考研数学二真题答案解析
23考研数二真题及答案解析
![23考研数二真题及答案解析](https://img.taocdn.com/s3/m/f2078fbdd5d8d15abe23482fb4daa58da0111c13.png)
23考研数二真题及答案解析学二真题及答案解析在考研备考过程中,掌握真题的答案解析对于考生来说是非常重要的。
本文将针对学二真题进行答案解析,以帮助考生更好地理解和掌握考核知识点。
第一道题目是一个概率计算题,题目如下:有一只袋子中有3个红球和2个蓝球,现从袋子中任意取出2个球,若其中一个是红球,则另一个球是红球的概率是多少?解答:这道题目实际上是一个条件概率的问题。
首先,我们可以列举出所有可能的情况:(红球,红球),(红球,蓝球),(蓝球,红球),(蓝球,蓝球)。
其中,只有(红球,红球)和(红球,蓝球)满足其中一个球是红球的条件。
因此,所求的概率为2/4=1/2。
接下来,我们来看一道集合运算的题目:已知集合A={1,2,3,4,5},集合B={3,4,5,6,7},则集合C=A∩B 的元素个数是多少?解答:集合A和集合B的交集即为同时属于两个集合的元素,即C=A∩B。
由题可知,A和B的交集元素为3, 4, 5,所以集合C的元素个数为3。
接下来,我们来看一道数列题目:已知数列{an}的通项公式为an=(n-1)(n+2),则数列前6项的和是多少?解答:题中给出的通项公式为an=(n-1)(n+2),我们根据公式计算数列的前6项:a1=(-1)(3)=-3,a2=(0)(4)=0,a3=(1)(5)=5,a4=(2)(6)=12,a5=(3)(7)=21,a6=(4)(8)=32。
求和得到-3+0+5+12+21+32=67。
接下来,我们来看一道函数极值的题目:已知函数f(x)=2x^3-3x^2-12x+1,求函数f(x)的极值点。
解答:函数的极值点即为导函数为0的点。
我们先求导函数:f'(x)=6x^2-6x-12。
令f'(x)=0,解得x=2和x=-1。
将得到的极值点带入原函数,得到f(2)=-15和f(-1)=19。
所以函数f(x)的极大值点为(-1,19),极小值点为(2,-15)。
2021考研数学(二)真题(含详细解析)
![2021考研数学(二)真题(含详细解析)](https://img.taocdn.com/s3/m/c0281285fe4733687f21aa07.png)
2k 1 1 2n n
lim
n
n k 1
f
k
1
n
1
f (x)dx .选(B).
0
(8)二次型 f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 的正惯性指数与负惯性指数依次为( )
(A)2,0
(B)1,1
(C)2,1
(D)1,2
【答案】B
【解析】方法 1: f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 2x22 2x1x2 2x2x3 2x1x3 ,其二
)
(A)
lim
n
n k 1
f
2k 1 2n
1 2n
(B)
lim
n
n k 1
f
2k 1 1 2n n
(C)
lim
n
n k 1
f
k 1 2n
1 n
【答案】B
(D)
lim
n
n k 1
f
Hale Waihona Puke k 2 2n n【解析】由于
k n
k
2k 1 2n
k 1 n
,则 lim n
n k 1
f
t 1 1)et
t2
确定,则
d2y dx2
t0
.
【答案】 2 3
【解析】利用参数方程的求导公式
dy dx
yt xt
' '
4tet 2t 2et 1
,
d2y dx2
d dx
dy dx
d dx
4tet 2et
2t 1
d dt
2022年数二考研真题答案解析
![2022年数二考研真题答案解析](https://img.taocdn.com/s3/m/77f937033868011ca300a6c30c2259010202f3ab.png)
2022年数二考研真题答案解析一、填空题:1一6小题,每小题4分,共24分.把答案填在题中横线上.(1)曲线口yl某4in某的水平渐近线方程为y.D55某2co某【分析】直接利用曲线的水平渐近线的定义求解即可•口4in某某4in某某1.0【详解】limlim某5某2co某某2co某55某1故曲线的水平渐近线方程为y.o51(2)设函数口1某2130intdt,某0在某0处连续,则a・f(某)某3a,某0【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可•【详解】由题设知,函数口f(某)在某0处连续,则口limf(某)f(0)a,o某0又因为limf(某)lim某0某0某0int2dt某3in某211im.某03某23所以口al.3(3)广义积分001某d某(1某2)22.D【分析】利用凑微分法和牛顿一莱布尼兹公式求解.口【详解】o02bd(l+某)某d某1lllimlim22(l某2)22b0(l某)2bl+某bO211111im2.Q2bl+b22(4)微分方程口yy(l某)某的通解是yC某e(某0).某【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】原方程等价为°dylld某,y某两边积分得口Inyln某某Cl,整理得口(5)设函数口C某.(Cel)yCe某dy某Oe.d某【分析】本题为隐函数求导,可通过方程两边对某求导(注意y是某的函数),一阶微分形式不变性口yy(某)由方程yl某ey确定,贝版和隐函数存在定理求解.口【详解】方法一:方程两边对某求导,得口yey某yey.Q又由原方程知,某0时,y方法二:方程两边微分,得°ydye某d某yl.代入上式得口dyd某某0y某0e.q某0,yl,得ey,代入ddyd某某Oe.Q方法三:令F(某,y)yl某ey,则口yleoF某某Oy,某FeyO,1,y某yO,1某lye某y,0,11 故口dyd某某OF某Fy某0,yle.D某O,yl(6)设矩阵A21,E为2阶单位矩阵,矩阵B满足BAB2E,贝血12qB2.o【分析】将矩阵方程改写为A某B或某AB或A某BC的形式,再用方阵相乘的行列式性质进行°计算即可•口【详解】由题设,有口B(AE)2E d于是有口BAE4,而口11AE2,所以B2.口11二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数口yf(某)具有二阶导数,且f(某)0, f(某)0,某为自变量某在点某0处的增量,oy与dy分别为f(某)在点某0处对应的增量与微分,若某0,贝血(A)dOdyy.(B)Oydy.D(OoydyO.o(D)odyyO.口[A]。
考研数学二真题及答案解析
![考研数学二真题及答案解析](https://img.taocdn.com/s3/m/5662704f001ca300a6c30c22590102020740f226.png)
