弹塑性力学读书报告
(完整)弹塑性力学读书报告DOC
![(完整)弹塑性力学读书报告DOC](https://img.taocdn.com/s3/m/d9115ed6ccbff121dc3683af.png)
一、弹塑性力学发展史(一)弹性力学的发展近代弹性力学,可认为始于柯西(Cauchy,A. L.)在1882年引进应变与应力的概念,建立了平衡微分方程、边界条件、应变与位移关系。
它的发展进程对促进数学和自然科学基本理论的建立和发展,特别是对促进造船、航空、建筑、水利、机械制造等工业技术的发展起了相当重要的作用。
柯西的工作是近代弹性力学以及近代连续介质力学的一个起点。
之后,世界各国的一大批学者相继做出了重要贡献,使得弹性力学迅速发展起来,并根据实际的需要形成了一些专门分支学科,如热弹性力学,弹性动力学,弹性系统的稳定理论,断裂力学,损伤力学,等等。
弹性力学为社会发展、人类的文明进步起了至关重要的作用。
交通业、造船、铁路建筑、机械制造、航空航天事业、水利工程、房屋建筑、军事工程等的发展,都离不了力学工作者的贡献。
从18世纪开始.涌现出了一大批力学家,像柯西、欧拉(Euler L.)、圣维南(Saint—Venant)、纳维(Navier)、克希霍夫(Kirchoff,G.R.)、拉格朗日(Lagran8e,J. L.)、乐甫(Love,A.E.H.)、铁木辛柯(Timoshenkn,S.P.)及我国的钱学森、钱伟长、徐芝纶、胡海昌等。
他们都对弹性力学的发展做出了贡献,他们的优秀著作培养了一代又一代的工程师和科学家。
弹性力学虽是一门古老的学科,但现代科学技术的发展给弹性力学提出了越来越多的理论问题和工程应用问题,弹性力学在许多重要领域展现出它的重要性。
本书将介绍其基本原理和实用的解题方法.二、弹塑性力学模型在弹塑性力学的研究中,如同在所有科学研究中一样,都要对研究对象进行模拟,建立相应的力学模型(科学模型)。
“模型"是“原型”的近似描述或表示.建立模型的原则,一是科学性-—尽可能地近似表示原型;二是实用性--能方便地应用。
显然,一种科学(力学)模型的建立,要受到科学技术水平的制约。
总的来说,力学模型大致有三个层次:材料构造模型、材料力学性质模型,以及结构计算模型.第一类模型属基本的,它们属于科学假设范畴.因此,往往以“假设”的形式比现.“模型”有时还与一种理论相对应;因而在有些情况下,‘模型”、“假设”和“理论”可以是等义的。
弹性力学课程总结
![弹性力学课程总结](https://img.taocdn.com/s3/m/d46c14b158f5f61fb73666f8.png)
弹塑性力学课程学习总结弹塑性力学主要是对物体在发生变形时进行的弹性力学和塑性力学分析,由于塑性力学比较复杂,发展还不够完善,所以以弹性力学为主要内容。
下面是对本课程的学习总结。
弹性力学是固体力学的重要分支,它研究物体在外力和其它外界因素作用下产生的弹性变形和内力。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
塑性力学研究的是物体发生塑性变形时的应力和应变。
物体变形包括弹性变形与塑性变形。
在外力作用下产生形变车去外力可以恢复原状是塑性变形;当外力达到一定值后,撤去外力,不再恢复原状是塑性变形。
当外力由小到大,物体变形由弹性变为弹塑性最后变为塑性直至破坏。
弹性变形是应力与应变一一对应。
主要任务是研究物体弹塑性的本构关系和荷载作用下物体内任一点应力变形。
为了便于研究我们常需要做一些假设,弹塑性力学的假设为:1、均匀连续性假设2、材料的弹性性质对塑性变形无影响3、时间对材料性质无影响4、稳定材料,荷载缓慢增加5、小变形假设。
弹性力学在研究对象上与材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
在材料力学和结构力学中主要是采用简化的可用初等理论描述的数学模型;在弹性力学中,则将采用较准确的数学模型。
有些工程问题(例如非圆形断面柱体的扭转,孔边应力集中,深梁应力分析等问题)用材料力学和结构力学的理论无法求解,而在弹性力学中是可以解决的。
有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的结论,而弹性力学则可以给出用初等理论所得结果可靠性与精确度的评价。
弹性力学包括平面问题,空间问题,柱体扭转,能量原理,虚功原理和有限元法等。
在研究过程中,需要列出基本方程,空间问题有15个基本方程,包括平衡方程,物理方程,变形协调方程和边界条件。
工程弹塑性力学引论读书札记
![工程弹塑性力学引论读书札记](https://img.taocdn.com/s3/m/026cc53a49d7c1c708a1284ac850ad02de800735.png)
《工程弹塑性力学引论》读书札记目录一、内容概述 (2)1.1 书籍简介 (3)1.2 作者介绍 (4)1.3 研究背景与意义 (5)二、基本概念与理论 (5)2.1 弹性力学基本方程 (7)2.2 塑性力学基本原理 (8)2.3 弹塑性力学分析方法 (9)三、工程弹塑性力学应用 (11)3.1 结构分析 (13)3.1.1 建筑结构 (15)3.1.2 桥梁工程 (15)3.1.3 机械工程 (17)3.2 材料加工 (18)3.3 土木工程 (19)四、工程弹塑性力学发展历程 (20)4.1 国外发展概况 (22)4.2 国内发展概况 (24)4.3 研究趋势与挑战 (25)五、结论与展望 (26)5.1 主要成果总结 (27)5.2 存在问题与不足 (28)5.3 未来研究方向与应用前景 (29)一、内容概述本书共分为七章,主要围绕工程中广泛关注的弹塑性力学问题展开。
第一章为引论,简要介绍了弹塑性力学的产生背景、研究意义和基本概念,为后续章节的深入学习奠定了基础。
在第一章中,作者首先阐述了弹塑性力学的产生背景和研究意义。
弹塑性力学作为经典力学的一个重要分支,在工程领域具有广泛的应用,特别是在结构分析和设计中。
