中考数学图表信息题
新课标九年级数学中考复习强效提升分数精华版图表信息题
(2)按题意知:y=(200-a)x+170(70-x)+160(40-x)+150(x-10), 即y=(20-a)x+16 800.
请回答下列问题: (1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路
匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运
送树苗时,离校路程s与时间t之间的图象,并结合图象直接写
出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需
2小时,要求14时前返回到学校,往返平均速度分别为每时
10 km、8 km.现有A、B、C、D四个植树点与学校的路程分 别是13 km、15 km、17 km、19 km,试通过计算说明哪几个 植树点符合要求. 【思路点拨】观察图象,理解图象上点的坐标所代表的实际 意义,结合图象解决实际问题.
解答图表信息问题的一般步骤是:
(1)观察图表,获取有效信息; (2)对已获信息进行加工、整理,理清各变量之间的关系;
表格类信息题 【例1】(2010 ·德化中考)某商店需要购进甲、乙两种商品 共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1 100元,问甲、乙 两种商品应分别购进多少件? (2)若商店计划投入资金少于4 300元,且销售完这批商品后 获利多于1 260元,请问有哪几种购货方案? 并直接写出其中 获利最大的购货方案.
【解析】(1)设舟山与嘉兴两地间的高速公路路程为s千米, 由题意得 s s 10, 解得s 360.
中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)
2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )
中考数学复习图表信息题
考点一 图形信息型 例1 ( ·永州)一张桌子上摆放有若干个大小、形
状完全相同的碟子,现从三个方向看,其三种视图如 图所示,则这张桌子上碟子的总个数为( B )
A. 11 B. 12 C. 13 D. 14
第36课时 图表信息题
考点演练
考点一 图形信息型
思路点拨
由主视图可知右上角的盘子有5个,由左视图可知左下角的盘 子有3个,结合主视图和左视图可以知道左上角的盘子有4个, 则可求出总个数.
第36课时 图表信息题
专题解读
5. 统计图信息型 统计图本身就是用来整理数据信息的,所以统计图中一定包
含着大量的数据,能正确根据数据绘制成统计图和从统计图中正 确提取需要的信息是我们必须掌握的.同学们只有理解统计图的 特点及每种统计图分别涉及的一般性计算,才能更好地解决问题.
第36课时 图表信息题
第36课时 图表信息题
(能1)正填确空读:图m与=识__图有_是__的解__决_特,问n题征=的__及关__键_其.__要_性;注质意条来形统表计现图能)显或示数某项量的具关体系数量.解,而答扇形时统通计图常能显借示助各项图所占形的本百分身比的大小,扇
形 第统36计课图时中所图有表扇信的形息性表题示质的百,分结比之合和为推1,理某项、的计具体算数量,除甚以其至所占图的形百分变比即换可的得到方样本法容来量.解决问题.
第36课时 图表信息题
专题解读
4. 函数图象信息型 函数图象信息型问题是通过图象呈现出问题中的两个变量之
间的函数关系,主要考查同学们对函数思想和数形结合思想的理 解与应用,要求同学们具有较强的抽象思维能力和综合分析能力. 解答这类问题,需要在理解题意的基础上,弄清两条坐标轴所代 表的含义,并对图象的形状、位置、发展变化趋势等方面提炼有 效信息,进而找到解决问题的突破口.
中考数学冲刺:图表信息型问题--知识讲解(基础)(附答案)
中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离为S (km )和行驶时间t (h )之间的函数关系的图象如图所示,根据图中提供的信息,回答下列问题:(1)甲乙两个同学都骑了 (km ).(2)图中P 点的实际意义是 . (3)整个过程中甲的平均速度是 . 【思路点拨】利用函数图象,结合问题可得出甲乙两个同学骑车距离,甲的平均速度等. 【答案与解析】 解:(1利用图象可得:s 为18千米,即甲乙两个同学都骑了18千米, (2)图中P 点的实际意义是:甲,乙相遇,此时乙出发了0.5小时, (3)整个过程中甲的平均速度是 18÷2.5=7.2千米每小时. 故填:(1)18 ;(2)乙出发0.5小时后追上甲,(3)7.2km/h . 【总结升华】此题主要考查了利用函数图象得出正确的信息,题目解决的是实际问题,比较典型. 举一反三:【高清课堂:图表信息型问题 例2】【变式】为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 【答案】解:(1)六月份应缴纳的水费为:1.5102831⨯+⨯=(元) (2)当010x ≤≤时, 1.5y x =当10x m <≤时,152(10)25y x x =+-=-当x m >时,152(10)3()35y m x m x m =+-+-=--。
中考数学专题复习精品课件专题3 图表信息问题(65张)
2019/4/15
21
(3)设乙今年3月月应纳税额为y元.