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分;下列每题给出的四个选项中,只有一个选项是符合题目要求的;1下列反常积分中收敛的是A ∫√x 2B ∫lnx x +∞2dxC ∫1xlnx +∞2dxD ∫x e x +∞2dx答案D;解析题干中给出4个反常积分,分别判断敛散性即可得到正确答案;∫√x2=2√x|2+∞=+∞; ∫lnx x +∞2dx =∫lnx +∞2d(lnx)=12(lnx)2|2+∞=+∞; ∫1xlnx +∞2dx =∫1lnx +∞2d(lnx)=ln?(lnx)|2+∞=+∞; ∫xe x +∞2dx =−∫x +∞2de −x =−xe −x |2+∞+∫e −x +∞2dx=2e −2−e −x |2+∞=3e −2, 因此D 是收敛的;综上所述,本题正确答案是D;考点高等数学—一元函数积分学—反常积分2函数f (x )=lim t→0(1+sin t x )x 2t在-∞,+∞内 A 连续 B 有可去间断点C 有跳跃间断点D 有无穷间断点答案B解析这是“1∞”型极限,直接有f (x )=lim t→0(1+sin t x )x 2t =e lim t→0x 2t (1+sin t x −1)=e x lim t→0sint t =e x (x ≠0),f (x )在x =0处无定义,且lim x→0f (x )=lim x→0e x =1,所以 x =0是f (x )的可去间断点,选B; 综上所述,本题正确答案是B;考点高等数学—函数、极限、连续—两个重要极限3设函数f (x )={x αcos 1x β,x >0,0,x ≤0α>0,β>0.若f ′(x )在x =0处连续,则 A α−β>1 B 0<α−β≤1C α−β>2D 0<α−β≤2答案A解析易求出f′(x )={αx α−1cos 1x β+βx α−β−1sin 1x β,x >0,0,x ≤0再有 f +′(0)=lim x→0+f (x )−f (0)x =lim x→0+x α−1cos 1x β={0, α>1,不存在,α≤1,f −′(0)=0 于是,f ′(0)存在α>1,此时f ′(0)=0.当α>1时,lim x→0x α−1cos 1x β=0,lim x→0βx α−β−1sin 1x β={0, α−β−1>0,不存在,α−β−1≤0, 因此,f′(x )在x =0连续α−β>1;选A综上所述,本题正确答案是C;考点高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限4设函数f(x)在-∞,+∞内连续,其二阶导函数f ′′(x)的图形如右图所示,则曲线y =f(x)的拐点个数为A OB x A 0 B 1C 2D 3答案C解析f(x)在-∞,+∞内连续,除点x =0外处处二阶可导; y =f(x)的可疑拐点是f ′′(x )=0的点及f ′′(x)不存在的点;f ′′(x )的零点有两个,如上图所示,A 点两侧f ′′(x)恒正,对应的点不是y =f (x )拐点,B 点两侧f ′′(x )异号,对应的点就是y =f (x )的拐点;虽然f ′′(0)不存在,但点x =0两侧f ′′(x)异号,因而0,f(0) 是y =f (x )的拐点;综上所述,本题正确答案是C;考点高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点5设函数f(μ,ν)满足f (x +y,y x )=x 2−y 2,则f μ|μ=1ν=1与f ν|μ=1ν=1依次是 A 12,0 B 0,12C −12,0D 0,−12答案D解析先求出f (μ,ν)令{μ=x +y,ν=y x ,{x =μ1+ν,y =μν1+ν, 于是 f (μ,ν)=μ2(1+ν)2−μ2ν2(1+ν)2=μ2(1−ν)1+ν=μ2(21+ν−1) 因此f μ|μ=1ν=1=2μ(21+ν−1)|(1,1)=0 f ν|μ=1ν=1=−2μ2(1+ν)2|(1,1)=−12 综上所述,本题正确答案是D;考点高等数学-多元函数微分学-多元函数的偏导数和全微分6设D 是第一象限中由曲线2xy =1,4xy =1与直线y =x,y =√3x 围成的平面区域,函数f(x,y)在D 上连续,则∬f (x,y )dxdy =DA ∫dθπ3π4∫f(r cos θ,r sin θ)1sin 2θ12sin 2θrdr B ∫dθπ3π4∫cos θ,r sin θ)√sin 2θ1√2sin 2θrdr C ∫dθπ3π4∫f(r cos θ,r sin θ)1sin 2θ12sin 2θdr D ∫dθπ3π4∫cos θ,r sin θ)1√sin 2θ√2sin 2θdr答案 B 解析D 是第一象限中由曲线2xy =1,4xy =1与直线y =x,y =√3x 围成的平面区域,作极坐标变换,将∬f (x,y )dxdy D化为累次积分; D 的极坐标表示为π3≤θ≤π4√sin 2θ≤θ≤√2sin 2θ因此 ∬f (x,y )dxdy D =∫dθπ3π4∫cos θ,r sin θ)1√sin 2θ√2sin 2θrdr综上所述,本题正确答案是B;考点高等数学—多元函数积分学—二重积分在直角坐标系和极坐标系下的计算;7设矩阵A=[11112a 14a 2],b =[1d d 2];若集合Ω={1,2},则线性方程 Ax =b 有无穷多解的充分必要条件为A aΩ,dΩB aΩ,d ∈ΩC a ∈Ω,dΩD a ∈Ω,d ∈Ω答案D解析Ax =b 有无穷多解?r (A |b )=r (A )<3|A |是一个范德蒙德行列式,值为(a −1)(a −2),如果a?Ω,则|A |≠0,r (A )=3,此时Ax =b 有唯一解,排除A,B类似的,若d?Ω,则r (A |b )=3,排除C当a ∈Ω,d ∈Ω时,r (A |b )=r (A )=2,Ax =b 有无穷多解综上所述,本题正确答案是D;考点线性代数-线性方程组-范德蒙德行列式取值,矩阵的秩,线性方程组求解;8设二次型f(x 1,x 2,x 3)在正交变换x =Py 下的标准形为2y 12+y 22−y 32,其中P =(e 1,e 2,e 3),若Q =(e 1,−e 3,e 2)在正交变换x =Qy 下的标准形为A 2y 12−y 22+y 32B 2y 12+y 22−y 32C 2y 12−y 22−y 32D 2y 12+y 22+y 32答案A解析设二次型矩阵为A ,则P −1AP =P TAP =[20001000−1]可见e 1,e 2,e 3都是A 的特征向量,特征值依次为2,1,-1,于是-e 3也是A 的特征向量,特征值为-1,因此Q T AQ =Q −1AQ =[2000−10001]因此在正交变换x =Qy 下的标准二次型为2y 12−y 22+y 32综上所述,本题正确答案是A;考点线性代数-二次型-矩阵的秩和特征向量,正交变换化二次型为标准形;二、填空题:9~14小题,每小题4分,共24分;9设{x =acr tan t ,y =3t +t 3,则d 2y dx 2|t=1=解析由参数式求导法dy dx =y t ′x t ′=3+3t 211+t 2=3(1+t 2)2再由复合函数求导法则得d 2ydx 2=d dx [3(1+t 2)2]=d dt [3(1+t 2)2]dt dx =6(1+t 2)2t1x t ′ =12t(1+t 2)2, d 2y dx 2|t=1=48综上所述,本题正确答案是48;考点高等数学-一元函数微分学-复合函数求导10函数f (x )=x 22x 在x =0处的n 阶导数f (n )(0)=答案n (n −1)(ln2)n−2(n =1,2,3,)解析解法1 用求函数乘积的n 阶导数的莱布尼茨公式在此处键入公式。
考研数学二真题及答案解析
![考研数学二真题及答案解析](https://img.taocdn.com/s3/m/6f2ddef2a417866fb84a8e8d.png)
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)下列反常积分中收敛的是(A) (B)(C) (D)【答案】D。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
