2017年高考数学分类题库36
【高考真题】2017年山东省高考数学试卷(理科) 含答案解析
2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。
2017年高考数学全国卷(理科新课标Ⅱ )(含答案解析)
2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y 轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选D.【点评】本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,两个复数相除,分子和分母同时乘以分母的共轭复数.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.【点评】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【分析】执行程序框图,依次写出每次循环得到的S,k值,当k=7时,程序终止即可得到结论.【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.【点评】本题主要考查了程序框图和算法,属于基本知识的考查,比较基础.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.【点评】本题考查双曲线的简单性质的应用,圆的方程的应用,考查计算能力.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B【点评】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【分析】判断概率满足的类型,然后求解方差即可.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.【点评】本题考查离散性随机变量的期望与方差的求法,判断概率类型满足二项分布是解题的关键.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题15.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.【点评】本题考查抛物线的简单性质的应用,考查计算能力.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【分析】(1)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin2,结合sin2B+cos2B=1,求出cosB,(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.【点评】本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【分析】(1)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(2)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(3)根据频率分布直方图即可求得其平均数.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).【点评】本题考查频率分布直方图的应用,考查独立性检验,考查计算能力,属于中档题.19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【分析】(1)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(2)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【分析】(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(2)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF 的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.【点评】本题考查轨迹方程的求法,注意运用坐标转移法和向量的加减运算,考查圆的参数方程的运用和直线的斜率公式,以及向量的数量积的坐标表示和两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【分析】(1)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(2)通过(1)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【点评】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【分析】(1)设P(x,y),利用相似得出M点坐标,根据|OM|•|OP|=16列方程化简即可;(2)求出曲线C2的圆心和半径,得出B到OA的最大距离,即可得出最大面积.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.【点评】本题考查了极坐标方程与直角坐标方程的转化,轨迹方程的求解,直线与圆的位置关系,属于中档题.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【分析】(1)由柯西不等式即可证明,(2)由a3+b3=2转化为=ab,再由均值不等式可得:=ab≤()2,即可得到(a+b)3≤2,问题得以证明.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.【点评】本题考查了不等式的证明,掌握柯西不等式和均值不等式是关键,属于中档题。
2017年浙江省高考数学试卷(含解析版)
2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆+=1的离心率是()A.B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆+=1的离心率是()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【考点】CH:离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计.【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,=,=(0,3,6),=(,6,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab=2 .【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16 ,a5= 4 .【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC ,再根据S△BDC =S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S△ABC=BC•AE=×2×=,∵BD=2,∴S△BDC =S△ABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是 4 ,最大值是.【考点】3H:函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,=1+3=3+1=4,则直线y=﹣x+z过M、N时z最小为zmin当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知zmax即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以zmax=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660 种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] .【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【考点】3G:复合函数的单调性;GF:三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.【考点】8H:数列递推式;8K:数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M:构造法;53:导数的综合应用;54:等差数列与等比数列;55:点列、递归数列与数学归纳法;5T:不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2xn+1﹣xn得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n >0, 当n=1时,x 1=1>0,成立, 假设当n=k 时成立,则x k >0,那么n=k+1时,若x k+1<0,则0<x k =x k+1+ln (1+x k+1)<0,矛盾, 故x n+1>0,因此x n >0,(n ∈N*) ∴x n =x n+1+ln (1+x n+1)>x n+1, 因此0<x n+1<x n (n ∈N *),(Ⅱ)由x n =x n+1+ln (1+x n+1)得x n x n+1﹣4x n+1+2x n =x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1), 记函数f (x )=x 2﹣2x+(x+2)ln (1+x ),x ≥0 ∴f′(x )=+ln (1+x )>0,∴f (x )在(0,+∞)上单调递增, ∴f (x )≥f (0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1)≥0, 故2x n+1﹣x n ≤;(Ⅲ)∵x n =x n+1+ln (1+x n+1)≤x n+1+x n+1=2x n+1, ∴x n ≥,由≥2x n+1﹣x n 得﹣≥2(﹣)>0, ∴﹣≥2(﹣)≥…≥2n ﹣1(﹣)=2n ﹣2,∴x n ≤, 综上所述≤x n ≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。
河北省2017年对口升学高考数学试题含答案
2017年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分。
) 1.设集合{|||2}A x x =<,集合{2,0,1}B =-,则A B =( )A .{|02}x x ≤<B .{|22}x x -<<C .{|22}x x -≤<D .{|21}x x -≤< 2.设a b >,c d <,则( )A .22ac bc >B .a c b d +<+C .ln()ln()a c b d -<-D .a d b c +>+ 3.“A B B =”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.设奇函数()f x 在[1,4]上为增函数,且最大值为6,那么()f x 在[4,1]--上为( )A .增函数,且最小值为6-B .增函数,且最大值为6C .减函数,且最小值为6-D .减函数,且最大值为6 5.在△ABC 中,若cos cos a B b A =,则△ABC 的形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 6.已知向量(2,)a x =-,(,1)b y =-,(4,2)c =-,,且a b ⊥,b ∥c ,则( )A .4,2x y ==-B .4,2x y ==C .4,2x y =-=-D .4,2x y =-= 7.设α为第三象限角,则点(cos ,tan )P αα在( )A .第一象限B .第二象限C .第三象限D .第四象限8.设{}n a 为等差数列,3a ,14a 是方程2230x x --=的两个根,则前16项的和16S 为( )A .8B .12C .16D .209.若函数2log a y x =在(0,)+∞内为增函数,且函数4xa y ⎛⎫= ⎪⎝⎭为减函数,则a 的取值范围是( )A .(0,2)B .(2,4)C .(0,4)D .(4,)+∞10.设函数()f x 是一次函数,3(1)2(2)2f f -=,2(1)(0)2f f -+=-,则()f x 等于( )A .86x -+B .86x -C . 86x +D .86x -- 11.直线21y x =+与圆22240x y x y +-+=的位置关系是( )A .相切B .相交且过圆心C .相离D .相交且不过圆心 12.设方程224kx y +=表示焦点在x 轴上的椭圆,则k 的取值范围是( )A .(,1)-∞B .(0,1)C .(0,4)D .(4,)+∞ 13.二项式2017(34)x -的展开式中,各项系数的和为( )A .1-B .1C .20172D .2017714.从4种花卉中任选3种,分别种在不同形状的3个花盆中,不同的种植方法有( )A .81种B .64种C .24种D .4种15.设直线1l ∥平面α,直线2l ⊥平面α,则下列说法正确的是( ) A .1l ∥2l B .12l l ⊥ C .12l l ⊥且异面 D .12l l ⊥且相交 二、填空题(本大题有15个小题,每小题2分,共30分。
2017年高考数学
2017年高考数学试题及答案一、选择题(每题5分,共40分)1. 若函数f(x) = x² - 2ax + 1在区间(0,+∞)上单调递增,则实数a的取值范围是()A. a ≤ 0B. a ≥ 0C. a ≤ 1D. a ≥ 1答案:C2. 已知函数f(x) = |x - 2| - |x + 1|,则f(x)的单调递增区间是()A. (-∞,-1)B. (-1,2)C. (2,+∞)D. (-∞,2]答案:B3. 若矩阵A满足A² - 3A + 2E = 0,则矩阵A的逆矩阵A⁻¹等于()A. A - 2EB. A - 3EC. A + 2ED. A + 3E答案:A4. 设函数f(x) = (x - k)²e²ⁿ,若f(x)在x = k处取得极小值,则实数k的取值范围是()A. k ≤ 0B. k ≥ 0C. k ≤ 1D. k ≥ 1答案:B5. 已知函数f(x) = x³ - 3x + 1,则f(x)的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:B6. 设函数f(x) = x² + ax + b(a,b为常数),若f(x)在区间(0,+∞)上单调递增,且f(1) = 0,则a的取值范围是()A. a ≥ 1B. a ≤ 1C. a ≥ 0D. a ≤ 0答案:A7. 若函数f(x) = x² - 2x + c在区间(0,2)上有两个不同的零点,则实数c的取值范围是()A. 0 < c < 1B. 1 < c < 4C. 0 < c < 4D. 1 < c < 2答案:B8. 若函数f(x) = x² - 4x + 3在区间(1,3)上单调递减,则实数a的取值范围是()A. a ≤ 1B. a ≥ 1C. a ≤ 2D. a ≥ 2答案:C二、填空题(每题5分,共40分)9. 若函数f(x) = |x - 2| - |x + 1|在x = 1处取得最小值,则实数k的值为______。
2017年全国高考数学(文科)真题汇总(6套)附答案
第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.