∵3月缴了个人所得税3千多元,现行征税方法中:
20 000×20%-375=3 625>3 000
9 000×20%-375=1 425<3 000 草案征税方法中: 20 000×25%-975=4 025>4 000 9 000×20%-525=1 275<3 000
2019/4/15
36
6.(2010·铁岭中考)小张骑自行车 匀速从甲地到乙地,在途中休息了
一段时间后,仍按原速行驶.他距
乙地的距离与时间的关系如图中折
线所示,小李骑摩托车匀速从乙地
到甲地,比小张晚出发一段时间,他距乙地的距离与时间的 关系如图中线段AB所示.
2019/4/15
37
(1)小李到达甲地后,再经过_____小时小张到达乙地;小张 骑自行车的速度是______千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇,则他出发的时间 x应 在什么范围?(直接写出答案)
2019/4/15
32
4.(2010·玉溪中考)王芳同学为参加学校 组织的科技知识竞赛,她周末到新华书店 购买资料.如图,是王芳离家的距离与时 间的函数图象.若黑点表示王芳家的位置, 则王芳走的路线可能是( )
2019/4/15
33
【解析】选B.根据题中所给函数图象可知:开始王芳离家越
来越远,然后离家的距离不变,再离家越来越近,符合图象
量关系,使之变成我们可利用的条件,进行推理计算,从而
使问题获得解决.
2019/4/15
7
【例1】(2011·潍坊中考)2010年秋冬北方严重干旱,凤凰社
中考数学第二轮复习:图表信息问题
1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.
中考数学专题:例练——第6课时图表信息题详解详析试题(共7页)
第6课时 图表(t úbi ǎo)信息题 类型之一 图形信息题找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理才能。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
1.〔·〕观察以下图形的构成规律,根据此规律,第8个图形中有 个圆. 2.〔·〕如下左图是某用地板铺设的局部图案,HY 是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是〔 〕A .54个B .90个C .102个D .114个 3.(·)如上右图,矩形A 1B 1C 1D 1的面积为4,顺次连结各边中点得到四边形A 2B 2C 2D 2,再顺次连结四边形A 2B 2C 2D 2四边中点得到四边形A 3B 3C 3D 3,依此类推,求四边形A n B n C n D n ,的面积是 。
4〔·襄樊〕如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.类型之二 图象信息题此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进展分类、提取加工,再合成.5.〔•〕如图表示一艘轮船和一艘快艇沿一样道路从图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:〔1〕注重整体阅读。
先对材料或者图表资料等有一个整体的理解,把握大体方向。
要通过整体阅读,搜索有效信息;〔2〕重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;〔3〕注意图表细节。
图表中一些细甲港出发到乙港行驶过程随时间是变化的图象,根据图象以下结论错误的选项是〔〕A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船 6.〔•〕如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为x,△ABP的面积为y,假如y关于x的函数图象如图2所示,那么△ABC的面积是〔〕A.10B.16C.18D.207.〔·〕下表为抄录奥运会官方票务网公布的三种球类比赛的局部门票价格,某公司购置的门票种类、数量绘制的条形统计图如以下图.根据上列图、表,答复以下问题:〔1〕其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;〔2〕公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张〔假设所有的门票形状、大小、质地等完全一样且充分洗匀〕,问员工小亮抽到足球门票的概率是;〔3〕假设购置乒乓球门票的总款数占全部门票总款数的,试求每张乒乓球门票的价格.类型(lèixíng)之三从表格、数字中寻求规律能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探究规律的时候,如对于数字问题,可以把等式横向、纵向进展比拟,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.8.〔·) 根据图中数字的规律,在最后一个图形中填空.9.〔·自治州〕将杨辉三角中的每一个数都换成分数,得到一个如图4所示的分数三角形,称莱布尼茨三角形.假设用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是 .10.〔·〕我某工艺厂为配合奥运,设计了一款本钱为20元∕件的工艺品投放场进展试销.经过调查,得到如下数据:〔1〕把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜测y与x的函数关系,并求出函数关系式;〔2〕当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?〔利润=销售总价-本钱总价〕〔3〕当地(dāngdì)物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?第6课时图表信息题答案1.【解析】观察图形,第1个图形中“○〞的个数为2=1+1;第2个图形中“○〞的个数为5=4+1=;第3个图形中“○〞的个数为10=9+1=;第4个图形中“○〞的个数为17=16+1=;…第n个图形中“○〞的个数为.【答案(dáàn)】65.2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第层:〔2n-1〕×6,所以第8层中含有正三角形个数是102.【答案】B【解析】由中点四边形性质得:四边形A 2B 2C 2D 2,的面积是矩形A 1B 1C 1D 1的一半,四边形A 3B 3C 3D 3的面积是四边形A 2B 2C 2D 2的面积的一半,依此类推,得到四边形A n B n C n D n 的面积是。
数学中考复习《图表信息题》课件(14张ppt)