;;;,因此(D)是收敛的。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(2)函数在(-∞,+∞)内(A) (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点【答案】B【解析】这是“”型极限,直接有,在处无定义,且所以是的可去间断点,选B。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数().若(A) (B)(C) (D)【答案】A【解析】易求出再有于是,存在此时.当,,=因此,在连续。
选A综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限(4)设函数在(-∞,+∞)内连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为 A O B(A) (B)(C) (D)【答案】C【解析】在(-∞,+∞)内连续,除点外处处二阶可导。
的可疑拐点是的点及不存在的点。
的零点有两个,如上图所示,A点两侧恒正,对应的点不是拐点,B点两侧,对应的点就是的拐点。
虽然不存在,但点两侧异号,因而() 是的拐点。
综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点(5)设函数满足则与依次是(A)(B)(C)(D)【答案】D【解析】先求出令于是因此综上所述,本题正确答案是D。
【考点】高等数学-多元函数微分学-多元函数的偏导数和全微分(6)设D是第一象限中由曲线与直线围成的平面区域,函数在D上连续,则(A)(B)(C)(D)【答案】B【解析】D是第一象限中由曲线与直线围成的平面区域,作极坐标变换,将化为累次积分。
2023年考研《数学二》真题及详解【完整版】
![2023年考研《数学二》真题及详解【完整版】](https://img.taocdn.com/s3/m/288fb253a9114431b90d6c85ec3a87c240288a9d.png)
2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。
在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。
只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。
A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。
2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。
2020考研数学二真题 附答案解析
![2020考研数学二真题 附答案解析](https://img.taocdn.com/s3/m/9b7aee69dd36a32d72758108.png)
t3t 2 2x10 2x ®0x (1- x )x d x e -1 ln |1+ x |-2x= -e -1 2ln | x +1| x = -e -1 2¥¥òarcsin u · 1 arcsin xx (1- x ) u 2(1- u 2)x ®01- u 2¶f¶x arcsin u d 0 p①(0,0)¶2 f¶x ¶y ¶f¶x②(0,0)①(0,0) = lim-1 不存在.(0,0)y ®0 y xy = 0(0,0)x = 0y = 0¶x ¶y6.设函数 f (x) 在区间[-2, 2] 上可导,且 f ¢(x) >f (x) > 0 ,则( )f (-2)> 1f (-1)f (0) f (-1)f (1) f (-1)f (2) f (-1) >e <e2 <e3答案:B解析:由 f ¢(x) >f (x) > 0知f ¢(x)- 1 > 0f (x)即(ln f (x) -x)¢> 0令F (x) = ln f (x) -x ,则 F (x)在[-2, 2]上单增因-2 <-1 ,所以 F (-2) <F (-1)即ln f (-2) + 2 < ln f (-1) + 1f (-1)>ef (-2)同理, -1 < 0, F (-1) <F (0)即ln f (-1) + 1 < ln f (0)f (0)e7.设四阶矩阵A=(a ij )不可逆,a12 的代数余子式A12 ¹0,a1,a2 ,a3 ,a4 为矩阵A的列向量 组. A* 为 A 的伴随矩阵.则方程组 A* x =0 的通解为( ).A.x=k1a1 +k2a2 +k3a3 ,其中k1 ,k2 ,k3 为任意常数B.x=k1a1 +k2a2 +k3a4 ,其中k1 ,k2 ,k3 为任意常数C.x=k1a1 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数.D.x=k1a2 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数 答案:C解析:∵A 不可逆11 2 3 3 4è øè ø ∴|A|=0 ∵ A 12¹ 0r ( A *) = 1∴ r ( A ) = 3∴ A * x = 0 的基础解系有 3 个线性无关的解向量.A *A =| A | E = 0∴A 的每一列都是 A *x = 0 的解又∵ A 12¹ 0∴a 1 ,a 3 ,a 4 线性无关∴ A *x = 0 的通解为 x = k a + k a + k a 8. 设 A 为 3 阶矩阵,a 1 ,a 2 为 A 属于特征值 1 的线性无关的特征向量,a 3 为 A 的属于特征 æ 1 0 0 ö 值-1 的特征向量,则满足P -1AP = ç 0 -1 0 ÷的可逆矩阵 P 可为( ).A. (a 1 +a 3 ,a 2 , -a 3 )B. (a 1 +a 2 ,a 2 , -a 3 )C. (a 1 +a 3 , -a 3 , -a 3 )D. (a 1 +a 2 , -a 3 , -a 2 )答案:D解析:A a 1 = a 1 , A a 2 = a 2A a 3 = -a 3ç ÷ ç 0 0 1 ÷æ 1 0 0 ö ! P -1AP = ç 0 -1 0 ÷ç ÷ ç 0 0 1 ÷\ P 的 1,3 两列为 1 的线性无关的特征向量a 1 +a 2 ,a 2 P 的第 2 列为 A 的属于-1 的特征向量a 3.∴∵24 分.请将答案写在答题纸指定位置上.,则 = .t =1tt tyyd 2 ydx 2t 2 +1t 2 +1dy 2dx 2ò)], )],(0,(0, 1 ,则 +¥y (x ) d x 0¶z ¶x ¶z ¶y0 òò= +¥y (x ) d x = - +¥ y ¢(x ) + 2 y ¢(x ) d x= -[ y ¢(x ) + 2 y (x )] +¥= [ y ¢(0) + 2 y (0)] = 1a 0 -1 114.行列式 a 1 -1 =-1 1 a 0解析:1 -1 0 a a 0 -1 1 a 0 -1 1 0 a 1 -1 = 0 a 1 -1 0 a -1 + a2 1 a -1+ a 2 1=0 a 1 -1 = - a 1 - 1 -1 1a 0 0 a a0 0 a aa a 2 - 2 1 = - a 2 -1 = a 4 - 4a 2.0 0 a三、解答题:15~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分 10 分)x 1+ x求曲线 y = (1+ x )x(x > 0) 的斜渐近线方程.