2017—2020年广东省春季高考数学真题分类汇编(含答案)
20172020一、集合1、(2020)1.已知集合则M N⋃=()A. B. C. D.2、(2019)1.已知集合A={0,2,4},B={-2,0,2},则A∪B=()A.{0,2} B.{-2,4} C.[0,2] D.{-2,0,2,4}3、(2018)1.已知集合M={-1,0,1,2},N={x|-1≤x<2},则M∩N=()A.{0,1,2} B.{-1,0,1} C.M D.N4、(2017)1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P等于()A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}二、复数1.(2020)2.设是虚数单位,则复数()A. B. C. D.2、(2019)2.设i为虚数单位,则复数i(3+i)=()A.1+3i B.-1+3i C.1-3i D.-1-3i3、(2018)4.设i是虚数单位,x是实数,若复数x1+i的虚部是2,则x=()A .4B .2C .-2D .-44、(2017)3.设i 为虚数单位,则复数1-i i =( )A .1+iB .1-iC .-1+iD .-1-i 三、向量1.(2020)16.设向量,若,则_____2、(2019)4.已知向量a =(2,-2),b =(2,-1),则|a +b |=( )A .1 B. 5 C .5 D .253、(2019)13.如图,△ABC 中,AB→=a ,AC →=b ,BC →=4BD →,用a ,b 表示AD →,正确的是 A.AD →=14a +34b B.AD →=54a +14b C.AD →=34a +14b D.AD →=54a -14b 4、(2018)6.已知向量a =(1,1),b =(0,2),则下列结论正确的是( )A .a ∥bB .(2a -b )⊥bC .|a |=|b |D .a ·b =35、(2018)10.如图,O 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是( )A.DA→-DC →=AC → B.DA →+DC →=DO → C.OA→-OB →+AD →=DB → D.AO →+OB →+BC →=AC → 1-i (1-i )·i i -i i +16、(2017)7.已知三点A (-3,3), B (0, 1),C (1,0),则|AB→+BC →|等于( ) A .5 B .4 C.13+ 2 D.13-2四、直线与圆 1.(2020)直线210x y --=的斜率是( )A. B. C. 2 D.2.(2020)12.直线:20+-=l x y 被圆截得的弦长为( )A. B. 2 C. D. 13、(2019)5.直线3x +2y -6=0的斜率是( )A.32 B .-32 C.23 D .-234、(2019)12.已知圆C 与y 轴相切于点(0,5),半径为5,则圆C 的标准方程是( )A .(x -5)2+(y -5)2=25B .(x +5)2+(y -5)2=25C .(x -5)2+(y -5)2=5或(x +5)2+(y -5)2=5D .(x -5)2+(y -5)2=25或(x +5)2+(y -5)2=255、(2018)19.圆心为两直线x +y -2=0和-x +3y +10=0的交点,且与直线x +y -4=0相切的圆的标准方程是________.6、(2017)5.已知直线l 过点A (1,2),且与直线y =12x +1垂直,则直线l 的方程是( )A .y =2xB .y =-2x +4C .y =12x +32D .y =12x +527、(2017)12.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18五、圆锥曲线(2020)19.设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于A,B两点,若为等边三角形,则该椭圆的离心率为____1、(2019)15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴为A 1A 2,P 为椭圆的下顶点,设直线P A 1,P A 2的斜率分别为k 1,k 2,且k 1·k 2=-12,则该椭圆的离心率为( ) A.32 B.22 C.12 D.142、(2018)13.设点P 是椭圆x 2a 2+y 24=1(a >2)上的一点,F 1,F 2是椭圆的两个焦点,若|F 1F 2|=43,则|PF 1|+|PF 2|=( )A .4B .8C .4 2D .473、(2018)16.双曲线x 29-y 216=1的离心率为________.4、(2017)6.顶点在坐标原点,准线为x =-2的抛物线的标准方程是( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y5、(2017)19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若|PF 1|+|PF 2|=4,则椭圆的标准方程是________.六、线性规划与不等式(2020)10.设满足约束条件,则的最小值是( )A. B. C. D.1、(2019)6.不等式x 2-9<0的解集为( )A .{x |x <-3}B .{x |x <3}C .{x |x <-3或x >3}D .{x |-3<x <3}2、(2019)11.设x ,y 满足约束条件⎩⎨⎧x -y +3≥0,x +y -1≤0,y ≥0,则z =x -2y 的最大值为() A .-5 B .-3 C .1 D .43、(2018)9.若实数x ,y 满足⎩⎨⎧x -y +1≥0,x +y ≥0,x ≤0,则z =x -2y 的最小值为( )A .0B .-1C .-32D .-24、(2017)11.已知实数x ,y 满足⎩⎨⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为( )A .3B .5C .9D .105、(2017)13.下列不等式一定成立的是( )A .x +2x ≥2(x ≠0)B .x 2+1x 2+1≥1(x ∈R)C .x 2+1≤2x (x ∈R)D .x 2+5x +6≥0(x ∈R)七、数列(2020)8.在等差数列中,若51015,10,a a =-=-则( )A. B. C. 0 D. 5(2020)17.设等比数列的前n 项和为,已知,,则_____1、(2019)14.若数列{a n }的通项a n =2n -6,设b n =|a n |,则数列{b n }的前7项和为( )A .14B .24C .26D .282、(2019)17.在等比数列{a n }中,a 1=1,a 2=2,则a 4=________.3、(2018)15.已知数列{a n }的前n 项和S n =2n +1-2,则a 21+a 22+…+a 2n =( )A .4(2n -1)2B .4(2n -1+1)2 C.4(4n -1)3 D.4(4n -1+2)34、(2018)20.若等差数列{a n }满足a 1+a 3=8,且a 6+a 12=36.(1)求{a n }的通项公式;(2)设数列{b n }满足b 1=2,b n +1=a n +1-2a n ,求数列{b n }的前n 项和S n .5、(2017)10.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于() A .n 2+1 B .n 2 C .2n -1 D .2n -16、(2017)16.已知x >0,且53,x ,15成等比数列,则x =____________.八、概率与统计(2020)3.某次歌唱比赛中,7位评委为某选手打出的分数分别为83,91,91,94,94,95,96,去掉一个最高分和一个最低分后,所剩数据的平均数为()A. 94B. 93C. 92D. 91(2020)18.从4张分别写有数字1,2,3,4卡片中随机抽取2张,则所取2张卡片上的数字之积为奇数的概率是____1、(2019)8.某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.7和53 B.8和83 C.7和1 D.8和232、(2019)18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是________.3、(2018)7.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A.6和9 B.9和6 C.7和8 D.8和74、(2018)18.笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为________.5、(2017)15.已知样本x1,x2,x3,x4,x5的平均数为4, 方差为3,则x1+6,x2+6,x3+6,x4+6,x5+6的平均数和方差分别为()A.4和3 B.4和9 C.10和3 D.10和96、(2017)18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.实用文档九、逻辑用语(2020)13.已知命题则为 ( )A.B.C. [)()0000,,ln 1x x x ∃∈+∞+≠D.1、(2019)10.命题“∀x ∈R ,sin x +1≥0”的否定是( )A .∃ x 0∈R ,sin x 0+1<0B .∀x ∈R ,sin x +1<0C .∃x 0∈R ,sin x 0+1≥0D .∀x ∈R ,sin x +1≤02、(2018)5.设实数a 为常数,则函数f (x )=x 2-x +a (x ∈R)存在零点的充分必要条件是( )A .a ≤1B .a >1C .a ≤14 D .a >143、(2017)4.已知甲:球的半径为1 cm ;乙:球的体积为4π3 cm 3,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件十、三角函数(2020)6. 若sinα>0,且cosα<0,则角α是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角(2020)20.已知函数.(1)求函数的最小正周期和最大值;(2)若满足,求的值1、(2019)16.已知角α的顶点与坐标原点重合,终边经过点P(4,-3),则cos α=________.2、(2018)12.函数f (x )=4sin x cos x ,则f (x )的最大值和最小正周期分别为( )A .2和πB .4和πC .2和2πD .4和2π3、(2018)17.若sin ⎝ ⎛⎭⎪⎫π2-θ=23,且0<θ<π,则tan θ=________.4、(2017)8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A .sin α=-23B .sin(α+π)=23C .cos α=53D .tan α=-525、(2017)17.函数f (x )=sin x cos(x +1)+sin(x +1)cos x 的最小正周期是____________.十一、解三角形(2020)15.的内角A,B,C的对边分别为.已知,,且的面积为2,则()A. B. C. D.1、(2019)20.△ABC的内角A,B,C的对边分别为a,b,c,已知cos A=35,bc=5.(1)求△ABC的面积; (2)若b+c=6,求a的值.2、(2018)11.设△ABC的内角A,B,C的对边分别为a,b,c,若a=3,b=2,c=13,则C=()A.5π6 B.π6 C.2π3 D.π33、(2017)20.已知△ABC的内角A,B,C的对边分别为a,b,c,且acos A=bcos B.(1)证明:△ABC为等腰三角形;(2)若a=2,c=3,求sin C的值.十二、函数(2020)5.下列函数为偶函数的是()A. B. C. D.(2020)7.函数的定义域是( )A. B. C. ()(),04,-∞+∞ D. (][),04,-∞+∞(2020)9.已知函数()1,022,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,设,则( )A. 2B.C.D.(2020)11.设,则( )A. B. C. D.1、(2019)3.函数y =log 3(x +2)的定义域为( )A .(-2,+∞)B .(2,+∞)C .[-2,+∞)D .[2,+∞)2、(2019)7.已知a >0,则a 3a 2=( )A .a 12B .a 32C .a 23D .a 133、(2019)19.已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈[0,+∞)时,f (x )=x 2-4x ,则当x ∈(-∞,0)时,f (x )=________.4、(2018)2.对任意的正实数x ,y ,下列等式不成立的是( )A .lg y -lg x =lg yx B .lg(x +y )=lg x +lg yC .lg x 3=3lg xD .lg x =ln xln 105、(2018)3.已知函数f (x )=⎩⎨⎧x 3-1,x ≥02x ,x <0,设f (0)=a ,则f (a )=( )A .-2B .-1C.12D .06、(2018)14.设函数f (x )是定义在R 上的减函数,且f (x )为奇函数,若x 1<0,x 2>0,则下列结论不正确的是( )A .f (0)=0B .f (x 1)>0C .f ⎝ ⎛⎭⎪⎫x 2+1x 2≤f (2)D .f ⎝ ⎛⎭⎪⎫x 1+1x 1≤f (2)7、(2017)2.函数y =lg(x +1)的定义域是( )A .(-∞,+∞)B .(0,+∞)C .(-1,+∞)D .[-1,+∞)8、(2017)9.下列等式恒成立的是( )A.13x=x -23(x ≠0) B .(3x )2=3x 2C .log 3(x 2+1)+log 32=log 3(x 2+3)D .log 313x =-x9、(2017)14.已知f (x )是定义在R 上的偶函数,且当x ∈(-∞,0]时,f (x )=x 2-sin x ,则当x ∈[0,+∞)时,f (x )=( )A .x 2+sin xB .-x 2-sin xC .x 2-sin xD .-x 2+sin x十三、立体几何(2020)14.一个棱长为2的正方体,其顶点均在同一球的球面上,则该球的表面积是( )(参考公式:球的表面积公式为,其中R 是球的半径)A. B. C. D.(2020)21.如图,直三棱柱111ABC A B C -中,底面是边长为2的等边三角形,点D ,E 分别是的中点.(1)证明:平面;(2)若,证明:平面1、(2019)9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,BD1=2,则AA1=() A.1 B. 2 C.2 D.32、(2019)21.如图,三棱锥P-ABC中,P A⊥PB,PB⊥PC,PC⊥P A,P A=PB=PC=2,E是AC的中点,点F在线段PC上.(1)求证:PB⊥AC;(2)若P A∥平面BEF,求四棱锥BAPFE的体积.(参考公式:锥体的体积公式V=13Sh,其中S是底面积,h是高.)3、(2018)8.如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A.1 B.2C.4 D.84、(2018)21.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,PB=BC,F为BC的中点,DE垂直平分PC,且DE分别交AC,PC于点D,E.(1)证明:EF∥平面ABP;(2)证明:BD⊥AC.5、(2017)21.如图,在四棱锥P-ABCD中,P A⊥AB,P A⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC=2,E为PC的中点.(1) 证明:AP⊥CD;(2) 求三棱锥P-ABC的体积;(3) 证明:AE⊥平面PCD.1BC BB B =,实用文档。
2017年浙江省高考数学试卷(含详细答案解析)
2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)2.(4分)椭圆+=1的离心率是()A.B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+34.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=.15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆+=1的离心率是()A.B.C.D.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+3【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,=,=(0,3,6),=(,6,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=.,再根据S 【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出△BDC【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,=BC•AE=×2×=,∴S△ABC∵BD=2,∴S=S△ABC=,△BDC∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是4,最大值是.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] .【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k ∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP==x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1(Ⅱ)2x n﹣x n≤;+1(Ⅲ)≤x n≤.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2x n+1﹣x n得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2xn+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。
2017年高考真题——数学(浙江卷)解析
2017年高考真题——数学(浙江卷)解析2 绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学【试卷点评】选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.椭圆22194xy+=的离心率是 A 13B .5C .23D .59【答案】B【解析】 试题分析:945e -==B .【考点】 椭圆的简单几何性质3【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+ D .332π+ 【答案】A【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,4其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式++≥转化为y kx bAx By C≥+),“≤”取下方,“≥”≤+(或y kx b取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关B【答案】【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在56区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】试题分析:由46511210212(510)SS S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f(x)的图象可能是(第7题图)【答案】D【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为x,且图象在0x两侧附近连续分布于x轴上下方,则x为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数f'x的正负,得出原函数()f x的单调区间.()8.已知随机变量iξ满足P(iξ=1)=p i,P(iξ=0)=1–p i,,则i=1,2.若0<p1<p2<12A.1()Eξ,1()Dξ>2()Eξ<2()DξEξ<2()Eξ,1()Dξ<2()DξB.1()C.1()Eξ,1()Eξ>2()Dξ>2()DξDξ<2()DξD.1()Eξ>2()Eξ,1()【答案】A78【解析】试题分析:∵1122(),()E p E p ξξ==,∴12()()E E ξξ<, ∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量iξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确. 9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQCR QC RA ==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P的平面角为α,β,γ,则9(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【考点】 空间角(二面角)【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC=AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r =,则(第10题图)A.123<<C.312I I I<<I I II I I<<B.132D.213<<I I IC【答案】【考点】平面向量的数量积运算【名师点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90∠=∠>o,AOB COD由AB=BC=AD=2,CD=3,可求得OA OC<,<,OB OD1011进而得到312I I I <<.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
近五年(2017-2021)高考数学真题分类汇编试卷含答案( 集合)
B.{0,1}
C.{1,1, 2}
D.{1, 2}
10.(2020·海南)设集合 A={x|1≤x≤3},B={x|2<x<4},则 A∪B=( )
A.{x|2<x≤3}
B.{x|2≤x≤3}
C.{x|1≤x<4}
D.{x|1<x<4}
11.(2020·浙江)已知集合 P={x |1 x 4}, Q {x | 2 x 3} ,则 P Q=( )
A. 7, 9
B. 5, 7, 9
C. 3, 5, 7, 9
D. 1, 3, 5, 7, 9
3.(2021·全国(理))设集合 M
x 0 x4
,N
x
1 3
x
5
,则
M
N (
)
A.