通过学习弹塑性力学,工程师可以更好地了解材料的非线性行为,从而优化结构设计,提高产品的性能和安全性。
作者介绍了弹塑性力学中的基本概念,包括应力、应变、塑性变形、弹性变形等。
这些概念是理解弹塑性力学的基础,对于后续的学习至关重要。
作者还通过实例和图表等形式,帮助读者更好地理解和掌握这些概念。
在第一章中,作者还介绍了弹塑性力学的研究方法和应用领域。
弹塑性力学的研究方法包括理论推导、数值模拟和实验验证等,这些方法在工程实践中具有重要的指导意义。
作者还通过案例分析等形式,展示了弹塑性力学在实际工程中的应用价值。
第一章为读者提供了弹塑性力学的整体框架和基础知识,有助于读者更好地理解和学习这门课程。
塑性力学总结
![塑性力学总结](https://img.taocdn.com/s3/m/dd17f7de112de2bd960590c69ec3d5bbfd0ada04.png)
塑性力学大报告1、绪论1.1 塑性力学的简介尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。
现在复杂应力条件下塑性本构关系的研究,已成为当务之急。
弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。
建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。
由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设。
塑性力学是研究物体发生塑性变形时应力和应变分布规律的学科.是固体力学的一个重要分支。
塑性力学是理论性很强、应用范围很广的一门学科,它既是基础学科又是技术学科。
塑性力学的产生和发展与工程实践的需求是密不可分的,工程中存在的实际问题,如构件上开有小孔,在小孔周边的附近区域会产生“应力集中”现象,导致局部产生塑性变形;又如杆件、薄壳结构的塑性失稳问题,金属的压力加工问题等,均是因为产生塑性变形而超出了弹性力学的范畴,需要用塑性力学理论来解决的问题,另一方面,塑性力学能为更有效的利用材料的强度并节省材料、金属压力加工工艺设计等提供理论依据。
正是这些广泛的工程实际需要,促进了塑性力学的发展。
1.2 塑性力学的发展1913年,Mises提出了屈服准则,同时还提出了类似于Levy的方程;1924年,Hencky采用Mises屈服准则提出另一种理论,用于解决塑性微小变形问题很方便;1926年,Load证实了Levy-Mises应力应变关系在一级近似下是准确的;1930年,Reuss依据Prandtl的观点,考虑弹性应变分量后,将Prandtl所得二维方程式推广到三维方程式;1937年,Nadai研究了材料的加工硬化,建立了大变形的情况下的应力应变关系;1943年,伊柳辛的“微小弹塑性变形理论”问世,由于计算方便,故很受欢迎;1949年,Batdorf和Budiansky从晶体滑移的物理概念出发提出了滑移理论。
弹性力学读书报告剖析
![弹性力学读书报告剖析](https://img.taocdn.com/s3/m/2f197c1dde80d4d8d15a4f6c.png)
弹塑性力学学习报告指导老师:王建伟学生:李佳伟学号;20159200弹塑性力学学习报告绪论:经过几月的学习我对弹性力学有了一个初步的认识,对它研究的对象也有了一个概括性的认识。
弹性力学是高等的材料力学,不同于材料力学只能解决形状非常固定的细长杆件,它可以解决任意形状的材料性能计算问题。
对于很多情况都可以分析出力学模型,然后得到方程组,但是大部分情况下解方程组却是非常困难的。
下面给出一个典型的模型对弹性力学做一个形象的表示:这个模型就是最普通的一个计算模型,它有分布力,集中力,约束,重力等作用。
在这些条件下我们可以根据受力平衡列出方程组,从而求出各处的位移和形变。
报告正文一、弹性力学的发展及基本假设弹性力学是伴随着工程问题不断发展起来的,它是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移的一门学科。
最早可以追溯到伽利略研究梁的弯曲问题、胡克的胡克定律。
之后牛顿三定律的形成以及数学的不断发展,后经纳维、柯西、圣维南、艾瑞、基尔、里茨、迦辽金等人的不断努力。
使得弹性力学具有了严密的理论体系并且能都求解各种复杂的问题,能够解决强度、刚度和稳定性等问题。
目前弹性力学的相关理论在土木工程、水文地质工程、石油工程、航空航天工程、矿业工程、环境工程以及农业工程等诸多领域得到了广泛的应用。
弹性力学的几个基本假设。
1 、连续体假设:假设无题是连续的,没有任何空隙。
因此,物体内的应力、应变、位移一般都是逐点变化的,它们都是坐标的单值连续函数。
2、弹性假设:假设物体是完全弹性的。
在温度不变时,物体任一瞬间的形状完全取决于在该瞬间时所受的外力。
而与它过去的受力状况无关。
当外力消除后,它能够恢复原来的形状。
弹性假设就是假设物体服从虎克定律,应力与应变成正比关系。
3、均匀性假设:假设物体是均匀的,各部分都具有相同的物理性质,其弹性模量和泊松系数是一常数。
4、各向同性假设:假设物体内每一点各个方向的物理和机械性质都相同。
2013级--弹塑性力学总结
![2013级--弹塑性力学总结](https://img.taocdn.com/s3/m/fb3b3a0ec5da50e2524d7f78.png)
1.弹塑性力学问题的研究方法:弹塑性力学问题的研究方法可分为三种类型:(1)数学方法:就是用数学分析的工具对弹塑性力学边值问题进行求解,从而得出物体的应力场和位移场等。
在分析弹塑性力学时,对从物体中截取的单元体,从静力平衡、变形几何关系和应力应变物理关系三个方面来建立弹塑性力学的基本方程,由此建立的是偏微分方程,它适用于各种构件或结构的弹性体。
根据基本方程求解各类具体问题。
另一种数学方法是数值方法。
在数值方法中,常见的有差分法、有限元法及边界元法等。
尤其是塑性力学方程是非线性的,因而人们注重应用近似计算方法。