解析: lim y x 1+ xlim= limx ®+¥ xx x xx ®+¥ (1+ x )x x x ®+¥ (1+ x )= ex l n xlim x ®+¥ ex ln(1+ x )= lim e x (ln x -ln(1+ x ))x ®+¥-1 1 a 0 -1 1 a 0 1 -1 0a 00 aaò=x ®+¥=x ®+¥=x ®+¥lim (y x ®+¥= lim æx ®+¥ è= lim x ®+¥= lim x ®+¥= ölim x ®+¥ø= ö x ®+¥÷ ø= lim e t ®0+ = lim e t ®0+ = 1 e -1 t ®0+ y = e -11e-1216.limf (x ) = 1,g ( x ) = 1f ( xt )dt , 求g '( x )x ®0 x续.并证明 g '(x )在x = 0 处连x = lim f (x ) = 0 x ®0ò0 f (u )du = 1 lim f (x ) = 1 0 x 2 2 x ®0 x 2 的极值y C = 0 -1+ 1x 2 +13 çx AC - 当 x = A = 1.AC - >1= -21618. ) ,并求直线 y = 1 ,与函数 f (x ) 所 y = 22+ 2 f æ1 è ) x x …②①´ 2f (x ) = x②V = p × ÷ 3 - p = 3 3 4 = p 2312 2 x 1+ x 2x 2 + y 2x 2 + y 2 xòò Ddxdy òò d(+ 2 2 òò x d 2 x 2 + y 2ò = 3 + 1)ù û20.分)t 2dt .f (x ) = (2 -x )e x 2 ;(1, 2), f (2) = ln 2 ×h e h 2 .F (x ) = f (x )(x - 2) = (x - 2) x e t 2dt 1 (2) = 0, 又F (x )在[1, 2]连续,(1, 2)上可导,(1, 2), 使得F '(x ) = 0e t 2 dt + (x - 2)e x 2 =f (x ) + (x - 2)e x 2x 2 .令 $h Î(1, 2)=f (2) = e=h e h 2 ln 22 21.分)f ¢(x ) > 0(x ³ 0) , f (x ) 的图象过原点 O的切线与 X 轴交于 T ,MP ^ x 轴,曲线 y = f (x ), MP , x 轴围成的面积与D 3:2,求曲线方程.坐标为(x , y ) ,则过 M 的切线方程为Y -令- y y ¢n 2 (2即xê úò0 f (t )d t = 3× × y 22 y整理并求导得令 y ¢ = p 3yy ¢ - 2 y ¢2 = 0y ¢ = d p 代入上式得d y3yp d p- 2 p 2 = 0d y2解得 p = C 1 y 32即 y ¢ = C 1 y 3d y = C d x1y 31 3y 3 = C 1x +C2 13 3 = C 1xy = Cx 3由 y (0) = 0 得C 2 = 0.22.(本题满分 11 分)设 二 次 型 f (x , x , x ) = x 2 + x 2 + x 2+ 2ax x + 2ax x + 2ax x经 可 逆 线 性 变 换 1 2 3 1 2 3 1 2 1 3 2 3æ x1 ö æ y 1 ö ç x ÷ = P ç y ÷ 得 g ( y , y , y ) = y2 + y 2 +4 y 2 + 2 y y .ç 2 ÷ ç 2 ÷ 1 2 3 1 2 3 12ç x ÷ ç y ÷ è 3 ø è 3 ø(1) 求 a 的值; (2) 求可逆矩阵 P. 解析:é1aa ùA = êa 1 a ú ê ú(1) 令 f (x 1, x 2 , x 3 ) 的矩阵 êëa a 1úûf ( y 1, y 2 , y 3 ) 的矩阵 é1 1 0ùB = ê1 1 0úêë0 0 4úû33 32 21 2 1 1 2 1 ëû ê 3 1 2 ê 3 z ï ú ìz 1 = y 1 + y 2 í 2 = 2 y 3 é1 1 0ù ï z 3 = y 2 ê ú 令î 即令P = ê0 0 2ú Z = P Y . 22 êë0 1 0úûf ( y , y , y ) = z 2 + z 2 则 1 2 3 1 2 .故P 1 X = P 2Y X = P -1PY P = P -1P .é 1 ù ê3 ú é1 1 0ù P -1 = ê02 1ú P = ê0 0 2 ú 1 ê3 ú 2 ê ú ê ê0 0 由于 êë ú ê0 1 0ú 1ú úû é1 2 2 ù ê ú 故 P = P -1P = ê0 14 ú ú ê0 1 0 ú ê úêë úû23.(本题满分 11 分)设 A 为 2 阶矩阵, P = (a , A a ) ,其中a 是非零向量且不是 A 的特征向量. (1)证明 P 为可逆矩阵.(2)若 A 2a + A a - 6a = 0 ,求 P -1AP ,并判断 A 是否相似于对角矩阵. 解析:(1)a ¹ 0 且 A a ¹ la . 故a与A a 线性无关. 则 r (a , A a ) = 2则 P 可逆.(2)法一:由已知有 A 2a = - A a + b a即 . 所以于是 AP = A (a , A a ) = ( A a , A 2a ) = ( A a , - A a + 6a )= (a , A a ) æ 0 6 ö,故有P -1 AP = æ 0 6 ö,! P 可逆 ç 1 -1÷ ç 1 -1÷ è ø è ø \可得A 与æ 0 6 ö相似,又 l -6 =(l + 3)"(l - 2)= 0 ç 1 -1÷ -1 l +1è øÞl 1 = -3,l 2 = 2\可得A 的特征值也为-3,2 于是 A 可相似对角化方法二 P -1AP 同方法一由 A 2a + A a - 6a = 0下面是证明 A 可相似对角化( A 2 + A - 6E )a = 0设( A + 3E )( A - 2E )a = 0由a ¹ 0得( A 2 + A - 6E )x = 0有非零解 故| ( A + 3E )( A - 2E ) |= 0得| A + 3E |= 0或| A - 2E |= 0若| ( A + 3E ) |¹ 0则有( A - 2E )a = 0故A a =2a 与题意矛盾故| A + 3E |= 0同理可得| A - 2E |= 0 于是 A 的特征值为l 1 = -3 l 2 = 2.A 有 2 个不同特征值故 A a 相似对角化。
2023考研数学二真题+详解答案解析(超清版)
![2023考研数学二真题+详解答案解析(超清版)](https://img.taocdn.com/s3/m/08a0544e9a6648d7c1c708a1284ac850ad0204cb.png)
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
2021年考研数学二真题及答案解析
![2021年考研数学二真题及答案解析](https://img.taocdn.com/s3/m/0f59e27fb0717fd5370cdc83.png)
将0单位化,得0=( , , )T.
对1,2作施密特正交化,1=(0,- , )T,2=(- , , )T.
作Q=(0,1,2),则Q是正交矩阵,并且
3 0 0
QTAQ=Q-1AQ= 0 0 0 .
0 0 0
(13)设1,2,…,s所有是n维向量,A是mn矩阵,则( )成立.
(A) 若1,2,…,s线性有关,则A1,A2,…,As线性有关.
(B) 若1,2,…,s线性有关,则A1,A2,…,As线性无关.
(C) 若1,2,…,s线性无关,则A1,A2,…,As线性有关.
(D) 若1,2,…,s线性无关,则A1,A2,…,As线性无关.
数学(二)考研真题及解答
一、填空题
(1)曲线 水平渐近线方程为.
(2)设函数 在 处持续,则 .
(3)广义积分 .
(4)微分方程 通解是.
(5)设函数 由方程 拟定,则 =.
(6)设矩阵 , 为2阶单位矩阵,矩阵 满足 ,则 =
.