练习3 某气象研究中心观测一场沙尘暴从发生到结
束的全过程,开始时风速平均每小时增加2 千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平 均每小时增加4千米/时,一段时间,风速保持不变,当沙 尘暴遇到绿色植被区时 ,其风速平均每小时减少1千米/时, 最终停止,结合风速y与时间x的图象如图,回答下列问题:
运输公司的甲、乙两种货车,已知过去两次租用这 种货车情况如下表(两种货车均为满载)
甲种货车辆数(辆) 乙种货车辆数(辆) 累计运输吨数(吨)
第一次 第二次
2
5
3
6
15.5 35
现租用该公司甲种货车5辆及乙种货车一辆刚好 运完这批货物,如果按每吨运费30元计算,货主应 付运费多少元?
解:设甲乙两种货车满载时的载重量分别
y(千米/时)
(32)
(1)在y轴( ) 内填入相应的数值;
(8)
O 4 10
25
x(小时)
(2)沙尘暴从发生到结束,共经过了多少小时?
(2)沙尘暴从发生到结束,共经过了多少小时?
(3)求出当x≥25时,风速y(千米/时)与时间
x(小时)之间的函数关系式。
解3:2÷(12=)32由(题小意时得)(:32)y(千米B/时) C(25,32)
1 2
x+2
(2)观察图象,当x>-4 时,y> 0;
当x =-4 时,y=0;当x <-4 时,y<0;
(3)观察图象,当x=2时,y= 3 , y
当y=1时x= -2 ; 3
(4)不解方程,求
2 1
1 2
x+2=0的解;x=-4
1
-4 -3 -2 -1-1 o 1 2 3 x
中考数学图表题解析
中考数学图表题解析1. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?2. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?3. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?4. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?5. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?6. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?7. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?8. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?9. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?10. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?11. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?12. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?13. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?14. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?15. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?16. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?17. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?18. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?19. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?20. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?21. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?22. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?23. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?24. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?25. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?。
部分地区中考数学图表信息试题(附答案)
部分地区中考数学图表信息试题(附答案)之间的关系.难度较大.24.(2019黑龙江省绥化市,24,7分)学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:⑴ 此次抽样调查中,共调查了名学生;⑵ 将图①、图②补充完整;⑶ 求图②中C层次所在扇形的圆心角的度数;⑷根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【解析】解:(1)此次抽样调查中,共调查了5025%=200(人);故答案为:200. (2)C层次的人数为:200-120-50=30(人);所占的百分比是:30 200 100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;(3)C层次所在扇形的圆心角的度数是:36015%=54(4)根据题意得:(25%+60%)1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等. 专项九图表信息(43)14.(2019四川省资阳市,14,3分)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势 A级 B级 C级随机抽取棵数(棵)所抽取果树的平均产量(千克)【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:8030+7560+7010=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小. 20. (2019山东省聊城,20,8分)为进一步加强中学生近视眼的防控工作,市××局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县××局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)求表中a、b的值,并补充完频数分布直方图;(2)若视力在4.9以上(含4.9)均为正常,估计该县5600名初中毕业生视力正常的有多少人?解析:(1)要求a的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出a.(2)找出4.9以上(含4.9)的频率和,进行估计总体.解:(1)由150.05=300(人),所以a=3000.25=75(人). .b=60300=0.20.(2)因为视力在4.9以上(含4.9)的频率为0.25+0.20=0.45. 所以56000.45=2520(人)22. (2019江苏盐城,22,8分)第三十届夏季奥林匹克运动会将于2019年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。