x
0
x
1 3
C.x 4 x 5
B.
x
1 3
x
4
D.x 0 x 5
4.(2021·全国(理))已知集合 S s s 2n 1, n Z ,T t t 4n 1, n Z ,
A {1,0,1, 2}, B {3,0, 2,3},则 A ðU B ( )
A.{3,3}
B.{0, 2}
C.{1,1}
D.{3, 2, 1,1,3}
9.(2020·北京)已知集合 A {1, 0,1, 2} , B {x | 0 x 3},则 A B ( ).
A.{1, 0,1}
机调查了 100 学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红
楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则
2017年高考真题分类汇编(理数)专题4数列与不等式(解析版)
2017年高考真题分类汇编(理数):专题4 数列与不等式一、单选题(共13题;共25分)1、(2017·天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A、B、1 C、D、32、(2017•北京卷)若x,y满足,则x+2y的最大值为()A、1B、3C、5D、93、(2017•新课标Ⅰ卷)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A、1B、2C、4D、84、(2017•山东)若a>b>0,且ab=1,则下列不等式成立的是()A、a+ <<log2(a+b))B、<log2(a+b)<a+C、a+ <log2(a+b)<D、log2(a+b))<a+ <5、(2017•山东)已知x,y满足约束条件,则z=x+2y的最大值是()A、0B、2C、5D、66、(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件7、(2017•浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A、[0,6]B、[0,4]C、[6,+∞)D、[4,+∞)8、(2017•新课标Ⅰ卷)设x,y满足约束条件,则z=3x﹣2y的最小值为________.9、(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A、﹣15B、﹣9C、1D、910、(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A、1盏B、3盏C、5盏D、9盏11、(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A、﹣24B、﹣3C、3D、812、(2017·天津)已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R 上恒成立,则a的取值范围是()A、[﹣,2]B、[﹣,]C、[﹣2 ,2]D、[﹣2 ,]13、(2017•新课标Ⅰ卷)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A、440B、330C、220D、110二、填空题(共7题;共7分)14、(2017•新课标Ⅲ)若x,y满足约束条件,则z=3x﹣4y的最小值为________15、(2017•新课标Ⅲ)设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=________16、(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=________.17、(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3= ,S6= ,则a8=________.18、(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.19、(2017•北京卷)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=________.20、(2017·天津)若a,b∈R,ab>0,则的最小值为________.三、解答题(共5题;共30分)21、(2017•山东)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1 P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.22、(2017·天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).23、(2017•浙江)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n+1<x n;(Ⅱ)2x n+1﹣x n≤ ;(Ⅲ)≤x n≤ .24、(2017•北京卷)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(13分)(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.25、(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(Ⅰ)证明:等差数列{a n}是“P(3)数列”;(Ⅱ)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.答案解析部分一、单选题1、【答案】D【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选:D.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.2、【答案】D【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.3、【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.4、【答案】B【考点】不等式比较大小【解析】【解答】解:∵a>b>0,且ab=1,∴可取a=2,b= .则= ,= = ,log2(a+b)= = ∈(1,2),∴<log2(a+b)<a+ .故选:B.【分析】a>b>0,且ab=1,可取a=2,b= .代入计算即可得出大小关系.5、【答案】C【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+ z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.6、【答案】C【考点】必要条件、充分条件与充要条件的判断,等差数列的前n项和【解析】【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.7、【答案】A【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过坐标原点时,函数取得最小值,经过A时,目标函数取得最大值,由解得A(0,3),目标函数的直线为:0,最大值为:36目标函数的范围是[0,6].故选:A.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.8、【答案】-5【考点】简单线性规划【解析】【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.9、【答案】A【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.10、【答案】B【考点】等比数列的前n项和【解析】【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381= =127a,解得a=3,则这个塔顶层有3盏灯,故选B.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a的值.11、【答案】A【考点】等差数列的通项公式,等差数列的前n项和,等比数列【解析】【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为= =﹣24.故选:A.【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.12、【答案】A【考点】函数恒成立问题,分段函数的应用【解析】【解答】解:当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣x2+x﹣3≤ +a≤x2﹣x+3,即有﹣x2+ x﹣3≤a≤x2﹣x+3,由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣;由y=x2﹣x+3的对称轴为x= <1,可得x= 处取得最小值,则﹣≤a≤ ①当x>1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣(x+ )≤ +a≤x+ ,即有﹣(x+ )≤a≤ + ,由y=﹣(x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2 ;由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.则﹣2 ≤a≤2②由①②可得,﹣≤a≤2.故选:A.【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+ x﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+ )≤a≤ + ,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围.13、【答案】A【考点】数列的求和【解析】【解答】解:设该数列为{a n},设b n= +…+ =2n﹣1,(n∈N+),则= a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n ﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,… ,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n= ,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n= ﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=2,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=17,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选A.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.二、填空题14、【答案】﹣1【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:由z=3x﹣4y,得y= x﹣,作出不等式对应的可行域(阴影部分),平移直线y= x﹣,通过平移可知当直线y= x﹣,经过点B(1,1)时,直线y= x﹣在y轴上的截距最大,此时z取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.故答案为:﹣1.【分析】作出不等式组对应的平面区域,结合平移过程,求目标函数z=3x﹣4y的最小值.15、【答案】-8【考点】等比数列的通项公式【解析】【解答】解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.故答案为:﹣8.【分析】设等比数列{a n}的公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解方程组即可得出.16、【答案】【考点】等差数列的前n项和,数列的求和【解析】【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n= ,= ,则=2[1﹣+ +…+ ]=2(1﹣)= .故答案为:.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.17、【答案】32【考点】等比数列的通项公式,等比数列的前n项和【解析】【解答】解:设等比数列{a n}的公比为q≠1,∵S3= ,S6= ,∴= ,= ,解得a1= ,q=2.则a8= =32.故答案为:32.【分析】设等比数列{a n}的公比为q≠1,S3= ,S6= ,可得= ,= ,联立解出即可得出.18、【答案】30【考点】基本不等式,基本不等式在最值问题中的应用【解析】【解答】解:由题意可得:一年的总运费与总存储费用之和= +4x≥4×2× =240(万元).当且仅当x=30时取等号.故答案为:30.【分析】由题意可得:一年的总运费与总存储费用之和= +4x,利用基本不等式的性质即可得出.19、【答案】1【考点】等差数列与等比数列的综合【解析】【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.20、【答案】4【考点】基本不等式【解析】【解答】解:a,b∈R,ab>0,∴≥==4ab+ ≥2 =4,当且仅当,即,即a= ,b= 或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【分析】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.三、解答题21、【答案】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,即梯形P n P n+1Q n+1Q n的面积为b n,则b n= =(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n= +(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1= + ﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n= .【考点】等比数列的通项公式,等比数列的前n项和【解析】【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.22、【答案】解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(Ⅱ)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1= 4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1= =﹣(3n﹣2)4n+1﹣8得T n= .所以,数列{a2n b2n﹣1}的前n项和为.【考点】数列的求和,数列递推式,等差数列与等比数列的综合【解析】【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.23、【答案】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)= +ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤ ;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥ ,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤ ,综上所述≤x n≤ .【考点】利用导数研究函数的单调性,数列的函数特性,数列递推式,数列与不等式的综合,数学归纳法【解析】【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2x n+1﹣x n得﹣≥2(﹣)>0,继续放缩即可证明24、【答案】(1)解:a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n+1﹣c n=﹣1对∀n∈N*均成立,∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d1>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n+1﹣c n=d2﹣a1,∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此,当n≥s时,c n=b n﹣a n n,此时= =﹣a n+ ,=﹣d2n+(d1﹣a1+d2)+ ,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[ +1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[ +1]+B>A• +B=M,此时命题成立;若C<0,取m=[ ]+1,当n≥m时,≥An+B+ ≥Am+B+C>A• +B+C ≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【考点】数列的应用,等差关系的确定【解析】【分析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1对∀n∈N*均成立;(2.)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.25、【答案】解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【考点】等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质【解析】【分析】(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;﹣2(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.。
2017年高考数学山东理试题及解析