(2)实验方法:就是利用机电方法、光学方法、声学方法等来测定结构部件在外力作用下应力和应变的分布规律,如光弹性法、云纹法等。
(3)实验与数学相结合的方法:这种方法常用于形状非常复杂的弹塑性结构。
例如对结构的特殊部位的应力状态难以确定,可以用光弹性方法测定,作为已知量,置入数值计算中,特别是当边界条件难以确定时,则需两种方法结合起来,以求得可靠的解答。
2. 载荷分类:作用于物体的外力可以分为体积力和表面力,两者分别简称为体力和面力。
所谓体力是分布在物体体积内的力。
例如重力和惯性力,物体内各点所受的体力一般是不同的。
所谓面力是分布在物体表面上的力。
如风力、流体压力、两固体间的接触力等。
物体上各点所受的面力一般也是不同的。
3. ABAQUS ANSYS NASTRAN ADINA各有什么优缺点ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。
优点:1. 非线性结构方面的分析很强大。
它对于多载荷步的计算和规划,以及它的软件设计思想,非常严密而且直观。
可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。
ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。
2. 操作界面友好,不是其他CAE软件可以比拟的。
岩土塑性力学读书报告
![岩土塑性力学读书报告](https://img.taocdn.com/s3/m/0eed7971effdc8d376eeaeaad1f34693dbef105d.png)
岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
弹塑性力学总结
![弹塑性力学总结](https://img.taocdn.com/s3/m/392650fa4afe04a1b071de84.png)
应用弹塑性力学读书报告姓名:学号:专业:结构工程指导老师:弹塑性力学读书报告弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。
研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。
它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
弹塑性力学也是连续介质力学的基础和一部分。
弹塑性力学包括:弹塑性静力学和弹塑性动力学。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
1 基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
1.1.2线弹性假定(弹性力学)假设物体是线弹性的。
弹塑性力学读书报告
![弹塑性力学读书报告](https://img.taocdn.com/s3/m/adb2d547a300a6c30d229f33.png)
弹塑性力学读书报告刘刚玉1020120036同济大学交通运输工程学院道路与铁道工程摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。
关键字:弹塑性力学本构关系1基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定整个物体的体积都被组成物体的介质充满,不留下任何空隙。
使得σ、ε、u 等量表示成坐标的连续函数。
1.1.2线弹性假定(弹性力学)假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。
1.1.3均匀性假定假定整个物体是由同一种材料组成的,各部分材料性质相同。
这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。
1.1.4各向同性假定(弹性力学)假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化; 1.1.5小变形假定假定位移和形变是微小的,即物体受力后物体内各点位移远远小物体的原来的尺寸。
可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量;。
1.2应力状态理论应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。
弹塑性力学读书报告
![弹塑性力学读书报告](https://img.taocdn.com/s3/m/bf4bfe6730b765ce0508763231126edb6f1a7629.png)
弹塑性力学读书报告绪言“光阴似箭,日月如梭”。
弹指一挥间,弹塑性力学的课程已经结束了,而我来到北京工业大学也已经有三个月了。
回顾过去,感觉时间过的很快,但回想老师第一次上课时的情景却历历在目,仿佛就在昨天。
虽然未曾与范老师见过面,但老师那雄性又带有喜感的声音让我倍感亲切,这也是我能够坚持听完网课的重要因素之一。
对于弹塑性力学,虽说大学时学过弹性力学,但却学的很浅,而且早就忘了大部分的内容,所以在研一学习是十分有必要的,而且恰到好处。
感谢范老师的精彩授课,使得我对弹塑性力学的内容有了更深刻的了解与认识。
当然我也知道,对于一个以后与力学打交道的人来说,我所学到的、掌握的弹塑性力学知识还完全不够,在今后的学习工作中仍需不断学习。
而本篇弹塑性力学读书报告我主要从对弹塑性力学部分章节的学后感,对弹塑性教学的建议以及弹塑性力学与自己所从事研究结合的展望等方面谈谈自己的理解与感悟。
一、弹塑性力学部分章节读后感学习任何一门课程都要从它最基本的定义入手,弹塑性力学是固体力学的一个分支学科,它研究可变性固体受到外荷载、温度变化及边界约束变动等作用时,弹塑性变形和应力状态的科学。
它的研究对象包括实体结构、板壳结构以及杆件。