中考数学专项训练——图表信息
《图表信息型》专题图表信息问题主要考查学生收集信息和处理信息的能力,解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息。
图表信息型题目大致包括以下四种:表格信息题、图形图象信息题、统计图信息题、图画信息题,这些题型在《全程导航》134—137页里都有提及,本专题主要是补充下图象信息类型的题目。
例2、(07无锡)某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 升.1、近一个月来漳州市遭受暴雨袭击,九龙江水位上涨,小明以警戒水位为0点,用折线统计图表示某一天江水水位情况(如图)。
请你结合折线统计图判断一步下列叙述不正确的是〔 〕 A 、8时水位最高 B P 点表示12时水位高于警戒水位0.6米 C 、8时到16时水位都在下降 D 、、这一天水位均高于警戒水位2、假定甲、乙两人在一次赛跑中路程s 与时间t 的关系如图,那么(1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ;(3)乙在这次赛跑中的速度为 .3、小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了〔 〕A 、32元B 、36元C 、38元D 、44元4、如图,直角梯形ABCD 中,∠A=450,底边AB =5,高AD =3,点E 由点B 沿折线BCD向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM =x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是〔 〕5、下图(1)是某市6月上旬一周的天气情况,图(2)是根据这一周中每天的最高气 温绘制的折线统计图。
初三数学图表信息专题总复习
初三数学图表信息专题总复习专题一图表信息图表信息问题主要考查收集信息和处理信息的能力.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.这种题型命题广泛,应用知识多,是中考的一种新题型,也是今后命题的热点,考查形式有选择题、填空题、解答题.考向一表格信息问题表格信息问题涉及知识点比较广泛,主要有统计、方程(组)、不等式(组)、函数等.解答时关键要根据表格提供的信息,建立相应的数学模型.【例1】2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.级数全月应纳税所得额税率1不超过1500元的部分5%2超过1500元至4500元的部分10%3超过4500元至9000元的部分20%………………依据草案规定,解答下列问题:(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.分析:(1)由于当工资为8000元时,应该纳税,而且应该按照三个级别分别纳税;(2)由于工资为10000元时,要分三种情况进行讨论:①工资小于等于4500元;②工资大于4500元但小于等于7500元;③工资大于7500元小于10000元.解:(1)李工程师每月纳税:1500×5%+3000×10%+(8000-7500)×20%=75+300+100=475(元)(2)设该纳税人的月工薪为x元,则当x≤4500时,显然纳税金额达不到月工薪的8%.当4500<x≤7500时,由1500×5%+(x-4500)×10%>8%x,得x>18750,不满足条件.当7500<x≤10000时,由1500×5%+3000×10%+(x -7500)×20%>8%x,解得x>9375,故9375<x≤10000.答:若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.方法归纳本题涉及的数学思想是分类思想.解题时分类讨论是解决问题的关键.考向二图象信息问题图象信息问题涉及的知识点主要是函数问题.解答时要注意分析图象中特殊“点”反映的信息.【例2】在一条直线上依次有A,B,c三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向c港,最终达到c港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(),y1,y2与x的函数关系如图所示.(1)填空:A,c两港口间的距离为__________,a=__________;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.分析:根据函数图象,容易发现A,B,c三港口位置示意图如下:图象中点P表示当甲到达B港口后再经过一段时间,甲、乙二船与B港口的距离相等,因此可以有两种解法,一种是利用函数解析式来求交点坐标;另一种则是利用追及问题一般方法来解,设甲船追上乙船时,用了t小时,则可知甲船t小时比乙船多行了30,由图容易知道甲、乙两船的速度分别是60/h,30/h,于是可列方程60t=30t+30轻松求解.对于第(3)小题,应该通过分类讨论来解决问题.解:(1)120 2(2)由点(3,90)求得,y2=30x.当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.当y1=y2时,60x-30=30x,解得x=1.此时y1=y2=30.所以点P的坐标为(1,30).该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30.求点P的坐标的另一种方法:由图可得,甲的速度为300.5=60(/h),乙的速度为903=30(/h).则甲追上乙所用的时间为3060-30=1(h).此时乙船行驶的路程为30×1=30().所以点P的坐标为(1,30).(3)①当x≤0.5时,由点(0,30),(0.5,0)求得,y1=-60x+30.