2017年山东理1.(2017年山东理)设函数y=4-x 2的定义域为A ,函数y=ln(1-x)的定义域为B,则A∩B=( ) A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)1.D 【解析】由4-x 2≥0得-2≤x≤2,由1-x >0得x <1,故A∩B={x|-2≤x≤2}∩{x|-2≤x <1}.故选D.2.(2017·山东高考)已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( ) A .1或-1 B.7或-7 C .- 3D. 3解析:选A 法一:由题意可知z =a -3i , ∴z ·z =(a +3i)(a -3i)=a 2+3=4,故a =1或-1. 法二:z ·z =|z |2=a 2+3=4,故a =1或-1.3. (2017年山东)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2,下列命题为真命题的是( )A .p ∧qB .p ∧¬qC .¬p ∧qD .¬p ∧¬q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.4. (2017年山东理)已知x,y 满足约束条件⎩⎪⎨⎪⎧x-y+3≤0,3x+y+5≤0,x+3≥0,则z=x+2y 的最大值是( )A.0B.2C.5D.64. C 【解析】约束条件⎩⎪⎨⎪⎧x-y+3≤0,3x+y+5≤0,x+3≥0,表示的可行域如图中阴影部分所示,5. (2017·山东高考)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^,已知∑i =110x i =225,∑i =110y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( )A .160B .163C .166D .170解析:选C 由题意可知y ^=4x +a ^, 又x =22.5,y =160,因此160=22.5×4+a ^,解得a ^=70, 所以y ^=4x +70.当x =24时,y ^=4×24+70=166.6. (2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )A .0,0B .1,1C .0,1D .1,0解析:选D 当输入x =7时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 成立,故a =1,输出a 的值为1.当输入x =9时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 不成立且x 能被b 整除,故a =0,输出a 的值为0.7. (2017年山东理)若a >b >0,且ab=1,则下列不等式成立的是( ) A.a+1b <b 2a <log 2(a+b ) B. b 2a <log 2(a+b )<a+1bC. a+1b <log 2(a+b )<b 2aD. log 2(a+b )<a+1b <b 2a8. (2017年山东)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A .518B .49C .59D .79C 【解析】标有1,2,…,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到2张卡片上的数奇偶性不同的概率是2C 15C 149×8=59.故选C .9. (2017年山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A A 【解析】由题意知sin(A +C )+2sin B cos C =2sin A cos C +cos A sin C ,所以2sin B cos C =sin A cos C ,即2sin B =sin A ,所以2b =a .故选A .10. (2017年山东)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)B 【解析】当0<m ≤1时,1m ≥1,y =(mx -1)2在[0,1]上单调递减,且y =(mx -1)2∈[(m -1)2,1],y =x +m 在x ∈[0,1]上单调递增,且y =x +m ∈[m ,1+m ],此时有且仅有一个交点;当m >1时,0<1m <1,y =(mx -1)2在⎣⎡⎦⎤-1m ,1上单调递增,所以要有且仅有一个交点,需(m -1)2≥1+m ,解得m ≥3.故选B .11. (2017年山东理)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n=_________.11. 4 【解析】(1+3x )n 的展开式的通项公式为T r+1=C r n (3x)r = C rn ·3r x r ,令r=2,得C 2 n ·32=54,解得n=4.12. (2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33. 答案:3313. (2017年山东理) 由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .14. (2017年山东理)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .15. (2017年山东理)若函数e x f (x ) (e=2.718 28是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为_________. ①f (x )=2-x②f (x )=3-x③f (x )=x 3④f (x )=x 2+2<-3时,g′(x )<0,∴e x f (x )= e x ·x 3在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,故f (x )=x 3不具有M 性质;④e x f (x )=e x (x 2+2),令g (x )= e x (x 2+2),则g′(x )= e x (x 2+2)+2xe x =e x [(x+1)2+1]>0,∴e x (x 2+2)在R 上单调递增,故f (x )=x 2+2具有M 性质.16. (2017年山东)设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值. 【解析】(1)∵f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, ∴f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx =3sin ⎝⎛⎭⎫ωx -π3.有题设知f ⎝⎛⎭⎫π6=0,∴ωπ6-π3=k π,k ∈Z . ∴ω=6k +2,k ∈Z. 又0<ω<3,∴ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3. ∴g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. ∵x ∈⎣⎡⎦⎤-π4,3π4,∴x -π12∈⎣⎡⎦⎤-π3,2π3. 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.17. (2017年山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是⌒DF的中点. (1)设P是⌒CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.17.解:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)解法一:取⌒EC的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,取AG中点M,连接EM,CM,EC.则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.设n=(x2,y2,z2)是平面ACG的一个法向量.18. (2017年山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19. (2017年山东理)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2),…,P n+1(x n+1, n+1)得到折线P 1P 2…P n+1,求由该折线与直线y =0,x=x 1,x=x n+1所围成的区域的面积n T .19.解:(1)(I)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎨⎧x 1+x 1q=3,x 1q 2-x 1q=2,所以3q 2-5q-2=0,因为q >0,所以q=2,x 1=1, 因此数列{x n }的通项公式为x n =2n-1(2)过P 1,P 2,P 3,…,P n+1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n+1, 由(1)得x n+1-x n =2n -2n-1=2n-1. 记梯形P n P n +1Q n +1Q n 的面积为b n .=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,① 又2T n =3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1,② ①-②得-T n =3×2-1+(2+22+…+2n-1)-(2n+1)×2n-120. (2017年山东理)已知函数f(x)=x 2+2cos x ,g(x)=e x (cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a ∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.20.解:(1)由题意f(π)= π2-2,又f′(x)=2x -2sin x ,所以f′(π)=2π,因此 曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π),即222y x ππ=--.(2)由题意得h(x)=e x (cos x-sin x+2x-2)-a(x 2+2cos x),因为h′(x)=e x (cos x-sin x+2x-2)+ e x (-sin x-cos x+2)-a(2x-2sin x)=2e x (x-sin x)-2a(x-sin x)=2(e x -a)(x-sin x),令m(x)=x-sin x ,则m′(x)=1-cos x≥0,所以m(x)在R 上单调递增.因为m (0)=0,所以当x >0时,m (x )>0,当x <0时,m (x )<0,(1)当a≤0时,e x -a >0,当x <0时,h′(x)<0,h (x )单调递减,当0x 时,h′(x)>0,h(x)单调递增,所以当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;(2)当a>0时,h′(x)=2(e x-e ln a)(x-sin x),由h′(x)=0得x1=ln a,x2=0.①当0<a<1时,ln a<0,当x∈(-∞,ln a)时,e x-e ln a<0,h′(x)>0,h(x)单调递增;当x∈(ln a,0)时,e x-e ln a>0,h′(x)<0,h(x)单调递减;当x∈(0,+∞)时,e x-e ln a>0,h′(x)>0,h(x)单调递增.所以当x=ln a时h(x)取得极大值.极大值为h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2],当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;②当a=1时,ln a=0,所以当x∈(-∞,+∞)时,h′(x)≥0,函数h(x)在(-∞,+∞)上单调递增,无极值;③当a>1时,ln a>0,所以当x∈(-∞,0)时,e x-e ln a<0,h′(x)>0,h(x)单调递增;当x∈(0,ln a)时,e x-e ln a<0,h′(x)<0,h(x)单调递减;当x∈(ln a,+∞)时,e x-e ln a>0,h′(x)>0,h(x)单调递增.所以当x=0时h(x)取到极大值,极大值是h(0)=-2a-1;当x=ln a时h(x)取到极小值.极小值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2]综上所述:当a≤0时,h (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,函数h (x )有极小值,极小值是h (0)=-2a-1;当0<a <1时,函数h (x )在(-∞,ln a )和(0,+∞)上单调递增,在(ln a ,0)上单调递减,函数h (x )有极大值,也有极小值,极大值是h (ln a )=-a[ln 2a-2ln a+sin(ln a)+cos(ln a)+2],极小值是h (0)=-2a-1;当a=1时,函数h (x )在(-∞,+∞)上单调递增,无极值;当a >1时,函数h (x )在(-∞,0)和(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,函数h (x )有极大值,也有极小值,极大值是h (0)=-2a-1,极小值是h (ln a )=-a[ln 2a-2ln a+sin(ln a)+cos(ln a)+2].21. (2017年山东理)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程;(2)如图,动直线l :y=k 1x-32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24,M 是线段OC 延长线上一点,且|MC|:|AB|=2:3,○·M 的半径为|MC|,OS ,OT 是○·M 的两条切线,切点分别为S ,T.求∠SOT 的最大值,并求取得最大值时直线l 的斜率.由题意知Δ>0,令t=1+2k12,。
2017年高考全国Ⅱ理科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(全国II )数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年全国Ⅱ,理1,5分】31i i+=+( ) (A )12i + (B )12i - (C )2i + (D )2i -【答案】D 【解析】()()()()3i 1i 3i 42i 2i 1i 1i 1i 2+-+-===-++-,故选D . (2)【2017年全国Ⅱ,理2,5分】设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}A B = ,则B =( )(A ){}1,3- (B ){}1,0 (C ){}1,3 (D ){}1,5【答案】C【解析】集合{}1,2,4A =,24{|}0B x x x m -=+=.若{}1A B = ,则1A ∈且1B ∈,可得140m -+=-,解得3m =, 即有243013{|}{,}B x x x =+==-,故选C .(3)【2017年全国Ⅱ,理3,5分】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A )1盏 (B )3盏 (C )5盏 (D )9盏【答案】B【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴()71238112712a a -==-,解得3a =, 则这个塔顶层有3盏灯,故选B .(4)【2017年全国Ⅱ,理4,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何 体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )(A )90π (B )63π (C )42π (D )36π【答案】B【解析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=,故选B . (5)【2017年全国Ⅱ,理5,5分】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9【答案】A【解析】x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:2z x y =+经过可行域的A时,目标函数取得最小值,由32330y x y =-⎧⎨-+=⎩解得()6,3A --,则2z x y =+的最 小值是:15-,故选A .(6)【2017年全国Ⅱ,理6,5分】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )(A )12种 (B )18种 (C )24种 (D )36种【答案】D【解析】4项工作分成3组,可得:24C 6=,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:336A 36⨯=种,故选D .(7)【2017年全国Ⅱ,理7,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )(A )乙可以知道四人的成绩 (B )丁可以知道四人的成绩(C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选D .(8)【2017年全国Ⅱ,理8,5分】执行右面的程序框图,如果输入的1a =-,则输出的S = ( )(A )2 (B )3 (C )4 (D )5【答案】B【解析】执行程序框图,有0S =,1k =,1a =-,代入循环,第一次满足循环,1S =-,1a =,2k =;满足条件,第二次满足循环,1S =,1a =-,3k =;满足条件,第三次满足循环,2S =-,1a =,4k =;满足条件,第四次满足循环,2S =,1a =-,5k =;满足条件,第五次满足循环,3S =-,1a =,6k =;满足条件,第六次满足循环,3S =,1a =-,7k =;76≤不成立,退出循环输出,3S =,故选B .(9)【2017年全国Ⅱ,理9,5分】若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )(A )2 (B (C (D 【答案】A 【解析】双曲线()2222:10,0x y C a b a b-=>>的一条渐近线不妨为:0bx ay +=,圆()2242x y +=-的圆心()2,0, 半径为:2,双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2242x y +=-所截得的弦长为2,可==得:222443c a c -=,可得2e 4=,即e 2=,故选A . (10)【2017年全国Ⅱ,理10,5分】已知直三棱柱111ABC A B C -中,120ABC ∠= ,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )(A (B ) (C ) (D 【答案】C【解析】如图所示,设M 、N 、P 分别为AB ,1BB 和11B C 的中点,则1AB 、1BC 夹角为MN和NP 夹角或其补角(因异面直线所成角为0,2π⎛⎤ ⎥⎝⎦,可知112MN AB =,112NP BC ==作BC 中点Q ,则PQM ∆为直角三角形;∵1PQ =,12MQ AC =, ABC ∆中,由余弦定理得2222AC AB BC AB BC cos ABC =+-⋅⋅∠141221172⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,∴AC =MQ =MQP ∆中,MP =;在PMN ∆中,由余弦定理得222222cos 2MN NP PM MNP MH NP +-+-∠===⋅⋅;又异面 直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,∴1AB 与1BC,故选C . (11)【2017年全国Ⅱ,理11,5分】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )(A )1- (B )32e -- (C )35e - (D )1【答案】A【解析】函数()()121x f x x ax e -=+-,得()()()11221x x e f x x a x ax e --'=+++-,2x =-是21`()(1)x f x x ax e -=+-的极值点,得:()4320a a -++-=.得1a =-.可得()()()()211212211x x x e e x x e f x x x x ---'=-+--=+-,函数的极值点为:2x =-,1x =,当2x <-或1x >时,()0f x '>函数是增函数,()2,1x ∈-时,函数是减函数,1x =时,函数取得极小值:()()21111111f e -=--=-,故选A . (12)【2017年全国Ⅱ,理12,5分】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+ 的最小值是( )(A )2- (B )32- (C )43- (D )1- 【答案】B【解析】建立如图所示的坐标系,以BC中点为坐标原点,则(A ,()1,0B -,()1,0C ,设(),P x y ,则()PA x y =- ,()1,PB x y =--- ,()1,PC x y =-- ,则()P A P B P C ⋅+222232224x y x y ⎡⎤⎛⎢⎥=-+=+-- ⎢⎥⎝⎭⎣⎦∴当0x =,y =时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭,故选B . 二、填空题:本题共4小题,每小题5分,共20分.(13)【2017年全国Ⅱ,理13,5分】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______.【答案】1.96【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =, 则()11000.020.98 1.96DX npq np p ==-=⨯⨯=.(14)【2017年全国Ⅱ,理14,5分】函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是______. 【答案】1【解析】()2233sin 1cos 44f x x x x x =-=--,令cos x t =且[]0,1t ∈, 则()22114f t t t ⎛=-+=-+ ⎝⎭,当t =时,()max 1f t =,即()f x 的最大值为1. (15)【2017年全国Ⅱ,理15,5分】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑______. 【答案】21n n + 【解析】等差数列{}n a 的前n 项和为n S ,33a =,410S =,()423210S a a =+=,可得22a =,数列的首项为1,公差为1,()12n n n S -=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则11111111121223341n k kS n n =⎡⎤=-+-+-++-⎢⎥+⎣⎦∑122111n n n ⎛⎫=-= ⎪++⎝⎭. (16)【2017年全国Ⅱ,理16,5分】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y轴于点N .若M 为FN 的中点,则FN =_______.【答案】6【解析】抛物线C :28y x =的焦点()2,0F ,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M的纵坐标为:±26FN FM ==.三、解答题:共70分。
近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)
2
2
故 sin cos sin cos sin cos 3 , 2
故 sin cos ,sin cos ,sin cos 不可能均大于 1 .