弹塑性力学研究问题的基本方法是在受力物体内任取一点(单元体)为研究对象,通过分析单元体的受力建立应力理论、分析单元体的变形建立变形几何理论、分析单元体受力与变形间的关系建立本构理论,即通过相应的分析建立起普遍适用的理论与解法。
它的基本任务包括以下几点:(1)建立求解固体的应力、应变和位移分布规律的基本方程和理论;(2)给出初等理论无法求解的问题的理论和方法以及对初等理论可靠性与精确度的度量;(3)确定和充分发挥一般工程结构物的承载能力,提高经济效益;(4)进一步研究工程结构物的强度、刚度、振动、稳定性、断裂、疲劳和流变等力学问题,奠定必要的理论基础。
当然,为了使弹塑性力学问题得以简化,我们一般做如下基本假设:连续性假设,均匀性假设,各项同性假设,力学模型简化假设以及小变形假设。
弹塑性力学读书报告
![弹塑性力学读书报告](https://img.taocdn.com/s3/m/504916cc27284b73f3425014.png)
弹塑性力学读书报告本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
但是在研究方法上也有不同,材料力学为简化计算,对构件的应力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的;而弹塑性力学的研究通常不引入上述假设,从而所得结果比较精确,并可验证材料力学结果的精确性。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:第一章绪论首先是弹塑性力学的研究对象和任务。
1、弹塑性力学:固体力学的的一个分支学科,是研究可变形固体受到外载荷、温度变化及边界约束变动等作用时,弹性变形及应力状态的科学。
2、弹塑性力学任务:研究一般非杆系的结构的响应问题,并对基于实验的材料力学、结构力学的理论给出检验。
这里老师讲到过一个重点问题就是响应的理解,主要就是结构在外因的作用下产生的应力场(强度问题)、应变场(刚度问题),整体大变形(稳定性问题)。
3、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。
求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
弹塑性力学读书报告
![弹塑性力学读书报告](https://img.taocdn.com/s3/m/6f48cd6ca8956bec0975e3e5.png)
弹塑性力学读书报告本学期学了应用弹塑性力学,在老师的教导下,学到了很多知识。
弹塑性力学是固体力学的一个重要分支,是研究弹性和弹塑性物体变形规律的一门科学。
弹性阶段与弹塑性阶段是可变形固体整个变形阶段中不同的两个变形阶段,而弹塑性力学就是研究这两个密切相连的变形阶段力学问题的一门科学。
通过学习,我对固体材料变形的全过程有了一个较完整地认识,对弹塑性力学的基础理论和基本方法有比较完整地了解。
首先,弹塑性力学的研究对象是可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律的一门科学。
它是固体力学的一个分支学科。
一切工程结构物皆由一定的固体材料按某种形式组合而成。
在结构的使用过程中,其中每个构件部位将受到外力的作用或外界因素的影响,如温度的变化等。
例如,矿山的硐室、巷道和建筑物的基础等地下结构,由岩石和混凝土的砌衬组成,它们受到大地压力或其他物体的作用。
毫无疑问,它们在外力作用下将会产生变形,且在其体内产生应力。
工程建设实践表明,掌握结构中各部分的应力分布和变形规律,具有极为重要的意义。
这不仅涉及到结构物的安全可靠性,而且影响到经济性问题。
在长期的生产斗争和科学实验中,人们认识到几乎所有的变形固体材料都在不同程度上具有弹性和塑性的性能。
固体受外力作用时,一定会产生变形。
当外力小于某一数值时,卸去外载后,变形可完全消失,固体恢复原状。
我们就将固体能自动恢复变形的性能称为弹性,能自动恢复的变形称为弹性变形,只产生弹性变形的阶段称为弹性变形阶段。
若当固体所受外力的大小达到并超过某一限度后,即使卸去外载,固体除能自动恢复一部分弹性变形外,大部分的变形却被永久地遗留下来。
我们就将固体材料能够产生永久变形的性能称为塑性,遗留下来的不能恢复的变形称为塑性变形,而这一变形阶段则称为塑性变形阶段。
可变形固体在受载过程中产生的弹性变形阶段和塑性变形阶段是整个变形过程中的不同而又连续的两个阶段。
弹塑性力学则是研究这两个密切相连变形阶段的力学问题的一门科学。
弹塑性力学总结
![弹塑性力学总结](https://img.taocdn.com/s3/m/d279933817fc700abb68a98271fe910ef12dae2f.png)
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性力学期末考试总结
![弹塑性力学期末考试总结](https://img.taocdn.com/s3/m/e3b4447011661ed9ad51f01dc281e53a580251b1.png)
弹塑性力学期末考试总结引言弹塑性力学是力学中一个重要的分支,研究物体在受到外力作用下的弹性变形和塑性变形的规律。
本学期我学习了弹塑性力学的基本理论、方法和应用,通过课堂学习、实验实践和习题训练,对弹塑性力学有了更加深入的理解和掌握。
本文将对本学期的弹塑性力学课程进行总结,并对期末考试进行回顾和总结。
课程回顾在弹塑性力学课程中,我学习了弹性力学和塑性力学的基本理论和方法,包括应力应变关系、弹性力学的基本方程、弹塑性力学的塑性应变率理论、渐进匹配理论等。
在课程中,我通过学习弹性力学和塑性力学的基本理论,了解了物体在受到外力作用时的弹性和塑性变形过程,并学会了使用适当的力学模型对弹塑性材料进行描述和分析。
在课程中,我还学习了弹塑性力学的应用,包括构件的弹性设计和塑性设计。
通过学习这些应用知识,我了解了如何根据构件的使用要求和材料的力学特性进行设计,保证构件在使用过程中具有足够的刚度和强度,避免因过载而导致的破坏。