二、选取题
(7)设函数 具有二阶导数,且 , 为自变量 在 处增量, 和 分别为 在点 处相应增量和微分,若 ,则
真题答案解析
一、填空题
(1)曲线 水平渐近线方程为
(2)设函数 在x=0处持续,则a=
(3)广义积分
(4)微分方程 通解是
(5)设函数 拟定,则
当x=0时,y=1,
又把方程每一项对x求导,
二、选取题
(7)设函数 具有二阶导数,且 为自变量x在点x0处增量, ,则[A]
(A) (B)
(C) (D)
由 严格单调增长
B+1=A①
2021考研数学二真题及答案
![2021考研数学二真题及答案](https://img.taocdn.com/s3/m/5bf14ed14b73f242326c5f80.png)
2021考研数学真题及答案解析(数二)数学(二)一、选择题(本题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一个选项是符合题目要求,把所选选项前的字母填在答题卡指定位置上.)(1)当0x →时,230(1)x t e dt -⎰时7x 的(A)低阶无穷小.(B)等价无穷小.(C)高阶无穷小.(D)同阶但非等价无穷小.【答案】C.【解析】因为当0x →时,23670(1)2(1)2x t x e dt x e x '⎡⎤-=-⎢⎥⎣⎦⎰ ,所以23(1)x t e dt -⎰是7x 高阶无穷小,正确答案为C.(2)函数1,0()=1,0x e x f x x x ⎧-≠⎪⎨⎪=⎩,在0x =处(A)连续且取极大值.(B)连续且取极小值.(C)可导且导数为0.(D)可导且导数不为0.【答案】D.【解析】因为001lim ()=lim 1(0)x x x e f x f x→→-==,故()f x 在0x =处连续;因为200011()(0)11lim =lim lim 002x x x x x e f x f e x x x x x →→→-----==--,故1(0)2f '=,正确答案为D.(3)有一圆柱体底面半径与高随时间变化的速率分别为2cm/s ,3-cm/s ,当底面半径为10cm ,高为5cm 时,圆柱体的体积与表面积随时间变化的速率分别为(A)1253/cm s π,402/cm s π.(B)1253/cm s π,-402/cm s π.(C)-1003/cm s π,402/cm s π.(D)-1003/cm s π,-402/cm s π.【答案】D.【解析】由题意知,2,3,dr dhdt dt==-又2,2,V r h S rh ππ==则22,22,dV dr dh dS dr dh rh r h r dt dt dt dt dt dtππππ=+=+当10,5r h ==时,100,40,dV dSdt dtππ=-=-选D.(4)设函数()ln (0)f x ax b x a =->有两个零点,则ba的取值范围是(A)(,)e +∞.(B)(0,)e .(C)1(0,)e.(D)1(,)e+∞.【答案】A.【解析】令()ln 0f x ax b x =-=,()b f x a x '=-,令()0f x '=有驻点b x a =,ln 0b b b f a b a a a ⎛⎫=⋅-⋅< ⎪⎝⎭,从而ln1b a >,可得be a>,正确答案为A.(5)设函数()sec f x x =在0x =处的2次泰勒多项式为21ax bx ++,则(A)11,.2a b ==-(B)11,.2a b ==(C)10,.2a b ==-(D)10,.2a b ==【答案】D.【解析】由22(0)()(0)(0)()2f f x f f x x o x '''=+++知当()sec f x x =时,2300(0)sec01,(0)(sec tan )0,(0)(sec tan sec )1,x x f f x x f x x x =='''=====+=则221()sec 1().2f x x x o x ==++故选D.(6)设函数(),f x y 可微,且2(1,)(1)x f x e x x +=+,22(,)2ln f x x x x =,则(1,1)df =(A)dx dy +.(B)dx dy -.(C)dy .(D)dy -.【答案】C.【解析】212(1,)(1,)(1)2(1)xxxf x e e f x e x x x ''+++=+++①2212(,)2(,)4ln 2f x x xf x x x x x''+=+②将00x y =⎧⎨=⎩,11x y =⎧⎨=⎩分别带入①②式有12(1,1)(1,1)1f f ''+=,12(1,1)2(1,1)2f f ''+=联立可得1(1,1)0f '=,2(1,1)1f '=,12(1,1)(1,1)(1,1)df f dx f dy dy ''=+=,故正确答案为C.(7)设函数()f x 在区间[]0,1上连续,则()1f x dx =⎰(A)1211lim22nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑.(B)1211lim2nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑.(C)2111lim2nn k k f n n→∞=-⎛⎫ ⎪⎝⎭∑.(D)2012lim2nx k k f n n→=⎛⎫⋅ ⎪⎝⎭∑.【答案】B.【解析】由定积分的定义知,将[0,1]分成n 份,取中间点的函数值,则11211()lim ,2nn k k f x dx f n n→∞=-⎛⎫=∑ ⎪⎝⎭⎰即选B.(8)二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正惯性指数与负惯性指数依次为(A)2,0.(B)1,1.(C)2,1.(D)1,2.【答案】B.【解析】22221231223312122313(,,)()()()2222f x x x x x x x x x x x x x x x x =+++--=+++所以011121110A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故特征多项式为11||121(1)(3)11E A λλλλλλ---=---=+---令上式等于零,故特征值为1-,3,0,故该二次型的正惯性指数为1,负惯性指数为1.故应选B.(9)设3阶矩阵()123,,ααα=A ,()123,,B βββ=,若向量组123,,ααα可以由向量组12,ββ线性表出,则(A)0Ax =的解均为0Bx =的解.(B)0TA x =的解均为0TB x =的解.(C)0Bx =的解均为0Ax =的解.(D)0TB x =的解均为0TA x =的解.【答案】D.【解析】令123123(,,),(,,),A a a a B βββ==由题123,,a a a 可由123,,βββ线性表示,即存在矩阵P ,使得,BP A =则当00TB x =时,000()0.TTTTA x BP x pB x ===恒成立,即选D.(10)已知矩阵101211125-⎛⎫⎪=- ⎪ ⎪--⎝⎭A 若下三角可逆矩阵P 和上三角可逆矩阵Q ,使PAQ 为对角矩阵,则P ,Q 可以分别取(A)100010001⎛⎫ ⎪ ⎪ ⎪⎝⎭,101013001⎛⎫⎪ ⎪ ⎪⎝⎭.(B)100210321⎛⎫ ⎪- ⎪ ⎪-⎝⎭,100010001⎛⎫⎪ ⎪ ⎪⎝⎭.(C)100210321⎛⎫ ⎪- ⎪ ⎪-⎝⎭,101013001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100010131⎛⎫ ⎪ ⎪ ⎪⎝⎭,123012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.【答案】C.【解析】101100101100101100()211010013210013210125001026101000321---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A,E (,)=F P ,则100210321⎛⎫⎪=- ⎪ ⎪-⎝⎭P ;101100013010000000100101010013001001-⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪⎛⎫⎛⎫→= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭F E ΛQ ,则101013001⎛⎫⎪= ⎪ ⎪⎝⎭Q .故应选C.二、填空题(本题共6小题,每小题5分,共30分.请将答案写在答题纸指定位置上.)(11)23x x dx +∞--∞=⎰.【答案】1ln 3.【解析】222220113233()3ln 3ln 3x x x x x dx x dx d x +∞+∞+∞----+∞-∞==--=-⋅=⎰⎰⎰.(12)设函数()y y x =由参数方程2214(1)t t x e t y t e t⎧=++⎨=-+⎩确定,则202t d ydx ==.【答案】23.【解析】由4221t t dy te t dx e +=+,得223(442)(21)(42)2(21)t t t t tt d y e te e te t e dx e +++-+=+,将0t =带入得20223t d ydx ==.(13)设函数(,)z z x y =由方程(1)ln arctan(2)1x z y z xy ++-=确定,则(0,2)zx ∂=∂.【答案】1.【解析】方程两边对x 求导得2212(1)014z z y z x y x z x x y ∂∂+++-=∂∂+,将0,2x y ==带入原方程得1z =,再将0,2,1x y z ===带入得1zx∂=∂.(14)已知函数11()t x f t dx dy y =⎰,则2f π⎛⎫' ⎪⎝⎭.【答案】2ππ【解析】交换积分次序有21()sinty xf t dx y =-⎰,从而211()sin cos cos t y x tf t dx y dyy y ⎛⎫=-=- ⎪⎝⎭⎰11cos cos ty dy y ydy y =-21cos t t y ydy=-23332cos cos cos()2t u tf t t du tu t t⎛⎫'=+-⋅-⎝,故2fπ⎛⎫'=⎪⎝⎭2ππ-(15)微分方程0y y-=的通解y=.