2
取 , , ,
6
3
4
则 sin cos 1 1 ,sin cos 6 1 ,sin cos 6 1 ,
42
42
,
上下平移直线 y 3x z ,数形结合可得当直线过点 A 时, z 取最小值,
此时 zmin 31 3 6 .
故选:C.
3.B
x 1 0
【解析】画出满足约束条件
x
y
0
的可行域,如下图所示:
2x 3y 1 0
目标函数 z x 1 y 化为 y 2x 2z , 2
x 1
x 1
_________.
20.(2020·江苏)已知 5x2 y2 y4 1(x, y R) ,则 x2 y2 的最小值是_______.
x y 0, 21.(2020·全国(文))若 x,y 满足约束条件 2x y 0,,则 z=3x+2y 的最大值为
x 1,
_________.
2x y 2 0, 22.(2020·全国(理))若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
__________.
34.(2017·山东(文))若直线 x y 1(a>0,b>0) 过点(1,2),则 2a+b 的最小值为 ab
______.
四、双空题
x 2,
35.(2019·北京(文))若
x,y
满足
y
1,
则 y x 的最小值为__________,
2017年高考真题(全国Ⅰ卷)数学理科含答解析
2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
近五年(2017-2021)高考数学真题分类汇编07 数列
1 + a n, 4 2 84 2 8 近五年(2017-2021)高考数学真题分类汇编七、数列一、单选题(2021·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 S 2 = 4 ,S 4 = 6 ,则 S 6 =()A .7B .8C .9D .102.(2021·浙江)已知a , b ∈ R, a b > 0 ,函数 f ( x ) = ax 2+ b (x ∈ R) .若 f (s - t ), f (s ), f (s + t ) 成等比数列,则平面上点(s ,t ) 的轨迹是()A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线3.(2021·全国(理))等比数列{a n }的公比为 q ,前 n 项和为S n ,设甲: q > 0 ,乙: {S n } 是递增数列,则()A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件4.(2021·浙江)已知数列{a } 满足a = 1, a = a n (n ∈ N *).记数列{a }的前 nn1n +1n项和为S n ,则( )A . 3< S< 3B .3 < S < 4C . 4 < S< 9D . 9< S < 52100100100221005.(2020·北京)在等差数列{a n }中,a 1 = -9 ,a 5 = -1 .记T n = a 1a 2…a n (n = 1, 2,…) ,则数列{T n }().A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项(2020·浙江)已知等差数列{a n }的前n 项和S n ,公差d ≠0n ∈ N * ,下列等式不.可.能.成立的是( )a 1≤ 1 .记b 1=S 2,b n+1=S 2n+2–S 2n , dA .2a 4=a 2+a 6B .2b 4=b 2+b 6C . a 2= a a D . b 2= b b7.(2020·全国(文))设{a n } 是等比数列,且a 1 + a 2 + a 3 = 1 , a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ()a k +1 k +2 k +10A .12B .24C .30D .32S n 8.(2020·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=n( )A .2n –1B .2–21–nC .2–2n –1D .21–n –19.(2020·全国(理))数列{a n } 中,a 1 = 2 , a m +n = a m a n ,若a + a ++ a = 215 - 25 , 则 k = ( )A .2B .3C .4D .510.(2020·全国(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌 9 块扇面形石板构成第一环,向外 每环依次增加 9 块,下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加9 块,已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石) ( )A .3699 块B .3474 块C .3402 块D .3339 块11.(2020·全国(理))0-1 周期序列在通信技术中有着重要应用.若序列 a 1a 2 a n 满足a i ∈{0,1}(i = 1, 2,) ,且存在正整数 m ,使得 a i + m = a i (i = 1, 2,) 成立,则称其为 0-1 周期序列,并称满足 a i + m = a i (i = 1, 2,) 的最小正整数 m 为这个序列的周期.对于周期为 m C (k ) = 1 ma a(k = 1, 2,, m - 1)的 0-1 序列 a 1a 2 a n , ∑ i =1i i + k 是描述其性质的重要指标, 下列周期为 5 的 0-1 序列中,满足C (k ) ≤ 1(k = 1, 2, 3, 4) 的序列是( )5A .11010B .11011C .10001D .1100112.(2019·全国(理))已知各项均为正数的等比数列{a n } 的前 4 项和为 15,且a 5 = 3a 3 + 4a 1 ,则 a 3 =A .16B .8C .4D .2m32 n 13.(2019·全国(理))记S n 为等差数列{a n } 的前 n 项和.已知 S 4 = 0,a 5 = 5 ,则A. a n = 2n - 5B. a n = 3n -10C. S n = 2n 2- 8nD. S n= 1 n 2- 2n214.(2018·浙江)已知 a 1 , a 2 , a 3 , a 4 成等比数列,且 a 1 + a 2 + a 3 + a 4 = ln(a 1 + a 2 + a 3 ) .若a 1 > 1 ,则A . a 1 < a 3 , a 2 < a 4C .a 1 < a 3 ,a 2 > a 4 B . a 1 > a 3 ,a 2 <a 4D .a 1 > a 3 ,a 2 > a 415.(2018·北京(理))“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个 单音的频率的比都等于12 2 .若第一个单音的频率为 f ,则第八个单音的频率为A.fC . 12 25 fD . 12 27 f16.(2017·全国(理))等差数列{a n } 的首项为1,公差不为0 .若a 2 、a 3 、a 6 成等比数列,则{a n }的前6 项的和为( )A . -24B. -3C. 3D . 817.(2017·上海)已知 a 、b 、c 为实常数,数列{x n }的通项 x = an 2+ bn + c ,n∈ N * ,则“存在 k ∈ N * ,使得x 100+k 、 x 200+k 、 x 300+k 成等差数列”的一个必要条件是( )A. a ≥ 0B. b ≤ 0C. c = 0 D . a - 2b + c = 018.(2017·全国(理))(2017 新课标全国 I 理科)记S n 为等差数列{a n } 的前 n 项和.若a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为A .1B .2C .4D .819.(2017·浙江)已知等差数列{a n }的公差为 d,前 n 项和为 S n ,则“d>0”是 " S 4 +S 6 > 2S 5 "的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B . 3 22 fn 20.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏21.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏二、填空题22.(2020·海南)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前 n 项和为.23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如⎧ n (n +1) ⎫ ⎧ n (n +1) ⎫ *数列⎨ 2 ⎬ 就是二阶等差数列,数列 ⎨ 2 ⎬ (n ∈ N ) 的前3 项和是.⎩ ⎭ ⎩ ⎭24.(2020·江苏)设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和 S = n 2 - n + 2n-1(n∈ N + ) ,则 d +q 的值是 .25.(2020·全国(文))数列{a n } 满足 an +2 + (-1)na = 3n -1,前 16 项和为 540,则 a 1 =.26.(2020·全国(文))记 S n 为等差数列{a n }的前 n 项和.若 a 1 = -2, 则S 10 = .a 2 + a 6 = 2 ,27.(2019·江苏)已知数列{a n }(n ∈ N *) 是等差数列, S n 是其前 n 项和.若a 2a 5 + a 8 = 0, S 9 = 27 ,则 S 8 的值是 . 28.(2019·全国(文))记S n 为等差数列{a n }的前n 项和,若 a 3 = 5, a 7 = 13 ,则 S 10 = . 29.(2019·全国(理))记 S n 为等差数列{a n }的前 n 项和,a 1≠0,a 2 = 3a 1 ,则 n1 S 10S 5= .30.(2019·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a= 1,S = 3,则S 4=.13431.(2019·全国(理))记 S n 为等比数列{a n }的前 n 项和.若 a = 1,a 2= a ,则S 5=.134 6(2018·上海)记等差数列{a n }的前 n 项和为 S n ,若 a 3 = 0 ,a 6 + a 7 = 14 ,则 S 7 = .33.(2018·全国(理))记 S n 为数列{a n }的前 n 项和,若 S n = 2a n +1,则 S 6 = .34.(2017·上海)已知数列{a } 和{b },其中 a = n 2, n ∈ N * ,{b } 的项是互不相等nnnn的正整数,若对于任意 n ∈ N * ,{b n } 的第 a n 项等于{a n } 的第b n 项,则lg(b 1b 4b 9b 16 ) =lg(b 1b 2b 3b 4 ).2017·全国()2017 新课标全国 II 理科)等差数列{a n } 的前n 项和为 S n ,a 3 = 3 ,S = 10 ,则∑1 = .4 k =1 S36.(2017·北京(理))若等差数列{a n }和等比数列{b n }满足 a 1 = b 1 = -1,a 4 = b 4 = 8 , 则 a 2 = . b 237.(2017·江苏)等比数列{ a }的各项均为实数,其前n 项为 S ,已知 S = 7,S = 63,n则a 8 = .n 346438.(2021·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm ,20dm ⨯ 6dm 两种规格的图形,它们的面积之和 S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果nkS对折n 次,那么∑ Sk= dm 2 .k =139.(2019·北京(理))设等差数列{a n }的前 n 项和为 S n ,若 a 2=−3,S 5=−10,则 a 5=,S n 的最小值为 .