这些应用知识对于我的专业学习和工程实践都具有重要的指导意义。
考试回顾期末考试是对我整个学期学习成果的一次综合检验。
考试内容主要包括选择题、填空题和解答题三部分。
选择题主要考察对基本概念和基本理论的理解和记忆,填空题和解答题则需要对弹塑性力学的具体问题进行分析和解决。
在考试中,我首先着重复习了弹塑性力学的基本概念和理论,并对一些重要的公式进行了记忆。
这些基本概念和公式的掌握对于解答考试中的选择题和填空题非常重要。
在考试中,我能够正确地回答出大部分的选择题和填空题,基本掌握了弹塑性力学的基本知识。
解答题是考察对弹塑性力学理论应用能力的重要环节。
在考试前,我对课程中涉及到的重要解答题进行了复习,熟悉了解答题的解题方法和步骤。
在考试中,我能够正确地应用课程中学到的弹塑性力学理论进行解题,分析问题并给出正确的解答。
但由于课程难度较大,有些解答题的分析过程和步骤还需进一步加强。
学习经验总结通过本学期的学习和考试,我深刻体会到了弹塑性力学的重要性和实用价值。
我所认识的弹塑性力学
![我所认识的弹塑性力学](https://img.taocdn.com/s3/m/3a54321787c24028915fc3fa.png)
我所认识的弹塑性力学弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。
一绪论1、弹塑性力学的概念和研究对象弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。
弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。
弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。
其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。
2、弹塑性简化模型及基本假定在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。
在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。
理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。
弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性假定、各向同性假定、小变形假定和无初应力假定。
3、研究方法及其与初等力学理论的联系和区别一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。
经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。
弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别二基本理论框架1、基本方程弹塑性力学和材料力学所求解的问题都是超静定问题,因此在分析问题研究问题是基本思路都是要进过三个方面的分析,这三个方面分别为:(1)静力平衡条件分析(2)几何变形协调条件分析(3)物理条件分析从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决,这三方面的方程为:(1)平衡(或运动方程)内部应力与外部体力之间的关系(2)几何方程(应变与位移之间的关系)(3)本构方程(应力与应变之间的关系)(A)在弹性变形阶段(B)在弹塑性变形阶段屈服函数f(?ij)?0,则有a、增量理论(流动理论)b、全量理论(变形理论)a、增量理论(i)Prandtl—Reuss理论(??塑性增量本构关系deij?deeij?de?pij?12Gdsij?d?sijd?ii?d?eii1?2?Ed?ii理想弹塑性材料deij?d?ii?12GEdsij?d?3dwd2?ii2ssij(ii)Levy—Mises理论(??理想刚塑性材料12)d?ij?3d?i2?ssijb、全量理论(形变理论)(??依留申理论(强化材料)12)?ii?1?2?E?ii,eij?3?i2?isij,?i??(?i)总之,当物体发生变形时,不论弹性变形还是塑性变形问题,共有3个平衡微分方程,6个几何方程和6个本构方程,共计15个独立方程(统称为泛定方程)而问题共有?ij、?ij、ui15个基本未知函数,因此在给定边界条件时,问题是可以求解的,弹塑性静力学的这种那个问题在数学上成为求解边值问题。
弹塑性力学读书笔记
![弹塑性力学读书笔记](https://img.taocdn.com/s3/m/e8158ec9ec3a87c24028c460.png)
弹塑性力学在岩体变形加固中的应用姓名:xx学号:导师:xx弹塑性力学这门课程是《弹性力学》的延伸,经典弹塑性力学的基本要求是应力只能在屈服面以内或屈服面之上,材料在屈服面以外的力学行为是没有定义的,这意味着经典弹塑性理论只能处理稳定结构。
结构需要加固力维持稳定,说明结构部分区域应力已超出屈服面。
一般说来对于给定的外荷载,结构的工作区域可能是弹性区、稳定弹塑性区和非稳定弹塑性区。
弹性区和稳定弹塑性区可由经典弹塑性力学处理,变形加固理论处理的是非稳定弹塑性区。
本文首次提出变形加固理论的基础是非平衡态弹塑性力学,它是经典弹塑性力学的增量延拓,其理论核心是最小塑性余能密度原理,在结构上反映为最小塑性余能原理。
1变形加固理论的提出工程结构弹塑性有限元计算表现为一系列逼近真解的迭代过程。
考察某一典型的迭代步,设某一高斯点在该迭代步的初始应力为σ0且有f(σ0)≤0,当前应力为σ1。
应力场σ0,σ1都应满足平衡条件,即该应力场在结构内处处满足平衡微分方程,在边界上满足力的边界条件,在有限元分析中表示为Σ∫BTσ0dV=Σ∫BTσ1dV=F(1)式中:F为外荷载向量,e表示对结构所有单元求和。
经典弹塑性理论要求结构各点应力必须在屈服面之上或以内,即各点都要满足屈服条件,这意味着结构在外荷载作用下是稳定的。
