最大。

12)改变半反镜与YAG晶体之间的距离即腔长,重复第11步。

观察功率变化和光
斑变化情况,根据谐振腔理论,体会腔型对激光参数的影响。

13) 前后微调聚焦透镜的位置,观察激光功率变化的情况,体会模式匹配的原理和
意义。

14) 将激光器调到最佳状态(在确定的电流和温度下,输出功率最大)。

设定一个
确定的温度值,如25℃,并稳定住,将泵浦激光器电流调到最低,准备测量泵浦光功率与固体激光器输出功率的对应关系和转换效率
15) 在上一步设定的温度下,以0.1A或0.2A为一档,改变泵浦激光器的工作电流,
同时观察记录固体激光器的输出功率,根据泵浦激光器的I-P曲线,画出泵浦功率与固体激光器输出功率曲线P(泵浦)—P(固体)。

确定固体激光器阈值和斜率效率。

注意事项:
YAG激光器输出的1064nm激光为红外不可见激光,在实验操作时,务必注意眼睛安全!严禁眼睛与光路在同一水平面上!
3.思考与讨论
1 如何测量固体激光器的增益?
2固体激光器的最优腔长与波长是否有关?
四、 参考文献
1 周炳琨等,《激光原理》
2 钱士雄等,《非线性光学:原理与进展》
3 黄昆等,《固体物理学》。

相关文档
最新文档