三、解答题40.(2021·全国(文))设{a }是首项为 1 的等比数列,数列{b } 满足b =na n.已知 na 1 , 3a 2 , 9a 3 成等差数列.(1) 求{a n } 和{b n }的通项公式;n n3(2) 记 S 和T 分别为{a }和{b }的前 n 项和.证明: T <S n. nnnnn241.(2021·浙江)已知数列{a }的前 n 项和为S , a = - 9,且4S = 3S - 9 .n(1) 求数列{a n } 的通项;n14n +1n(2) 设数列{b n }满足3b n + (n - 4)a n = 0 ,记{b n }的前 n 项和为Tn,若T n ≤ λb n 对任意 n ∈ N * 恒成立,求λ的范围.42.(2021·全国(理))已知数列{a n }的各项均为正数,记S n 为{a n }的前 n 项和,从 下面①②③中选取两个作为条件,证明另外一个成立. ①数列{a n }是等差数列:②数列{ S n}是等差数列;③ a2= 3a 1 .注:若选择不同的组合分别解答,则按第一个解答计分.43.(2021·全国(理))记 S n 为数列{a n }的前 n 项和, b n 为数列{S n } 的前 n 项积,已知2 + 1nb n = 2 .(1) 证明:数列{b n }是等差数列;(2) 求{a n } 的通项公式.44.(2020·海南)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 求 a a - a a+⋯+ (-1)n -1 a a .1 22 3n n +145.(2020·天津)已知{a n }为等差数列, {b n }为等比数列,na ann a a 1 = b 1 = 1, a 5 = 5(a 4 - a 3 ), b 5 = 4(b 4 - b 3 ) . (Ⅰ)求{a n } 和{b n }的通项公式; (Ⅱ)记{a }的前 n 项和为 S ,求证: S S< S 2(n ∈ N *) ;nnn n +2⎧(3a n - 2)b n n +1(Ⅲ)对任意的正整数n ,设c n⎪⎪a n a n +2 ⎨ a, n 为奇数, 求数列{c n } 的前 2n 项和. ⎪ n -1 , ⎩ b n +1n 为偶数. 46.(2020·北京)已知{a n }是无穷数列.给出两个性质:①对于{a }中任意两项 a i , a j (i > 2j) ,在{a }中都存在一项a ,使 i= a ;n n mm j2②对于{a n }中任意项a n (n 3) ,在{a n }中都存在两项a k , a l (k > l ) .使得 a n = k.a l(Ⅰ)若 a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;(Ⅱ)若 a = 2n -1(n = 1, 2,) ,判断数列{a }是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明: {a n }为等比数列. 47.(2020·浙江)已知数列{a n },{b n },{c n }中,a =b =c = 1, c = a - a , c= b n ⋅ c (n ∈ N * ) .111nn +1n n +1b n +2(Ⅰ)若数列{b n }为等比数列,且公比 q > 0 ,且b 1 + b 2 = 6b 3 ,求 q 与{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差 d > 0 ,证明: c + c++ c < 1 + 1.(n ∈ N * ) 12nd48.(2020·山东)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 记b m 为{a n } 在区间(0, m ](m ∈ N * ) 中的项的个数,求数列{b m } 的前100 项和 S 100 .49.(2020·全国(理))设数列{a n }满足 a 1=3,a n +1 = 3a n - 4n . (1) 计算 a 2,a 3,猜想{a n }的通项公式并加以证明; (2) 求数列{2n a n }的前 n 项和 S n .50.(2020·全国(理))设{a n } 是公比不为 1 的等比数列, a 1 为 a 2 , a 3 的等差中项.(1)求{a n } 的公比;n = ⎪(2)若 a 1 = 1 ,求数列{na n }的前 n 项和.a n 2b nn1n51.(2020·全国(文))设等比数列{a n }满足a 1 + a 2 = 4 , a 3 - a 1 = 8 . (1) 求{a n }的通项公式;(2) 记 S n 为数列{log 3a n }的前 n 项和.若 S m + S m +1 = S m +3 ,求 m .52.(2019·江苏)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1) 已知等比数列{a n }满足: a 2 a 4 = a 5 , a 3 - 4a 2 + 4a 1 = 0 ,求证:数列{a n }为“M -数列”;(2) 已知数列{b }满足: b= 1, 1= 2 - 2 ,其中 S为数列{b }的前 n 项和.S n b n b n +1①求数列{b n }的通项公式;②设 m 为正整数,若存在“M -数列”{c n },对任意正整数 k ,当 k ≤m 时,都有c k b k c k +1成立,求 m 的最大值.53.(2019·北京(文))设{a n }是等差数列,a 1=–10,且 a 2+10,a 3+8,a 4+6 成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前 n 项和为 S n ,求 S n 的最小值.54.(2019·浙江)设等差数列{a n } 的前n 项和为 S n ,a 3 = 4 ,a 4 = S 3 ,数列{b n }满足:对每 n ∈ N *, S n + b n , S n +1 + b n , S n +2 + b n 成等比数列.(1) 求数列{a n },{b n } 的通项公式;(2) 记C =, n ∈ N *, 证明: C + C ++ C < 2 n , n ∈ N *.n1 2n55.(2019·天津(文)) 设{a n }是等差数列, {b n }是等比数列,公比大于0 ,已知a 1 =b 1 = 3 , b 2 = a 3 , b 3 = 4a 2 + 3 .(Ⅰ)求{a n }和{b n } 的通项公式;⎧⎪1,n 为奇数,(Ⅱ)设数列{c } 满足c= ⎨b n 为偶数, 求a c + a c ++ a c(n ∈ N *).nnn⎩21 12 22n 2n56.(2019·全国(文))已知{a n } 是各项均为正数的等比数列,a 1 = 2, a 3 = 2a 2 +16 . n(1)求{a n } 的通项公式;n →∞{ }(2) 设b n = log 2 a n ,求数列{b n } 的前 n 项和.57.(2019·全国(文))记 S n 为等差数列{a n }的前 n 项和,已知 S 9=-a 5.(1) 若 a 3=4,求{a n }的通项公式;(2) 若 a 1>0,求使得 S n ≥a n 的 n 的取值范围.58.(2019·全国(理))已知数列{a n }和{b n }满足 a 1=1,b 1=0,4a n +1 = 3a n - b n + 4 (1) 证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2) 求{a n }和{b n }的通项公式.59.(2019·上海)已知数列{a n },a 1 = 3 ,前 n 项和为 S n . (1) 若{a n } 为等差数列,且a 4 = 15 ,求 S n ; (2) 若{a n } 为等比数列,且 lim S n < 12 ,求公比q 的取值范围.,4b n +1 = 3b n - a n - 4 .60.(2019·上海)已知等差数列{a n }的公差d ∈(0,π] ,数列{b n }满足b n = sin (a n ) ,集合 S = {x | x = b n , n ∈ N *}.(1) 若 a 1(2) 若 a = 0, d =2π,求集合 S ; 3= π,求 d 使得集合 S 恰好有两个元素;12(3) 若集合 S 恰好有三个元素: b n +T = b n , T 是不超过 7 的正整数,求T 的所有可能的值.61.(2019·天津(理))设{a n } 是等差数列, {b n }是等比数列.已知a 1 = 4,b 1 = 6 ,b 2 = 2a 2 - 2,b 3 = 2a 3 + 4 .(Ⅰ)求{a n } 和{b n }的通项公式;⎧1, 2k < n < 2k +1, (Ⅱ)设数列 c n 满足c 1 = 1, c n = ⎨ b , n = 2k ,其中 k ∈ N * . ⎩ k(i ) 求数列{a 2n(c2n-1)}的通项公式;2n(ii ) 求∑ a i ci(n ∈ N *).i =162.(2018·江苏)设{a n } 是首项为 a 1 ,公差为 d 的等差数列,{b n } 是首项为b 1 ,公比为 q 的等比数列.(1)设 a 1 = 0,b 1 = 1, q = 2 ,若| a n - b n |≤b 1 对 n = 1, 2,3, 4 均成立,求 d 的取值范围;(2)若 a = b > 0, m ∈ N *, q ∈ (1, m 2] ,证明:存在 d ∈ R ,使得| a n - b n |≤ b 1 对11n = 2, 3,, m +1 均成立,并求 d 的取值范围(用b 1, m , q 表示).63.(2018·江苏)设 n ∈ N * ,对 1,2,···,n 的一个排列i 1i 2 i n ,如果当 s <t 时,有i s > i t ,则称(i s , i t ) 是排列i 1i 2i n 的一个逆序,排列i 1i 2 i n 的所有逆序的总个数称为其逆序数.例如:对 1,2,3 的一个排列 231,只有两个逆序(2,1),(3,1),则排列 231 的逆序数为 2.记 f n (k ) 为 1,2,···,n 的所有排列中逆序数为 k 的全部排列的个数. (1)求 f 3 (2), f 4 (2) 的值;(2) 求 f n (2)(n ≥ 5) 的表达式(用 n 表示).64.(2018·全国(文))记 S n 为等差数列{a n } 的前 n 项和,已知 a 1 = -7 , S 3 = -15 .(1) 求{a n } 的通项公式;(2) 求 S n ,并求 S n 的最小值.65.(2018·北京(文))设{a n } 是等差数列,且a 1 = ln 2, a 2 + a 3 = 5 l n 2 .(Ⅰ)求{a n } 的通项公式;(Ⅱ)求e a 1 + e a 2 ++ e a n .66.(2018·全国(理))等比数列{a n }中,a 1 = 1,a 5 = 4a 3 . (1) 求{a n }的通项公式;(2) 记S n 为{a n }的前n 项和.若 S m = 63 ,求 m . 67.(2018·浙江)已知等比数列{a n }的公比 q >1,且a 3+a 4+a 5=28,a 4+2 是 a 3,a 5 的等差中项.数列{b n }满足 b 1=1,数列{(b n +1−b n )a n }的前 n 项和为 2n 2+n . (Ⅰ)求 q 的值;(Ⅱ)求数列{b n }的通项公式.68.(2018·全国(文))已知数列{a }满足a = 1 , na= 2(n +1) a,设b = an.(1)求b 1 ,b 2 ,b 3 ;n 1 n +1n nn(2) 判断数列{b n } 是否为等比数列,并说明理由;n n k =1⎩⎭⎩ n n n (3) 求{a n } 的通项公式.69.(2018·天津(理))设{a }是等比数列,公比大于 0,其前 n 项和为 S (n ∈ N *),{b n }是等差数列.已知a 1 = 1 , a 3 = a 2 + 2 , a 4 =b 3 + b 5 , a 5 = b 4 + 2b 6 . (I ) 求{a n }和{b n }的通项公式;(II ) 设数列{S }的前 n 项和为T (n ∈ N *) ,(i ) 求T n ;n(T k+ bk +2)b k=2n +2 - ∈ *(ii )证明∑ (k +1)(k + 2)n + 22 (nN ) .70.