而本文讨论加固问题首先意味着结构在外荷载作用下是不稳定的,需要引入加固力以维持稳定。
所以有必要对经典弹塑性理论进行延拓以容纳加固特点。
受弹塑性迭代总是使范数不断减少的启发,本文提出一个最小塑性余能原理:对于给定的外荷载,在所有和其平衡的应力场中,结构真实应力场的塑性余能范数最小。
以此而论,弹塑性有限元计算的迭代过程就是△E的一个最小化过程。
3经典弹塑性本构关系本文讨论关联的理想弹塑性材料,且不考虑弹塑性耦合。
经典弹塑性力学的本构关系为率形式。
4非平衡态弹塑性本构关系非平衡态弹塑性力学处理应力状态处于屈服面以外的材料行为,其本构关系基本上就是上述经典弹塑性本构关系的增量化。
弹性力学
![弹性力学](https://img.taocdn.com/s3/m/cc256e36192e45361066f512.png)
工程弹塑性力学读书报告学院:土环学院班级:土建6班姓名:于鹏强学号:S2*******2015年12月经过半学期对工程弹塑性力学的学习,在平时学习过程中以及做题中难免会遇到很多问题,下面我就将在学习和做题中遇到的问题以及自己对感兴趣问题的学习心得和总结的规律列在下面,以便于更深刻的理解。
一、按应力求解结果的唯一性显然,对于一个特定的力学模型(给定边界形状,弹性参数,边界条件),它的应力结果必然是唯一的。
教材28页中这样写道:当体力为常量时,在单连体的应力边界问题中,如果两个弹性体具有相同的边界形状,并受到同样分布的外力,那么,就不管这两个弹性体的材料是否相同,也不管它们是在平面应力情况下或是在平面应变情况下,应力分量x σ,y σ,xy τ的分布是相同的。
可是,在土力学中我们知道土的静止侧压力系数1K μμ=-,即1y x z z σσμσσμ==-。
显然,对于相同的边界形状以及相同的受力情况下,对于不同的土层,xzσσ的值与泊松比μ有关,这与书中28页写的结论相违背。
那么这是为什么呢?下面是我对这一问题的分析过程。
【例1】为了简便计算,假设体力不计,半无限体的边界上受法向均布拉力q ,如图所示,求应力分布。
解:半逆解法。
设2()f ρϕΦ= ①代入相容方程,得422421d ()d ()[4]0d d f f ϕϕρϕϕ+= 得 ()cos 2sin 2f A B C D ϕϕϕϕ=+++2(cos2sin 2)A B C D ρϕϕϕΦ=+++注意对称性,关于0ϕ=正对称,所以Φ为ϕ的偶函数,即0B C ==。
②求解应力分量:2cos 222cos 222sin 2A D A D A ρϕρϕσϕσϕτϕ⎧=-+⎪=+⎨⎪=⎩ ③根据边界条件求解系数2()q ϕπϕσ=±=,2()0ρϕπϕτ=±=可得: 22A D q -+= (1) 边界条件不能求解出全部系数。
下面我们来根据位移条件确定系数。
塑性力学读书报告
![塑性力学读书报告](https://img.taocdn.com/s3/m/c2d4536ca45177232e60a200.png)
塑性力學(theory of plasticity)读书报告塑性力学又称塑性理论,是固体力学的一个分支,它主要研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律,及其相应的数值分析方法。
物体受到足够大外力的作用后,它的一部或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失,物体不能完全恢复到原有的形态。
要注意的是塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,永久变形与时间有关的部分属于流变学研究的范畴。
一、塑性力学简介一般将塑性力学分为数学塑性力学和应用塑性力学,其含义同将弹性力学的分为数学弹性理论和应用弹性力学是类似的。
前者是经典的精确理论,后者是在前者各种假设的基础上,根据实际应用的需要,再加上一些补充的简化假设而形成的应用性很强的理论。
从数学上看,应用塑性力学粗糙一些,但从应用的角度看,它的方程和计算公式比较简单,并且能满足很多结构设计的要求。
二、塑性力学的主要内容从学科建立过程来看,塑性力学是以实验为基础,从实验中找出受力物体超出弹性极限后的变形规律,据以提出合理的假设和简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。
解出这些方程,便可得到不同塑性状态下物体中的应力和应变。
塑性力学的基本实验主要分两类:单向拉伸实验和静水压力实验。
通过单向拉伸实验可以获得加载和卸载时的应力-应变曲线以及弹性极限和屈服极限的值;在塑性状态下,应力和应变之间的关系是非线性的且没有单值对应关系。
由静水压力实验得出,静水压力只能引起金属材料的弹性变形且对材料的屈服极限影响很小(岩土材料则不同)。
三、塑性力学的基本假设为简化计算,根据实验结果,塑性力学采用的基本假设有:①材料是各向同性和连续的。
②平均法向应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的,即静水压力状态不影响塑性变形而只产生弹性的体积变化。
我所认识的弹塑性力学
![我所认识的弹塑性力学](https://img.taocdn.com/s3/m/61fa3890a48da0116c175f0e7cd184254a351b4e.png)
PART THREE
添对金属材料 进行塑性变形,以制造出各种形状和尺寸的金 属制品。
添加 标题
结构分析:通过弹塑性力学理论,对建筑、桥 梁等结构的受力情况进行模拟和分析,优化结 构设计,提高结构的安全性和稳定性。
添加 标题
生物医学:利用弹塑性力学原理,研究人体软 组织的力学性质和行为,为医学诊断和治疗提 供依据。
意义:是弹塑性力学中的核心 内容,是联系力学实验与工程
实际的重要桥梁
建立方法:基于实验数据和理 论分析,通过求解物理方程得
到
屈服准则:描述材料在受力过程中何时进入塑性状态的 准则,常用的有米塞斯屈服准则和库伦-米塞斯屈服准则。