依题意,(-60x+30)+30x≤10.解得x≥23,不合题意.②当0.5<x≤1时,依题意,30x-(60x-30)≤10.解得x≥23.所以23≤x≤1.③当x>1时,依题意,(60x-30)-30x≤10.解得x≤43.所以1<x≤43.综上所述,当23≤x≤43时,甲、乙两船可以相互望见.方法归纳本题涉及数形结合、分类讨论的数学思想.解题的关键是确定三个港口的位置.难点是对P点的含义理解.考向三图表综合问题图表综合问题主要分布于统计之中.解题时注意将图表中的信息综合在一起分析解答.【例3】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数/人78146八年级学生最喜欢的运动项目人数统计图九年级学生最喜欢的运动项目人数统计图请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽子,那么学校在“大间操”时至少应提供多少个毽子?分析:(1)因为三个年级都抽取了相同数量的学生,所以只需算出一个年级抽取的学生数即可;(2)根据(1)补充完整表格与统计图;(3)至少应提供的毽子个数=该校学生总人数乘以最喜欢踢毽人数所占的比例再除以4.解:(1)10÷20%=50(人),50×3=150(人).(2)七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数/人7815146八年级学生最喜欢的运动项目人数统计图九年级学生最喜欢的运动项目人数统计图“最喜欢跳绳”的学生占抽样总人数的百分比为22%.(3)14+13+15150×1800÷4=126(个).方法归纳本题考查了统计图、统计表及根据样本估计总体,也是考查统计知识常见题型.解题时读懂图表并将图表信息综合考虑是关键.一、选择题1.某住宅小区6月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是( )A.30吨B.31吨c.32吨D.33吨2.(2011浙江台州)如图,反比例函数y=x的图象与一次函数y=x+b的图象交于点,N,已知点的坐标为(1,3),点N的纵坐标为-1,根据图象信息可得关于x的方程x=x +b的解为( )A.-3,1B.-3,3c.-1,1D.3,-1二、填空题3.上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为____________.4.某村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:第一年第二年第三年…应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…剩余房款(万元)98.58…若第n年小慧家仍需还款,则第n年应还款__________万元(n>1).三、解答题5.2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6.如图①,A,B,c三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向c容器内注水5分钟,然后关闭.设A,B,c三个容器内的水量分别为yA,yB,yc(单位:升),时间为t(单位:分).开始时,B容器内有水50升,yA,yc 与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t=3时,yB的值;(2)求yB与t的函数关系式,并在图②中画出其函数图象;(3)求yA∶yB∶yc=2∶3∶4时t的值.图①图②7.某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x ≤9,且x取整数),10至12月的销售量p2(万件)与月份x 满足关系式p2=-0.1x+2.9(10≤x≤12,且x取整数),求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)参考答案专题提升演练1.c 根据平均数公式可得这5天平均每天的用水量是30+32+36+28+345=32(吨).2.A 把点的坐标代入y=x,求得=3,所以得y=3x,再把y=-1代入y=3x求得x=-3,故关于x的方程x=x +b的解为x=-3,或1.3.431.76c 由图可知,正六边形的对角线长为60c,则其半径为30c,边心距为153c,故所需胶带长度至少为153×12+20×6≈431.76(c).4.0.54-0.002n(填0.5+[9-(n-2)×0.5]×0.4%) 关键是要理解付款的方式,第一年还掉3万元后,第二年付0.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n 年都是要还0.5万元和剩下的[9-(n-2)•0.5]万元的利息,可列式:0.5+[9-(n-2)×0.5]×0.4%,化简可知第n年应还款(0.54-0.002n)万元.5.解:(1)400×5%=20(克).答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-)克,∴4y+(380-)≤400×85%,∴y≥40,∴380-≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为n克,则n≥(1-85%-5%)×400,∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.6.解:(1)当t=3时,yB=50+4×3=62(升).(2)根据题意,当0≤t≤5时,yB=50+4t.当5<t≤10时,yB=70-10(t-5)=-10t+120.yB与t的函数图象如图所示.图②(3)根据题意,设yA=2x,yB=3x,yc=4x.2x+3x+4x=50+60+70.解得x=20.∴yA=2x=40,yB=3x=60,yc=4x=80.由图象可知,当yA=40时,5≤t≤10,此时yB=-10t +120,yc=10t+20.∴-10t+120=60,解得t=6.10t+20=80,解得t=6.∴当t=6时,yA∶yB∶yc=2∶3∶4.7.解:(1)y1与x之间的函数关系式为y1=20x+540, y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000-50-30-20x-540)=(0.1x+1.1)(380-20x)=-2x2+16x+418=-2(x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=(x-29)2,(10≤x≤12,且x取整数)当10≤x≤12时,∵x<29,∴自变量x增大,函数值w 减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月份销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+2.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20%)=60(元),由题意,得5×[1000(1+a%)-810-60-30]×1.7(1-0.1a%)=1700,设t=a%,整理,得10t2-99t+10=0,解得t=99±940120,∵972=9409,962=9216,而9401更接近9409,∴9401≈97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a%)≥1,∴a2≈980舍去,∴a≈10.答:a的整数值为10.。