(2018·天津(文))设{a n }是等差数列,其前 n 项和为 S n (n ∈N *);{b n }是等比数列,公比大于 0,其前 n 项和为 T n (n ∈N *).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求 S n 和 T n ;(Ⅱ)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.71.(2017·全国(文))设数列{a n } 满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n . (1) 求{a n } 的通项公式;⎧ a n ⎫ (2) 求数列的前 n 项和. ⎨ 2n +1⎬72.(2017·上海)根据预测,某地第n (n ∈ N * ) 个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),⎧5n 4 +15, 1 ≤ n ≤ 3其中 a n = ⎨-10n + 470, ,b n = n + 5 ,第n 个月底的共享单车的保有量是前 n 个n ≥ 4月的累计投放量与累计损失量的差.(1) 求该地区第 4 个月底的共享单车的保有量;(2) 已知该地共享单车停放点第 n 个月底的单车容纳量 S = -4(n - 46)2+ 8800 (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点 的单车容纳量?73.(2017·天津(文))已知{a n } 为等差数列,前 n 项和为 S n(n ∈ N * ) ,{b } 是首项为2 的等比数列,且公比大于 0,n2n n n 1 n n +1 b 2 + b 3 = 12,b 3 = a 4 - 2a 1 , S 11 = 11b 4 .(Ⅰ)求{a n } 和{b n } 的通项公式;(Ⅱ)求数列{a b } 的前 n 项和(n ∈ N *) .74.(2017·山东(理))已知{x n } 是各项均为正数的等比数列,且x 1 + x 2 = 3,x 3 - x 2 = 2 (Ⅰ)求数列{x n } 的通项公式;(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点P 1 ( x 1 ,1),P 2 ( x 2 , 2)⋯ P n +1 ( x n +1 , n +1) 得到折线 P 1P 2 ⋯P n +1 ,求由该折线与直线y = 0 , x = x 1,x = x n +1 所围成的区域的面积T n ..75.(2017·浙江)已知数列{x } 满足: x =1 , x = x + ln (1+ x ) (n ∈ N *)证明:当 n ∈ N * 时,(I )0 < x n +1 < x n ;(II )2x- x ≤ x n x n +1 ;(III ) n +112n -1 n≤x n ≤ 21 2n -2 . 76.(2017·全国(文))记 S n 为等比数列{a n }的前 n 项和,已知 S 2=2,S 3=-6.(1) 求{a n } 的通项公式;(2) 求 S n ,并判断 S n +1,S n ,S n +2 是否成等差数列.77.(2017·山东(文))已知{a n }是各项均为正数的等比数列,且a 1 + a 2 = 6, a 1a 2 = a 3 . (I) 求数列{a n }通项公式;n +1(II){b }为各项非零的等差数列,其前n 项和S ,已知S=b b ⎧b n ⎫,求数列的前n 项n n 2n+1n n+1⎨a ⎬⎩n ⎭和Tn.78.(2017·北京(理))设{a n}和{b n}是两个等差数列,记c n = max{b1-a1n,b2-a2n,⋅⋅⋅,bn-ann} (n = 1, 2, 3,⋅⋅⋅) ,其中max{x1, x2 , ⋅⋅⋅, x s} 表示x1 , x2 ,⋅⋅⋅, x s 这s 个数中最大的数.(Ⅰ)若a n =n ,b n = 2n -1,求c1 , c2 , c3 的值,并证明{c n }是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,cn >M ;或者存在正n整数m ,使得c m , c m+1, c m+2 , ⋅⋅⋅是等差数列.(2017·北京(文))已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1 +b3 +b5 +…+b2 n-1 .80.(2017·全国(文))已知等差数列{a n }的前n 项和为S n,等比数列{b n }的前n 项和为T n ,且 a1 = 1 ,b1 =1,a2 +b2 = 4 .(1)若a3+b3=7,求{b n }的通项公式;(2)若T3 = 13 ,求S5 .81.(2017·江苏)对于给定的正整数k,若数列{a n}满足a +a +...a +a +...a +a = 2k an-k n-k+1 n-1 n+1 n+k-1 n+k n对任意正整数n(n> k) 总成立,则称数列{a n} 是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.近五年(2017-2021)高考数学真题分类汇编七、数列(答案解析)1.A【解析】∵S n 为等比数列{a n}的前n项和,∴S2 ,S4 -S2 ,S6 -S4 成等比数列∴S2 = 4 ,S4 -S2 = 6 - 4 = 2 ,∴S6 -S4 = 1,∴S6 = 1+S4 = 1+ 6 = 7 .故选:A.2.C【解析】由题意得f (s -t) f (s +t) = [ f (s)]2 ,即⎡⎣a(s-t)2+b⎤⎦⎡⎣a(s+t)2+b⎤⎦=(as2+b)2,对其进行整理变形:(as2+at2-2ast+b)(as2+at2+2ast+b)=(as2+b)2,(as2+at2+b)2-(2ast)2-(as2+b)2=0,(2as2+at2+2b)at2-4a2s2t2=0,-2a2s2t2+a2t4+2abt2=0,s 2-t 2所以-2as2 +at 2 + 2b = 0 或t = 0 ,其中b 2b = 1为双曲线,t = 0 为直线.a a故选:C.3.B【解析】由题,当数列为-2, -4, -8,时,满足q > 0 ,但是{S n }不是递增数列,所以甲不是乙的充分条件.若{S n }是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q > 0 成立,所以甲是乙的必要条件.故选:B.4.A【解析】因为a= 1, a=an (n ∈ N*),所以a > 0 ,S >1 .1 n+1n 100 21 +ana n a n a n +1 a na n + 1a n2 2 ⎝⎭ ⎝ ⎭ < 1 2 a 1 1 1⎛ 1 1 ⎫ 1 由a n +1 = n ⇒ = + = + ⎪ -1+∴ 1 ⎛ 1a+ 1 ⎫ 2 ⎪ a n +1 2⇒a n ⎝ 1 < 1 + 1 2 2 ⎭ 4,即-1 < 12n +1 ⎝ ⎭1 根据累加法可得,≤ 1+n -1 = n +1,当且仅当 n = 1 时取等号,∴a ≥ 4 ∴a = a n ≤ a n= n +1 a n (n +1)2 n +1 1+ 2 n +1n + 3 n ∴a n +1 ≤ n +1 ,a n n + 3由累乘法可得 a n ≤ 6(n +1)(n + 2),当且仅当 n = 1 时取等号,由裂项求和法得:所以 S ≤ 6⎛ 1 - 1 + 1 - 1 + 1 - 1 ++ 1-1 ⎫ = 6 ⎛ 1 -1 ⎫ < 3 , 即 1< S< 3 .1002 3 3 4 4 5 101 102 ⎪ 2 102 ⎪2 100故选:A .【小结】本题解题关键是通过倒数法先找到a n ,的不等关系,再由累加法可求得a ≥4,由题目条件可知要证 S 小于某数,从而通过局部放缩得到a , a 的不等 n(n +1)2100 n n +1关系,改变不等式的方向得到 a n ≤6(n +1)(n + 2),最后由裂项相消法求得 S 100 < 3 .5.B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在 最大项和最小项. 【解析】由题意可知,等差数列的公差d =a 5 - a 1 = -1+ 9= 2 , 5 -1 5 -1则其通项公式为: a n = a 1 + (n -1)d = -9 + (n -1)⨯ 2 = 2n -11 ,a n a n a n1+ a n a n +1注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1<a7 <,且由T5 < 0 可知T i < 0 (i ≥ 6,i ∈N ),Ti 由Ti-1 =ai>1(i≥7,i∈N)可知数列{T n }不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 = 1,故数列{T n }中的正项只有有限项:T2= 63 ,T4= 63⨯15 = 945 .故数列{T n }中存在最大项,且最大项为T4.故选:B.【小结】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.6.D【分析】根据题意可得,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,而b1 =S2 =a1 +a2 ,即可表示出题中b 2 , b4, b6, b8,再结合等差数列的性质即可判断各等式是否成立.【解析】对于A,因为数列{a n}为等差数列,所以根据等差数列的下标和性质,由4 + 4 = 2 + 6 可得,2a4 =a2+a6,A 正确;对于B,由题意可知,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,b1 =S2 =a1 +a2 ,∴b2 =a3 +a4 ,b4 =a7 +a8 ,b6 =a11 +a12 ,b8 =a15 +a16 .∴2b4=2(a7+a8),b2+b6=a3+a4+a11+a12.根据等差数列的下标和性质,由3 +11 = 7 + 7, 4 +12 = 8 + 8 可得b 2+b6=a3+a4+a11+a12=2(a7+a8)=2b4,B正确;对于C,a2-a a=(a+3d)2-(a+d)(a+7d)=2d2-2a d=2d(d-a),4 2 8 1 1 1 1 14 2 8 1 1 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1⎪a q a q 12 ⎨ 当a 1 = d 时, a 2= a a ,C 正确;对于 D , b 2 = (a + a )2 = (2a + 13d )2= 4a 2 + 52a d + 169d 2 ,478111b b = (a + a )(a + a ) = (2a + 5d )(2a + 29d )= 4a 2 + 68a d + 145d 2 ,2 83415161111b 2 - b b = 24d 2 - 16a d = 8d (3d - 2a ) .42 811当 d > 0 时, a ≤ d ,∴ 3d - 2a = d + 2 (d - a ) > 0 即b 2 - b b > 0 ;11142 8当 d < 0 时,a ≥ d ,∴ 3d - 2a = d + 2 (d - a ) < 0 即b 2 - b b > 0 ,所以b 2 - b b > 0 ,11142 842 8D 不正确. 故选:D.7.D【解析】设等比数列{a } 的公比为q ,则 a + a + a= a (1+ q + q2) = 1 ,a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2 ) = q = 2 ,因此, a + a + a = a q 5+ a q 6+ a q 7= a q 5(1+ q + q 2) = q 5= 32 .