流动法则:描述塑性变形过程中,应力和应变之间的关系, 常用的有塑性流动法则和全塑性流动法则。
强化阶段:材料在屈 服后,随着应力的增 加,应变也会增加, 但此时应力增加的速 度要比塑性阶段慢。
弹性和塑性变形的定义 弹塑性变形的物理过程和特点 弹塑性变形的分类和表现形式 弹塑性变形的影响因素和规律
PART TWO
定义:应力与 应变之间的关 系,描述了材 料在受力时发 生的形变和抵 抗形变的能力。
弹塑性力学的基本 概念对于理解和应 用其理论至关重要 。
弹性:材料在受到外 力作用后发生形变, 当外力去除后能够恢 复原来的形状和尺寸。
塑性:材料在受到外力 作用后发生形变,当外 力去除后不能完全恢复 原来的形状和尺寸。
屈服点:材料在受到外 力作用后开始发生屈服 (即应力不再增加而应 变继续增加)的应力值 。
弹性阶段:应 力与应变成正 比,材料发生 弹性形变,卸 载后形变消失。
塑性阶段:应 力与应变不成 正比,材料发 生塑性形变, 卸载后形变部
分保留。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用弹塑性力学读书报告刘艳 10076139019河北工程大学土木工程学院建筑与土木工程专业摘要:弹塑性力学是研究可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律。
它由弹性理论和塑性理论组成。
弹性理论研究弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变性固体在塑性阶段的力学问题。
弹塑性力学就是研究经过抽象化的可变性固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
关键字:弹塑性力学弹性阶段塑性阶段假设求解方法弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。
研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。
它由弹性理论和塑性理论组成。
弹性变形阶段是指当外力小于某一限值(通常称为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,而固体只产生弹性变形的阶段称为弹性阶段。
塑性变形阶段是外力一旦超过弹性极限荷载,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,从而这一阶段就称为塑性阶段。
弹塑性力学也是连续介质力学的基础和一部分,它包括:弹塑性静力学和弹塑性动力学。
塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。
工程上常把脆性和韧性也作为一种概念来讲,它们之间的区别在于固体破坏时的变形大小。
若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏,称为韧性或延性。
通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。
在塑性理论中,由于实际固体材料在塑性阶段的应力----应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。
常用的简化模型可分为两类:即理想塑性模型和强化模型。
理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。
在单向应力状态下,强化模型的特征如图0.2所示。
强化模型又分为:线性强化弹塑性模型、线性强化刚塑性模型、幂次强化模型。
人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来。
在这个过程中就要从众多个事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学性质的研究离不开数学工具,如果要考虑材料的所有性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,是问题得到简化。
五个基本假定:一、假定物体是连续的(为了用数学分析的工具)假定整个物体的体积都被组成这个物体的介质所填满,不留任何空隙。
在此假定下,物体内的一些物理量,如应力、应变或变形、位移等才可能是连续的,因而才可能用坐标的连续函数来表示它们的变化规律。
实际上,一切物体都是由微粒组成的,都不能符合上述假定。
但是,可以想见,只要微粒的尺寸、以及相邻微粒之间的距离,都比物体的尺寸小的很多,那么,关于物体连续性的假定,就不会引起显著的误差。
二、假定物体是均匀的(为了由研究一部分而推广到物体的其余部分)整个物体是由同一类型的均匀材料所构成。
这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数才不随位置坐标而变。
可以取出该物体的任意一部分来加以分析,然后把分析的结果应用到整个物体。
如果物体是由两种或两种以上的材料组成的,那么,也只要每一种材料的颗粒远远小于物体,而且在物体内均匀分布,这个物体也就可以当作是均匀的。
三、假定物体是各向同性的(为了由研究一部分而推广到物体的其余部分)可变形固体内部任意一点在各个方向上都具有相同的物理性质。
因而,其弹性常数不随坐标方向的改变而改变。
实际上有不少固体材料不具有这种性质,如木材、竹材、纤维增强复合材料等,但是这类材料不是我们要讨论的内容。
至于钢材的构件,虽然它含有各向异性的晶体,但由于晶体很微小,而且是随机排列的,所以钢材构件的弹塑性大致是各向相同的。
此外,各向同性假定也仅仅应用于弹性阶段,即使是初始各向同性的固体,在进入塑性阶段后,也成为各向异性的。
四、假定位移和变形是微小的[小变形假定](线性化、叠加原理成立)即假定固体在外部因素(外力、温度变化等)作用下所产生的形远小于其自身的几何尺寸。