中考数学图表信息专题
专题6 图表信息问题【考点透视】所谓图表信息问题,就是根据实际问题中所呈现出来的图像、图表信息,要求考生依据这些给出的信息通过整理、分析、加工等手段解决的一类问题,主要考查同学们识图看表的能力以及处理信息的能力.解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息.信息时代的到来,呼唤信息型的中考试题.由于此类问题命题背景广泛、蕴含知识丰富,突出对考生获取、整理与加工信息能力的考查,因而倍受命题者青睐,近年来在各地的中考试题中出现的频率越来越高. 【典型例题】例1(2003年四川省重庆市中考试题)A 、618B 、638 C 、658D 、678分析:由表中数据可知,其输出数据有如下特征:其分子就是输入数据,而其分母则恰好比输入数据的平方大1,因此应为658.解:选C .说明:本题就是利用给出的表格信息,通过观察、归纳、推理等过程,寻求到输出数据的一般规律,进而得到正确的答案.例2.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 升.(2001年江苏省无锡市中考试题)分析:由题意知,摩托车的耗油量与从甲地到乙地所用时间无关,而只与所行驶的路程有关;而由图像可以得到信息,从甲地到乙地的路程为45千米.故耗油量应为45100×2=0.9(升).解:0.9升.说明:本题中摩托车的耗油量与所用时间无关,故从甲地到乙地的行驶时间2小时则属于过剩信息,在解题中要学会合理地排除.例3.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,图6—1时)(2003年山东省济南市中考试题)分析:解决本题的关键是从表格中提取出有效信息,即利润=标价×折扣-进价,再利用相关数据即可得出答案.解:设进价为x元.根据题意,得5850×0.8-x=210,解得x=4470.答:略.说明:本题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是必须从中找出解题所需的有效信息,排除其它信息的干扰,构建相应的数学模型加以解决.例4.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B城旅行。
中考数学专题拓展 图表信息题.docx
图表信息题1. 图表信息题主要包括:①表格信息题;②图形信息题;③图象信息题.2. 做表格信息题要通过表格中呈现出数量变化关系,求出函数解析式,以解决问题;做图形信息题要 把握不同统计图所反映的不同信息;做图象信息题要清楚图象各部分代表的实际意义,要数形结合.考点一、表格信息题【例1】(2019・山东中考真题)下表中给出A ,B, C 三种手机通话的收费方式. 收费方式月通话费/元包时通话时间///超时费/ (元/min )A30 25 0.1 B 50 500.1C100不限时(1)设月通话时间为X 小时,则方案A, B, C 的收费金额N1,力,>3都是X 的函数,请分别求出这三个函数解析式.(2) 填空:若选择方式A 最省钱,则月通话时间X 的取值范围为; 若选择方式3最省钱,则月通话时间x 的取值范围为; 若选择方式C 最省钱,则月通话时间*的取值范围为;(3) 小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.ocQC175 175【答案】(1)〈里(2) —<%<—(3) x> —3 3 33专题概述考A 分析【解析】(1) ,「0.1元/min = 6元///, ...由题意可得,30(0<x<25) 1 [6 尤—120(x >25) 50(0<x<50) 2 [6x-250(% >50) y 3 =100(x2 0); (2)作出函数图象如图:110 100 90 80 70 60 50 40 30 20—1 > ------ | -----------_____II|||O 10 20 30 40 50 60 70 80 90 100 x结合图象可得:QC若选择方式A 最省钱,则月通话时间*的取值范围为:0<》<耳, QC175若选择方式8最省钱,则月通话时间*的取值范围为:—<^<——,33175 若选择方式。
中考数学专题复习图表信息问题【含解析】
图表信息问题【专题点拨】图表信息题关键是“识图”和“用图”,主要是通过图形及表格信息,考查学生收集信息和处理信息的能力.解题时,要充分审视图形、表格,全面掌握其提供的信息,理解其实质,把握其方法规律,从而解决问题。
【解题策略】抓住图形或表格中的关键数据,筛选出有价值的信息,利用数据反映出的信息、规律、性质等建立数学模型解决。
【典例解析】类型一:图像信息题例题1:.(2016广东省贺州市第10题)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A. B. C. D.【答案】B【解析】(1)、二次函数的图象;(2)、一次函数的图象;(3)、反比例函数的图象【解答】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.类型二:表格信息题例题2:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用,一次函数的应用【答案】(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品【解析】解:(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.∴当x=200时,y1max=1180-200a(3≤a≤5)乙产品:y2=-0.05x²+10x-40(0<x≤80)∴当0<x≤80时,y2随x的增大而增大.当x=80时,y2max=440(万元).∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;1180-200=440,解得a=3.7时,此时选择甲乙产品;1180-200<440,解得3.7<a≤5时,此时选择乙产品.