【答案】12123123cos sin,,,22xxy C e e C C C C C R-⎛⎫=++∈⎪⎪⎝⎭.【解析】由特征方程310λ-=得12,311,22iλλ==-±,故方程通解为12123123cos sin,,,22xxy C e e C C C C C R-⎛⎫=++∈⎪⎪⎝⎭.(16)多项式12121()211211x x xxf xxx-=-中3x项的系数为______________.【答案】-5.【解析】12211211112 121()1121211221211112131211 211x x xx x xxf x x x x x x xxx x xx----==-------所以展开式中含3x项的有33,4x x--,即3x项的系数为-5.三、解答题(本题共6小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.)(17)(本题满分10分)求极限211lim1sinx txxe dte x→⎛⎫+⎪-⎪-⎪⎝⎭⎰.【答案】12.【解析】2200001sin11lim lim1sin(1)sinx xt tx xx xe dt x e dte x e x→→⎛⎫+--⎪-=⎪--⎪⎝⎭⎰⎰又因为22233001(1())()3x xt e dt t o t dt x x o x=++=++⎰⎰,故原式=3333222111(())(1())()3!3!2limxx x o x x x o x x x o xx→-++++--+=22201()12lim 2x x o x x →+=.(18)(本题满分12分)已知()1x xf x x=+,求()f x 的凹凸性及渐近线.【答案】凹区间(,1)-∞-,()0,+∞,凸区间(1,0)-.斜渐近线是1y x =-,1y x =--.【解析】因为22,01(),01x x xf x x x x⎧>⎪⎪+=⎨-⎪≤⎪+⎩,故0x >,()222()1x x f x x +'=+,()32()1f x x ''=+,0x <,()222()1x x f x x --'=+,()32()1f x x -''=+,所以x (,1)-∞-1-(1,0)-0()0,+∞()f x ''+-+()f x 凹拐点凸拐点凹凹区间(,1)-∞-,()0,+∞,凸区间(1,0)-.1lim1x x xx →-=∞+,1x =-是垂直渐近线.lim 1(1)x x x x x →+∞=+,lim (1) 1.(1)x x x x →+∞-=-+lim 1(1)x x x x x →-∞=-+,lim (1) 1.(1)x x x x →+∞-=-+斜渐近线是1y x =-,1y x =--.(19)(本题满分12分)()f x 满足216x x C =-+,L 为曲线()(49)y f x x =≤≤,L 的弧长为s ,L 绕x 轴旋转一周所形成的曲面的面积为A ,求s 和A .【答案】4259π.113x =-,31221()3f x x x =-,曲线的弧长944223s ===⎰⎰.曲面的侧面积31992244122(3A x xππ==-⎰⎰4259π=.(20)(本题满分12分)函数()y y x =的微分方程66xy y '-=-,满足10y =,(1)求()y x ;(2)P 为曲线()y y x =上的一点,曲线()y y x =在点P 的法线在y 轴上的截距为y I ,为使y I 最小,求P 的坐标.【答案】(1)()61.3x y x =+(2)41,3P ⎛⎫± ⎪⎝⎭时,y I 有最小值11.6【解析】(1)66'y y x x -=-,666()dx dx x x y e e dx C x -⎡⎤⎰⎰∴=-+⎢⎥⎣⎦⎰66611x C Cxx ⎛⎫=+=+ ⎪⎝⎭将10y =代入,13C =,()61.3x y x ∴=+(2)设(),P x y ,则过P 点的切线方程为()52Y y x X x -=-,法线方程为()512Y y X x x-=--,令0X =,641132y x Y I x∴==++,偶函数,为此仅考虑()0,+∞令()'55220y I x x =-=, 1.x =()0,1x ∴∈,()'0y I <,()1116y y I I >=;()1,x ∈+∞,()'0y I >,()1116y y I I >=41,3P ⎛⎫∴± ⎪⎝⎭时,y I 有最小值11.6(21)(本题满分12分)曲线22222()(0,0)x y x y x y +=-≥≥与x 轴围成的区域为D ,求Dxydxdy ⎰⎰.【答案】148【解析】340sin cos Dxydxdy d drπθθθ=⎰⎰⎰2401cos 2sin cos 4d πθθθθ=⎰2401cos 2cos 216d πθθ=-⎰4301cos 248πθ=-148=.(22)(本小题满分12分)设矩阵210=1201A a b ⎛⎫ ⎪⎪ ⎪⎝⎭仅有两个不同的特征值.若A 相似于对角矩阵,求a ,b 的值,并求可逆矩阵P ,使1P AP -为对角矩阵.【解析】由210120()(3)(1)01E A b a bλλλλλλλ---=--=---=---当3b =时,由A 相似对角化可知,二重根所对应特征值至少存在两个线性无关的特征向量,则110(3)11010E A a -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭知,1a =-,此时,123λλ==所对应特征向量为12101,001αα⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,31λ=所对应的特征向量为3111α-⎛⎫⎪= ⎪⎪⎝⎭,则1331P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭当1b =时,由A 相似对角化可知,二重根所对应特征值至少存在两个线性无关的特征向量,则110()11010E A a --⎛⎫ ⎪-=-- ⎪ ⎪--⎝⎭,知1a =,此时,121λλ==所对应特征向量为12101,001ββ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,33λ=所对应的特征向量为3111α⎛⎫⎪= ⎪⎪⎝⎭,则1113P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.。
2021研究生考试数学二真题及答案解析
![2021研究生考试数学二真题及答案解析](https://img.taocdn.com/s3/m/f2ad8a16b80d6c85ec3a87c24028915f804d84b5.png)
2021考研数学真题及答案解析数学(二)一、选择题(本题共10小题,每小题5分,共50分.每小题给出的四个选项中,只 有一个选项是符合题目要求,把所选选项前的字母填在答题卡指定位置上.)⑴当0时,£_(/-i)必时%7的(A)低阶无穷小. (B)等价无穷小. (C)高阶无穷小. (D)同阶但非等价无穷小. 【答案】C.【解析】因为当时,=2x(/-1)〜2%7,所以边是%7高阶无穷小,正 确答案为C.>-1(2)函数 /(%>#u,在 %=o 处 1,% = 0【答案】D.【解析】因为lim/⑶=lim —=1=/(0),故/(%)在% = 0处连续;n_i x因为 1in/(x )"(0)=ii m——=lim eX -1~X =-,故/'(0) =丄,正确答案为 D. x-0x-0 %2 2 2(3)有一圆柱体底面半径与高随时间变化的速率分别为2cm/s, -3 cm/s,当底面半径为10 cm , 高为5 cm 时,圆柱体的体积与表面积随时间变化的速率分别为(A) 125 兀cm 3 / ^ , 40 兀cm 2 / 5 . (B) 125 7vcm 3 / s ,-40 7rcm 2 / s . (C) - 1007rcm 3 / 5 , 40 ncm / 5 . (D) -100 7rcm 3 / s ,-40 Ticm 1 / s . 【答案】C.【解析】由题意知,— = 2, —= -3,又V = 7ir 2h.S = l7irh + l7ir 2⑷设函数/(%) = ax-blnx(a>0)有两个零点,则$的取值范围是 (A) (e ,+oo).(A) 连续且取极大值.(C)可导且导数为0. 连续且取极小值. (D)可导且导数不为0.(C)(0,一).dt dtdtdt dt dtdt dt dt 当 r = 10,/z = 5 时,=40/r ,选 C.【答案】A.【解析】/(x) = ax-Z7lnx = 0 , f\x) =a~ —,令/''(%) = 0 有驻点 % = —,f x a 从而ln->l,可得->e,正确答案为A.a a(5)设函数/(x) = secx 在* = 0处的2次泰勒多项式为1 + ax + bx 2,则 ,z 1、, 1(A) a = (B) a = l,b =—. (C) a = O^b = (D) a = Q^b =【答案】D.f (0) = sec 0 = 1,/ '(0) = (sec x tan x) 则 f (x ) - secx = 1 + ^-x 2 + a(x 2).故选 D.(6)设函数/(x ,j)可微,且/(x + l ,e x ) = x(x + l)2,/(x,x 2)=2x 2lnx ,则= (A) dx + dy . (W )dx-dy .(C)办.(D) ~dy【答案】c.【解析】乂'(x + l ,e x ) + e%(x + l ,e x ) = (x + 1)2 + 2X (X + 1)① f; (x ,x 2) + 2xf^ (x ,x 2) =4xlnx + 2x②X=1分别带入①②式有J = 1矶 1)壤 1) = 1,胭+ 2側1) = 2联立可得乂'(1,1) = 0,人'(1,1) = 1,#(1,1) = 乂'(1,1)办+人(1,1)办=办,故正确答案为C.(7)设函数/(%)在区间[0,1]上连续,则^f (x )dx =即选B.