农学土壤养分循环
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 有机质含量 (2)植被: 归还氮素、固定氮素
氮素主要存在于有机质中,二者呈平行正相关关系。
(3)气候
主要是水、热条件引起有机质的分解与合成 (4)质地 质地愈粘重、有机质含量愈高 (5)地势
主要是引起水热条件变化
(二)土壤氮素的获取
1、生物固氮(自生和共生固氮菌完成)
2、雨水和灌溉水带入氮 3、施肥(有机肥和化学肥)
3、有机态氮
包括水溶性氮、水解性氮、非水解性氮。大部分是腐殖物 质。它们需经微生物分解矿化成无机氮后才能为植物吸收利用。
土壤氮的形态及其有效性
无机氮(NO3-、NH4+) 土 壤 全 氮 (N)
<5%
<5% 50~70% 30~50%
有 机 氮
水溶性有机氮 水解性有机氮 难矿化有机氮
速效氮
缓效氮
(四)土壤中氮的转化
占土壤无机态磷的99%以上。石灰性土以磷酸钙盐( Ca-P)为主,酸性土以磷酸铁盐(Fe-P)和磷酸铝盐( Al-P)为主。 (1)Ca-P(钙磷),以磷灰石为主
氟磷灰石Ca5(PO4)3F
溶度积=10-120.9
当NO2->5mg/kg时,青枯开始出现
>15mg/kg时,青枯很快出现。
NO2-可使小麦、玉米烧种、烂芽、烂根以及幼苗死亡
第二节
P2O5%=P%×2.291
土壤磷和硫的循环
P% = P2O5% ×0.44
一、土壤磷的形态和数量
我国土壤全磷(P)含量一般为0.2~1.1g/kg,并有从 南到北渐增的地域变化趋势。 (一)无机态磷 3种相互平衡的形态
第一节
氮素
土壤氮素循环
一、陆地及土壤生态系统中的氮循环
重要生命元素,在农业生产中为“肥料三要素”之 首。
二、土壤氮的获取、形态和转化
(一)土壤氮素含量及影响因素 1、土壤氮素含量 耕作土壤:耕作层(0.05%-0.5%) 心土层、底土层(0.02%) 草地、林地:0.5%-0.6%。 2、影响土壤氮素含量的因素
(三)土壤氮的形态及其有效性 1、土壤全氮
其中95%以上为有机态氮,无机态氮一般不超过
5%。土壤的全氮和有机质含量之间存在高度正相 关关系。 耕地土壤的全氮量一般低于自然土壤,其中水田土 壤的全氮量又低于旱地土壤。
据四川第二次土壤普查资料:
四川耕地土壤全氮分级面积统计 土壤面 积构成 (%) 水田土壤 土 壤 全 氮 分 级 (N,g/kg)
高 (>1.5)
中等 (1.5~1.0)
较低 (1.0~0.75)
低 (≤0.75)
17.8
58.4
20.9
2.9
旱地土壤
14.9
22.7
28.2
34.2
全省水田土壤全氮分级面积是高、低两头小,中等大; 旱地土壤则以低等和较低为主(占62.4%)。
2、无机态氮
包括NH4+-N、NO3--N、 NO2--N。旱地土壤无机氮一 般以NO3- - N较多,淹水土壤则以NH4-N占优势。
3、氨态氮挥发损失
主要发生在碱性土壤中
NH4++OH-
NH3↑+H2O
四、土壤氮的调控
1、维持土壤氮素平衡 土壤氮以有机态氮为主,土壤有机质平衡是氮素 平衡的基础。 (1)有机肥与无机氮肥(化肥)配合施用。
有机质C/N >30 氮的固定量>矿化量 补充化肥 30~15 固定量=矿化量 <15 固定量<矿化量 补充有机质
4、铵离子的矿物固定
NH4+离子半径为0.148nm,与2∶1型粘土矿物晶层 表面六角形孔穴半径0.140nm接近,陷入层间的孔穴后 ,转化为固定态铵。
三、土壤氮的损失
1、淋洗损失(NO3-的淋失) NH4+、NO3-易溶于水,带负电荷的土壤胶体表面 对NH4+为正吸附,而保持于土壤中;对NO3-为负吸 附(排斥作用),易被淋失。
1、有机氮的矿化——氨化过程
氨基化 —— 复杂的含氮有机化合物降解为简单的氨 基化合物。 氨化——简单的氨基化合物分解成氨(NH3/NH4+) 2、铵的硝化:NH4+→NO3-分两步
亚硝酸微生物
2NH4++3O2 2NO2-+ O2 3、无机态氮的生物固定
2NO2-+2H2O+4H+
硝wk.baidu.com微生物
2NO3 -
溶解
矿物态 水溶态
吸附
吸附态
沉淀
解吸
1、水溶态磷—土壤溶液中的磷
H2PO4-、HPO42-、PO43-,其相对浓度(比例)随溶液pH 而变化。
H2PO4-
HPO42-+H+,pK2=7.2
当土壤溶液pH=7.2时,H2PO4-和HPO42-各占一半
pH<7.2时以H2PO4-为主
pH>7.2时以HPO42-为主。
(2)应用“激发效应”调节土壤有机质和氮素平衡
有机质丰富的土壤,施用绿肥等新鲜有机肥产生正激 发效应,促进土壤原来有机氮的矿化和更新。 有机质缺乏的土壤,施用富含木质素的粗有机肥,产 生负激发效应,增加土壤有机质和氮的积累。
2、防止土壤氮的损失 “南铵北硝”。水田土壤不施硝态化肥和避免频繁 的干湿交替。氮肥深施(水田和旱地)。碱性土碳 铵少施,防止氨的挥发损失。应用氮肥增效剂(硝 化作用抑制剂)。
水溶性磷离子是植物根系可直接吸收利用的磷, 但根际微域土壤多呈酸性,主要吸收H2PO4-离子。
2、吸附态磷
土壤固相表面吸附的磷酸根离子,主要是配位体交换 吸附(专性吸附)。 酸性土中磷的专性吸附剂主要是铁、铝氧化物及其水 合物。
石灰性土壤的方解石(CaCO3)对磷的配位交换吸附 亦为常见。 3、矿物态磷
3、避免有害物质—NO2-的积累
亚硝酸盐是人的致癌物质和植物的有害物质。其产生
和积累条件:
(1)Eh NH4+→NO2-(亚硝化过程) E0=0.345V
NO2-→NO3- (硝化过程) E0=0.421V
(2)pH
硝化细菌比亚硝化细菌对pH反应敏感。
NO2-易在pH>7.3的碱性环境积累。
(3)游离NH4+的影响 氨对硝化细菌的抑制作用大于对亚硝化细菌,大量施 用铵态氮肥(特别是NH4HCO3),易造成NO2-积累。 旱育秧NO2-可使水稻幼苗出现青枯病
2、反硝化作用,又称生物脱氮作用
在缺氧条件下, NO3- 在反硝化细菌作用下还原为 NO 、 N2O、N2的过程。 NO3-→NO2-→NO→N2O→N2
反硝化的临界Eh约为334mv,最适pH为7.0~8.2,pH 小于5.2~5.8的酸性土壤,或高于8.2~9.0的碱性土壤, 反硝化作用显著下降。