∴当3≤a<3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7<a≤5时,上产乙产品的利润高.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:类型三:图文信息题例题3:(2016·湖北黄石·3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B. C. D.【解析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选(A)【点评】本题主要考查了函数图象的变化特征,解题的关键是利用数形结合的数学思想方法.解得此类试题时注意,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.类型四:综合创新类信息题例题4:(2016·湖北随州·9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【解析】二次函数的应用;一元一次不等式的应用.(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【参考答案】变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.【答案】C.【解析】考点:1一次函数图像;2二次函数图像.【解答】:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx 图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【解析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.【点评】不同考查一次函数的应用、分式方程等知识,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验,学会构建一次函数,利用一次函数性质解决实际问题中的最值问题,属于中考常考题型.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.【解析】动点问题的函数图象.根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=,得到=,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN.理由如图二中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.②这样的点P不存在.理由:假设PC=,如图三中,以点C为圆心为半径画圆,以AB为直径画圆,CO==>1+,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC=的点P不存在.【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.【解析】函数的概念.根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.【解析】动点问题的函数图象.△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?【解析】一次函数的应用.(1)由表中数据得出xy=6000,即可得出结果;(2)由题意得出方程,解方程即可,注意检验.【解答】解:(1)由表中数据得:xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=;(2)由题意得:(x﹣120)y=3000,把y=代入得:(x﹣120)•=3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元.【点评】本题考查了反比例函数的应用、列分式方程解应用题;根据题意得出函数关系式和列出方程是解决问题的关键.4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】二次函数的应用.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【解析】二次函数综合题.(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,最后分三种情况计算即可.【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵△PDF∽△BGN,∴PF:PD的值固定,∴PE×PF最大时,PE×P D也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的结论公式,解本题的关键是相似三角形的性质的运用.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——图表信息题
一、热点再现
1.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 s(米)与所用时间 t (秒)之间的函数图象分别为线段OA和折
线OBCD.下列说法正确的是( )
A.小莹的速度随时间的增大而增大
B.小梅的平均速度比小莹的平均速度大
C.在起跑后 180 秒时,两人相遇
D.在起跑后 50 秒时,小梅在小莹的前面
2.小高从家骑自行车去学校上学,先走上
坡路到达点A,再走下坡路到达点B,最后走平路到达
学校,所用的时间与路程的关系如图所示.放学后,如
果他沿原路返回,且走平路、上坡路、下坡路的速度分别
保持和去上学时一致,那么他从学校到家需要的时间是( )
A.14分钟 B.7分钟 C.18分钟 D.20分钟
3.某广场有一喷水池,水从地面喷出,如图,
以水平地面为x轴,出水点为原点,建立平面直角坐标系,
水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一
部分,则水喷出的最大高度是( )
A.4米 B.3米 C.2米 D.1米
4.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:
(1)表中a=__________,b=_________;
(2)这个样本数据的中位数在第____________组;
(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九
2003 2004 2005 年
某开发区每年年底人口总 数统计图
2003 2004 2005 年
某开发区每年年底人均住房面积统计图
年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?