(8) 二次型f (x p x 2,x 3) = (x x + %2)2 + (x 2 + x 3)2 — (x 3 — x x )2的正惯性指数与负惯【解 析】 由 /(x) = /(0) + /'(0)x + ifx 2+ a(x 2)知 当 /(x) = secx 时, x=o - 0,/ "(0) = (sec x tan 2x + sec 3x)尸⑼【答案】 【解析】 n2n2nk-V\ 1 (B) limj ;/«^oo<2^-012nv 各 M 2 (D) i 1培limV/B.由定积分的定义知,将[0,l ]分成77份,取中间点的函数值,则 —, n2n )lf /(x)d?x = lim S / JO n^oo k=l2n a .L b .ln ha a性指数依次为(A)2,0. (B)l,l. (C)2,l. (D)l,2. 【答案】B.【解析】/(x1?x2,x3) = (x t +x2)2 +(x2 +x3)2 -(x3 -xj2 = 2X22+2X{X2+2X2X3 + 2x^3,0 1n所以d =1 2 1,故特征多项式为1 1 0;2-1 -1\AE-A\= -1 -2-1 =(2+ 1)(2-3)2-1-1 乂令上式等于零,故特征值为-1,3, 0,故该二次型的正惯性指数为1,负惯性指数为1.故应选B.(9)设3阶矩阵J = (a p a 2,a 3),B ,若向量组a p a 2,a 3可以由向量组為,代线 性表出,贝IJ(A) Ax = 0的解均为Bx = Q 的解. (B) A T X = 0的解均为B T X = 0的解. (C) Bx = 0的解均为Ax = 0的解. (D) B T X = 0的解均为A T x = 0的解. 【答案】D.【解析】令A = h ,a”a 3\B = (H/^,由题a”a 2,a 3可由A ,/W 3线性表示,即存在矩阵尸, 使得BP = A ,则当B T X Q = 0时,【答案】C. 【解析】r i0 0、2 -1 0「32 bp0 -1 1 0 0、p0 -11 00、p 0-1 1 0 0、2 -11 0 1 00 -13 -2 1 00 1-3 2 -1 02 -5 0 0 b2-610 b0 -32 b(為五)=A T X Q = (BPf x Q = P TB TX . = 0.恒成立,即选 D.若下三角可逆矩阵P 和上三角可逆矩阵使/Mg 为对角(B)-1 20、 0b,1 0 0、o r0 0、(C)2-10 , 0 1 3.(D) 0 1 0「3 2 1,、0 0 1,J 3 b(I0 、0 00、 0 b -3、 272 -1 02021,2填空题(本题共6小题,每小题5分,共30分.请将答案写在答题纸指定位置(13)设函数z=z(x,y)由方程(x + l)z + jInz - arctan(2xj^) = 1 确定,则一 dx【答案】1.【解析】方程酿对X 求导得Z + (X + 1)盖”艺-南^x = 0,y = 2带入原方程得z = l,再将x = 0,少=2,z = 1带入得& = 1. dxycQS^-dy-^ ycGsydyCt COSU 7 cyli7ycosydy(1 0-p 00、0 1 -30 1’F、0 0 0 -> 0 0 01 0 0 1 0 1 0 10 1 3<0 0<0 0 b,则Q= 01 3 .故应选C.io二、上.)(11) j |%|3_%2 dx = 【答案】—.In 3 醐】[|x|yXdx = 2\{ :\3-々x =-p_»-忐.3_ {XX 、确定’则>。
考研数学二(高等数学)历年真题试卷汇编29(题后含答案及解析)
![考研数学二(高等数学)历年真题试卷汇编29(题后含答案及解析)](https://img.taocdn.com/s3/m/221dec7bf524ccbff12184e6.png)
考研数学二(高等数学)历年真题试卷汇编29(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.甲乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分的面积的数值依次为10,20,3。
计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10。
B.15<t0<20。
C.t0=25。
D.t0>25。
正确答案:C解析:从0到t0时刻,甲、乙的位移分别为v1(t)dt和v2(t)dt。
要使乙追上甲,则需[v2(t)-v1(t)]dt=10。
由定积分的几何意义可知∫025[v2(t)-v1(t)]dt=20-10=10,则t0=25。
故选C。
知识模块:一元函数积分学2.设f(x)=x2(x-1)(x-2),则f’(x)的零点个数为( )A.0。
B.1。
C.2。
D.3。
正确答案:D解析:因为f(0)=f(1)=f(2)=0,由罗尔定理知有ξ1∈(0,1),ξ2∈(1,2)使f’(ξ1)=f’(ξ2)=0,所以f’(x)至少有两个零点。
又f’(x)中含有因子x,故x=0也是f’(x)的零点,D正确。
知识模块:中值定理填空题3.一根长为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心坐标=_______。
正确答案:11/20解析:质心横坐标其中∫01xρ(x)dx=∫01x(-x2+2x+1)dx=(-)|01=11/12,∫01ρ(x)dx=∫01(-x2+2x+1)dx=(-+x2+x)|01=5/3,所以得知识模块:一元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。
4.设函数f(x)=,x∈[0,1],定义函数列:f1(x)=f(x),f2(x)=f[f1(x)],…,fn(x)=f[fn-1(x)],…。
考研数学二(高等数学)历年真题试卷汇编24(题后含答案及解析)
![考研数学二(高等数学)历年真题试卷汇编24(题后含答案及解析)](https://img.taocdn.com/s3/m/c2838b1abb4cf7ec4bfed08b.png)
考研数学二(高等数学)历年真题试卷汇编24(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知y=x/lnx是微分方程y’=+φ(x/y))的解,则φ(x/y)的表达式为( )A.-y2/x2。
B.y/2x2。
C.-x2/y2。
D.x2/y2。
正确答案:A解析:将y=x/lnx代入微分方程y’=+φ(x/y),得即φ(lnx)=-1/ln2x。
令lnx=u,有φ(x/y)=-1/u2,故φ(x/y)=-y2/x2。
应选A。
知识模块:一元函数微分学2.设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(1)=2,则g(1)等于( ) A.ln3-1。
B.-ln3-1。
C.-ln2-1。
D.ln2-1。
正确答案:C解析:对函数h(x)=e1+g(x)两边对x求导可得h’(x)=e1+g(x)g’(x)。
上式中令x=1,结合已知h’(1)=1,g’(1)=2,可知1=h’(1)=e1+g(1)g’(1)=2e1+g(1)g(1)=-ln2-1,因此选C。
知识模块:一元函数微分学3.函数f(x)=ln|(x-1)(x-2)(x-3)|的驻点个数为( )A.0。
B.1。
C.2。
D.3。
正确答案:C解析:由已知可得f(x)-ln|x-1|+ln|x-2|+ln|x-3|,令f’(x)=0,即3x2-12x+11=0,根据其判别式△=(-12)2-4×3×11>0,所以f’(x)=0有两个实数根,即f(x)有两个驻点,因此选C。
知识模块:一元函数微分学4.设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=( ) A.(-1)n-1(n-1)!。
B.(-1)n(n-1)!。
C.(-1)n-1n!。
D.(-1)nn!。
正确答案:A解析:根据导数的定义,有=(-1)n-1(n-1)!,因此正确选项是A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得x xx x y ysin 1cos )sin 1ln(1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即x x y x ln ][22=',两边积分得 Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算. 6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
一般地,若n n a a a αααβ12121111+++=Λ,n n a a a αααβ22221212+++=Λ,ΛΛΛΛn mn m m m a a a αααβ+++=Λ2211,则有[][].,,,2122212121112121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n m m n m a a a a a a a a a ΛM M M M ΛΛΛΛαααβββ7….【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C). 【评注】 本题综合考查了数列极限和导数概念两个知识点.8….【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为⎰+=xCdt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdtt f 0)(为偶函数,从而⎰+=xCdt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x, 排除(D); 故应选(A). 【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系?9..【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.10…【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D ⎰⎰+++++])()()()()()()()([21=.2241222ππσb a b a d b a D +=⋅⋅+=+⎰⎰ 应选(D).【评注】 被积函数含有抽象函数时,一般考虑用对称性分析. 特别,当具有轮换对称性(x,y互换,D 保持不变)时,往往用如下方法:⎰⎰⎰⎰⎰⎰+==DDDdxdy x y f y x f dxdy x y f dxdy y x f .)],(),([21),(),(11…【分析】 先分别求出22x u ∂∂、22y u ∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x x u--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x y u-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x y x u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y uxu ∂∂=∂∂,应选(B). 【评注】 本题综合考查了复合函数求偏导和隐函数求偏导以及高阶偏导的计算。