这样,在建立物体变形后的方程时,就可以用变形以前的尺寸代替变形以后的尺寸,使问题大大简化,而不致引起显著的误差。
如在研究物体的平衡时,可不考虑由于变形所引起的物体尺寸和位置的变化;在建立应变和位移之间的关系时,几何方程中的二阶微量可以略去不计,这样才可能使得弹塑性力学中的代数方程和微分方程简化为线性方程。
五、假定所研究的固体无初应力假定所研究的可变形固体初始处于自然状态,即在外部因素(外力、温度变化等)作用之前,其内部是没有应力的。
这个假定仅仅是为了表述简便而引进的,若固体内有初应力存在,则在外部因素作用时,其内部实际存在的应力即等于初应力加上外部因素作用所产生的应力。
此外,假设外力作用过程是一个缓慢的加载过程,在这个过程中,惯性力效应可以忽略不计,这种加载过程称为“准静态加载过程”。
弹塑性力学虽然是一门古老的学科,但在土木、机械、水利、航空、材料等工程领域,随着新材料、新结构和新技术的不断发展,实践又给它提出了越来越多的理论问题和工程应用问题,使这门古老的学科处于不断的发展中。
工程实践中,一个具体的弹塑性力学问题的求解方法可以分为以下几类:(1)经典方法。
采用数学分析方法对弹塑性力学的定解方程进行求解,从而得出固体内部的应力和位移分布等。
这种方法需要求解一个偏微分方程组的边值问题,在很多情况下,求解的难度都相当大,所以,常采用近似解法,例如,能量原理的Ritz法和伽辽金法等。
(2)数值方法。
许多实际工程问题无法采用经典方法求解,而需要采用数值解法求得近似解。
在数值解法中常用的有差分法、有限元法及边界元法等。
随着电子计算机技术的不断发展,目前,数值方法已被广泛应用于各类工程结构弹塑性力学问题的求解中。
(3)实验方法。
采用机电方法、光学方法、声学方法等来测定结构部件在外力作用下的应力和应变的分布规律,如光弹性法、云纹法等。
(4)实验与数值分析相结合的方法。
这种方法常用于形状复杂的工程结构。
如,对结构的特殊部位的应力分布规律难以确定,可以用光弹性方法测定;对结构整体,则采用数值方法进行分析。
求解简单弹塑性力学问题就是根据几何方程、物理方程和运动(或平衡)方程以及力和位移的边界条件和初始条件,解出位移、应变和应力函数。
用这种方法求解一些较为简单的问题是十分有效的。
研究表明,应力和应变的增量关系与屈服条件有关。
增量理论的本构关系在理论上是合理的,但应用起来比较麻烦,因为需要积分整个变形路径才能得到最后的结果。
因此,在塑性力学中又发展出塑性全量理论,即采用全量形式表示塑性本构关系的理论。
除上述基本理论外,塑性力学还包括简单塑性问题、受内压厚壁圆筒问题、长柱体的塑性自由扭转问题、塑性力学平面问题、塑性极限分析;塑性动力学;粘塑性理论;塑性稳定性等多方面内容。
塑性力学在工程实际中有广泛的应用。
例如研究如何发挥材料强度的潜力;如何利用材料的塑性性质以便合理选材,制定加工成型工艺;塑性力学理论还用于计算材料的残余应力等。
塑性变形现象发现较早,然而对它进行力学研究,是从1773年库仑提出土的屈服条件开始的。
特雷斯卡于1864年对金属材料提出了最大剪应力屈服条件。
随后圣维南于1870年提出在平面情况下理想刚塑性的应力-应变关系,他假设最大剪应力方向和最大剪应变率方向一致,并解出柱体中发生部分塑性变形的扭转和弯曲问题以及厚壁筒受内压的问题。
莱维于1871年将塑性应力-应变关系推广到三维情况。
1900年格斯特通过薄管的联合拉伸和内压试验,初步证实最大剪应力屈服条件。
此后20年内进行了许多类似实验,提出多种屈服条件,其中最有意义的是米泽斯1913年从数学简化的要求出发提出的屈服条件(后称米泽斯条件)。
米泽斯还独立地提出和莱维一致的塑性应力-应变关系(后称为莱维-米泽斯本构关系)。
泰勒于1913年,洛德于1926年为探索应力-应变关系所作的实验都证明,莱维-米泽斯本构关系是真实情况的一级近似。
为更好地拟合实验结果,罗伊斯于1930年在普朗特的启示下,提出包括弹性应变部分的三维塑性应力-应变关系。
至此,塑性增量理论初步建立。
但当时增量理论用在解具体问题方面还有不少困难。
早在1924年亨奇就提出了塑性全量理论,由于便于应用,曾被纳戴等人,特别是伊柳辛等苏联学者用来解决大量实际问题。
虽然塑性全量理论在理论上不适用于复杂的应力变化历程,但是计算结果却与板的失稳实验结果很接近。
为此在1950年前后展开了塑性增量理论和塑性全量理论的辩论,促使从更根本的理论基础上对两种理论进行探讨。
另外,在强化规律的研究方面,除等向强化模型外,普拉格又提出随动强化等模型。
20世纪60年代以后,随着有限元法的发展,提供恰当的本构关系已成为解决问题的关键。
所以70年代关于塑性本构关系的研究十分活跃,主要从宏观与微观的结合,从不可逆过程热力学以及从理性力学等方面进行研究。
在实验分析方面,也开始运用光塑性法、云纹法、散斑干涉法等能测量大变形的手段。
另外,由于出现岩石类材料的塑性力学问题,所以塑性体积应变以及材料的各向异性、非均匀性、弹塑性耦合、应变弱化的非稳定材料等问题正在研究之中。
人们对塑性变形基本规律的认识主要来自于实验。
从实验中找出在应力超出弹性极限后材料的特性,将这些特性进行归纳并提出合理的假设和简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。
解出这些方程,便可得到不同塑性状态下物体内的应力和应变。
塑性力学研究的基本试验有两个。
一是简单拉伸实验,另一是静水压实验。
从材料简单拉伸的应力-应变曲线可以看出,塑性力学研究的应力与应变之间的关系是非线性的,它们的关系也不是单值对应的。
而静水压可使材料的塑性增加,使原来处于脆性状态的材料转化为塑性材料。
为了便于计算,人们往往根据实验结果建立一些假设。
比如:材料是各向同性和连续的;材料的弹性性质不受影响;只考虑稳定材料;与时间因素无关等。
在复杂应力状态下,各应力分量成不同组合状况的屈服条件,以及应力分量和应变分量之间的塑性本构关系是塑性力学的主要研究内容,也是分析塑性力学问题时依据的物理关系。
屈服条件是判断材料处于弹性阶段还是处于塑性阶段的根据。