排球30秒对墙垫球的中考评分标准
二、点拨拓展
例1:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加。
(人均住房面积=该区住房总面积/该区人口总数,单位:m 2
/人), 该开发区2003~2005年,每年年底人口总数和人均住房面积的统 计结果分别如下图:请根据两图所所提供的信息,解答下面的问题: ⑴该区2004年和2005年两年中,哪一年比上一年增加的住房面 积多?增加多少万m 2
?
⑵由于经济发展需要,预计到2007年底,该区人口总数比 2005年底增加2万,为使到2007年底该区人均住房面积达到 11m 2
/人,试求2006年和2007年这两年该区住房总面积的年平 均增加率应达到百分之几?
例2:《喜羊羊与灰太狼》是一部中、小学生都喜欢看的动画片,某企业获得了羊公仔和
狼公仔的生产专利.该企业每天生产两种公仔共450只,两种公仔的成本和售价如下表所示.如果设每天生产羊公仔x 只,每天共获利y 元. (1)求出y 与x 之间的函数关系及自变量x 的取值范围;
(2)如果该企业每天投入的成本不超过10000元,那么要每天获利最多,应生产羊
公仔和狼公仔各多少只?
变式训练:某采摘农场计划种植A B 、两种草莓共6亩,根据表格信息,解答下列问题:
(1)若农场每年草莓全部被采摘的总收入为460000元,那么A B 、两种草莓各种多少亩? (2)若要求种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?
项目 品种 A B 年亩产(单位:千克) 1200 2000 采摘价格(单位:元/千克)
60
40
例题3、小亮家最近购买了一套住房,准备在装修时用木质地板铺设居室,用瓷砖铺设
客厅,经市场调查得知:用这两种材料铺设地面的工钱不一样,小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x (m )表示铺设地面的面积,用y(元)表示铺设费用,制成图2-1-23. 请你根据图中所提供的信息,解答下列问题:
⑴ 预算中铺设居室的费用为______元/m 2,铺设客厅的费用为_________元/m 2
; ⑵ 表示铺设居室的费用y (元)与面积x (m )之间的函数解析式为__________, 表示铺设客厅的费用y (元)与面积x (m )之间的函数解析式为_____________; ⑶已知小亮在预算中,铺设1m 2
的瓷砖比铺设1m 2
木质地板的工钱多 5元;购买1m
2
的瓷砖是购买1m 2
木质地板费用的34 ,那么,铺设每平方米木质地板、瓷砖的工钱各
是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?
变式训练:我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据: (1)猜想y 与x 的函数关系,并求出关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
三、体验中考
1.小明的父亲饭后出去散步,从家中走20分钟到一个离家900m 的报亭看10分钟报纸后,用15分钟返回家里观图2d 河中表示小明的父亲离家的时间与距离之间关系的是( ) (图2-l -7)
2.如图2-l -8所示,正方形的面积y 与边长x 之间的函数关系的大致图象是( )、
3.三峡工程在6月l 日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么图2-l -8中,能正确反映这10天水位 h (米)随时间t (天)变化的是( )
4.图2-l -11四个二次函数的图象,函数在x=2时有最大值3的是( )
5.图2-l -12是某报纸公布的我国“九·五”期间国内生产总值的统计图,那么“九·五”期间我国国内生产总值平均每年比上一年增长( )
A .0.575万亿元;
B 、0.46万亿元
C .9.725万亿元;
D .7.78万亿元 6.如图2-1-4所示,A 、B 两个旅游点从2001 年至2005年“五、一”的旅游人数变化情况分别 用实线和虚线表示.根据图中所示解答以下问题: (1)B 旅游点的旅游人数相对上一年, 增长最快的是哪一年?
(2)求A 、B 两个旅游点从2001到2005年旅游人数
的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价; (3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人 数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100x
y =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?。