作为做题技巧,也可取1)(,)(2==t t t ψϕ,则y y x y x u 222),(22++=,容易验算只有2222y uxu ∂∂=∂∂成立,同样可找到正确选项(B).12….【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim 1x x x ,.1lim 1-∞=--→x x x 从而+∞=-→+11lim x xx e ,.0lim 11=-→-x xx e13….【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).【评注】 本题综合考查了特征值、特征向量和线性相关与线性无关的概念.14…【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).【评注】 注意伴随矩阵的运算性质:EA A A AA ==**,当A 可逆时,,1*-=A A A***)(A B AB =.15… 【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xx x x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f xdtt f xxx +⎰⎰→=.21)0()0()0(=+f f f【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则⎰⎰+→xxx x xf du u f dtt f 0)()()(lim=.21)()()()(lim 0='++→x f x x f x f x f x错误的原因:f(x)未必可导.16…. 【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得 ⎰-=--y xdtt t x e 1))((ln )1(21ϕ, 而xe y =,于是⎰-=--y dtt t y y 1))((ln )1ln (21ϕ两边对y 求导得 )(ln )11(21y y y ϕ-=-,故所求的函数关系为:.21ln )(y y y y x --==ϕ【评注】 本题应注意点M(x,y)在曲线2C 上,因此满足xe y =.17……【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3030302232)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f【评注】 本题f(x) 在两个端点的函数值及导数值通过几何图形给出,题型比较新颖,综合考查了导数的几何意义和定积分的计算. 另外,值得注意的是,当被积函数含有抽象函数的导数时,一般优先考虑用分部积分.18…….【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】dt dy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222t dt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,得 022=+y dt yd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y代入,有1,221==C C . 故满足条件的特解为.122x x y -+=【评注】 本题的关键是将y y ''',转化为22,dt y d dt dy ,而这主要是考查复合函数求一、二阶导数.19….【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f【评注】 中值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式.20……【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f 2=∂∂,y y f 2-=∂∂,于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(, 再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f 令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=x f A ,0)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=y fC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点. 再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF yx λλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.【评注】 本题综合考查了多元函数微分学的知识,涉及到多个重要基础概念,特别是通过偏导数反求函数关系,要求考生真正理解并掌握了相关知识.21…..【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可. 【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D ⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdyy x=⎰⎰--2021)1(πθrdrr d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π【评注】 形如积分σd y x f D⎰⎰),(、⎰⎰Dd y x g y x f σ)},(),,(max{、⎰⎰Dd y x g y x f σ)},(),,(min{、⎰⎰Dd y x f σ)],([、⎰⎰-Dd y x g y x f σ)},(),(sgn{等的被积函数均应当作分区域函数看待,利用积分的可加性分区域积分.22……【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββM 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j j β不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββM =A 作初等行变换,有 ),,,,(321321αααβββM =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a M M M →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221M M M →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221M M M ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221M M M , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时, →A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221M M M ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321M M M M βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112M M M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a M M M ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--a a ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.【评注】 1)向量组321,,βββ不能由向量组321,,ααα线性表示,必有行列式:0],,[321=ααα,由此也可确定a .2) 向量组能否线性表示的问题完全转化为线性方程组是否有解的问题.23…….【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.【评注】 AB=O这类已知条件是反复出现的,应该明确其引申含义:1)B 的每一列均为Ax=0的解;2).)()(nBrAr≤+本题涉及到对参数k及矩阵A的秩的讨论,这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.。