故选:D.8.B【解析】设等比数列的公比为q ,⎧ 4 - 2= 由a -a =12,a -a =24可得: ⎨1 1⇒⎧q = 2 ,5364⎪⎩a q5 - a q 3= 24 a (1- q n ) 1- 2n ⎩a 1 =1 S 2n-11-n 所以 a = a q n -1 = 2n -1, S =1 = = 2n -1,因此 n = =2 - 2 . n 1 n1- q 1- 2 a 2n -1故选:B.9.C【解析】在等式 a= a a中,令 m = 1,可得 a= a a = 2a ,∴a n +1= 2 ,m +nm nn +1n 1nn所以,数列{a n } 是以 2 为首项,以 2 为公比的等比数列,则a n = 2 ⨯ 2n -1= 2n ,na2 ⋅(1- 2 ) 5 i =1 5 5∴a + a++ a=a k +1 ⋅(1- 210 ) k +110= = 2k +1 (210 -1) = 25 (210 -1),k +1k +2k +101- 2 1- 2∴ 2k +1 = 25 ,则 k +1 = 5 ,解得 k = 4 .故选:C.10.C【解析】设第 n 环天石心块数为 a n ,第一层共有 n 环,则{a n } 是以 9 为首项,9 为公差的等差数列, a n = 9 + (n - 1) ⨯ 9 = 9n , 设 S n 为{a n } 的前 n 项和,则第一层、第二层、第三层的块数分 别为 S n , S 2n - S n , S 3n - S 2n ,因为下层比中层多 729 块, 所以 S 3n - S 2n = S 2n - S n + 729 , 即3n (9 + 27n ) - 2n (9 + 18n ) = 2n (9 + 18n ) - n (9 + 9n ) + 729 2 2 2 2即9n 2 = 729 ,解得n = 9 ,所以 S 3n = S 27= 27(9 + 9 ⨯ 27)= 3402 .故选:C 211.C1 5【解析】由a i +m = a i 知,序列 a i 的周期为 m ,由已知,m = 5 ,C (k ) = ∑a i ai +k, k = 1, 2,3, 4i =1对于选项 A ,1 51 1 1 1C (1) = 5 ∑a i a i +1 = 5 (a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = 5 (1 + 0 + 0 + 0 + 0) = ≤i =1 5 5 1 51 1 2C (2) = 5 ∑a i a i +2 = 5 (a 1a 3 + a 2a 4 + a 3a 5 + a 4a 6 + a 5a 7 ) = 5 (0 +1 + 0 +1 + 0) = 5,不满足;对于选项 B ,1 5 C (1) = ∑a i a i +1 = i =1对于选项 D ,(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = ,不满足;1 5C (1) = ∑a i a i +1 = i =1(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6) = ,不满足; 1 1 35 5 (1 + 0 + 0 +1 +1) = 511(1 + 0 + 0 + 0 +1) =25 5 51 1 1 ⎩故选:C12.C⎧a + a q + a q 2 + a q 3 = 15,【解析】设正数的等比数列{a n }的公比为q ,则⎨ ⎩1 1 1 1 , a q 4 = 3a q 2+ 4a解得⎧a 1 = 1, ,∴ a = a q 2= 4 ,故选 C .⎨q = 2 3 1 13.A 【解析】⎧S = 4a + d ⨯ 4 ⨯ 3 = 0⎧a = -3 ⎪ 4 1 由题知, 2,解得⎨ 1,∴ a = 2n - 5 ,故选 A . ⎨ ⎪⎩a 5 = a 1+ 4d = 5 ⎩d = 2 n14.B 【解析】令 f (x ) = x - ln x -1, 则 f ' (x ) = 1- 1,令 f '(x ) = 0, 得 x = 1 ,所以当 x > 1 时, f '(x ) > 0 ,x当0 < x < 1 时, f '(x ) < 0 ,因此 f (x ) ≥ f (1) = 0,∴ x ≥ ln x +1 ,若公比 q > 0 ,则 a 1 + a 2 + a 3 + a 4 > a 1 + a 2 + a 3 > ln(a 1 + a 2 + a 3 ) ,不合题意;若公比q ≤ -1 ,则 a + a + a + a = a (1+ q )(1+ q 2) ≤ 0,12341但ln(a + a + a ) = ln[a (1+ q + q 2)] > ln a > 0 ,12311即a 1 + a 2 + a 3 + a 4 ≤ 0 < ln(a 1 + a 2 + a 3 ) ,不合题意;因此-1 < q < 0, q 2 ∈(0,1) ,∴ a > a q 2 = a , a < a q 2= a< 0 ,选 B.113224【小结】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 x ≥ ln x +1,e x ≥ x +1, e x ≥ x 2 +1(x ≥ 0).15.Dn n -1 +【解析】因为每一个单音与前一个单音频率比为12 2 ,所以 a = 122a (n ≥ 2, n ∈ N ) ,又a 1 = f ,则 a = a q 7 = f (12 2)7 = 12 27 f故选 D.8116.A 【分析】根据等比中项的性质列方程,解方程求得公差 d ,由此求得{a n }的前6 项的和.【解析】设等差数列{a } 的公差为 d ,由 a 、 a 、 a 成等比数列可得 a 2= a a ,n 2 3 6 3 2 6即(1+ 2d )2 = (1+ d )(1+ 5d ) ,整理可得 d 2 + 2d = 0 ,又公差不为 0,则d = -2 ,故{a n } 前6 项的和为 S 6 = 6a 1 +6⨯(6 -1)d = 6⨯1+6⨯(6 -1)⨯(-2) = -24 .22故选:A 17.A 【解析】存在 k ∈ N + ,使得 x 100+k , x 200+k , x 300+k 成等差数列,可得2[a (200 + k )2 + b (200 + k ) + c ] = a (100 + k )2 + b (100 + k ) + c + a (300 + k )2 + b (300 + k ) + c,化简可得 a = 0 ,所以使得 x 100+k , x 200+k , x 300+k 成等差数列的必要条件是 a ≥ 0 . 18.C 【解析】设公差为d , a 4 + a 5 = a 1 + 3d + a 1 + 4d = 2a 1 + 7d = 24 ,S = 6a + 6 ⨯ 5 d = 6a+15d = 48 ,联立⎧ 2a 1 + 7d = 24 , 解得d = 4 ,故选 C. 6 1 21⎨6a +15d = 48 ⎩ 119.C 【解析】由 S 4 + S 6 - 2S 5 = 10a 1 + 21d - 2(5a 1 + 10d ) = d ,可知当 d > 0 时,有 S 4 + S 6 - 2S 5 > 0 ,即 S 4 + S 6 > 2S 5 ,反之,若 S 4 + S 6 > 2S 5 ,则 d > 0 ,所以“d >0”是“S 4 + S 6>2S 5”的充要条件, 选 C .20.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .21.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .22. 3n 2 - 2n【解析】因为数列{2n -1} 是以 1 为首项,以 2 为公差的等差数列, 数列{3n - 2}是以 1 首项,以 3 为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以 1 为首项,以 6 为公差的等差数列, 所以{a }的前 n 项和为 n ⋅1+n (n -1)⋅ 6 = 3n 2 - 2n ,故答案为: 3n 2 - 2n .n223.10【解析】因为 a= n (n +1) a = 1, a= 3, a= 6 . n21 2 3即 S 3 = a 1 + a 2 + a 3 = 1+ 3+ 6 = 10 .故答案为:10 .24. 4【解析】设等差数列{a n } 的公差为 d ,等比数列{b n }的公比为q ,根据题意 q ≠ 1.1 ⎪ n +2 n =等差数列{a }的前 n 项和公式为 P = na +n (n -1) d = d n 2 + ⎛a - d ⎫n , nn12 2 12 ⎪等比数列{b }的前 n 项和公式为Qb (1-q n) ⎝ ⎭= - b 1q n+ b 1,nn 1- q 1- q 1- q依题意 S = P + Q ,即 n 2 - n + 2n -1 = d n 2 + ⎛a - d ⎫n -b 1 q n + b ,n n n 21 2 ⎪ 1 - q 1 - q⎧ d= 12 ⎝ ⎭⎧d = 2 ⎪ d ⎪ ⎪a 1 - = -1 ⎪a 1 = 0通过对比系数可知⎨ 2 ⇒ ⎨q = 2 ,故 d + q = 4 .故答案为: 4⎪q = 2 ⎪⎪ b ⎩⎪b 1 = 1 ⎪ 1 = -1 ⎩1- q25.7【解析】 a + (-1)na = 3n -1,当n 为奇数时, a n +2 = a n + 3n - 1 ;当 n 为偶数时, a n +2 + a n = 3n - 1 .设数列{a n } 的前 n 项和为 S n , S 16 = a 1 + a 2 + a 3 + a 4 + + a 16= a 1 + a 3 + a 5+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .26. 25 【解析】{a n }是等差数列,且 a 1 = -2 , a 2 + a 6 = 2设{a n } 等差数列的公差 d ,根据等差数列通项公式:a n = a 1 + (n -1) d 可得 a 1 + d + a 1 + 5d = 2 ,即: -2 + d + (-2) + 5d = 2 ,整理可得: 6d = 6 解得: d = 1⎪ 1⎪ ⎨ d = 2根据等差数列前 n 项和公式: S n= na 1 + n (n - 1) d , n ∈ N *2可得: S = 10 ( -2 ) + 10 ⨯ (10 - 1) = -20 + 45 = 25 ,∴ S = 25 . 10 21027.16.⎧a 2 a 5 + a 8 = (a 1 + d )(a 1 + 4d ) + (a 1 + 7d ) = 0 【解析】由题意可得: ⎨⎪⎩ S 9 = 9a 1 + 9 ⨯ 8 d = 27 , 2解得: ⎧a 1 = -5 ,则 S ⎩ 8 = 8a 1+ 8⨯ 7d = -40 + 28⨯ 2 = 16 . 228.100【解析】 ⎧a 3 = a 1 + 2d = 5 , 得⎧a 1 = 1, ∴S= 10a+ 10⨯ 9 d = 10⨯1+ 10⨯ 9⨯ 2 = 100. ⎨a = a + 6d = 13 ⎨d = 2 10 1 2 2⎩ 7 1⎩29.4.【解析】因 a 2 = 3a 1 ,所以 a 1 + d = 3a 1 ,即 2a 1 = d ,S 1010a 1 = + 10 ⨯ 9 d2= 100a 1 = 4所以 S 5⨯ 4 25a .5 5a 1 + d1 2530. .8【解析】设等比数列的公比为q ,由已知S = a + a q + a q 2 = 1+ q + q 2 = 3 ,即 q 2 + q + 1 = 0 解得 q = - 1, 3 1 1 144 4 2 1- (- 1 )4所以 S = a 1 (1- q ) =2 = 5. 4 1- q 1- (- 1) 8231.121 .3【解析】设等比数列的公比为q ,由已知 a = 1, a 2= a 1 3 2 1 5 ,所以 = q , 又q ≠ 0 , 134 651(1- 35 ) ( q )33所以 q = 3, 所以 S =a 1 (1- q ) = 3 = 121 . 5 1- q 1- 3 332.14【解析】∵等差数列{a n }的前 n 项和为 S n ,a 3=0,a 6+a 7=14,⎧ a 1 + 2d = 0 ∴ ,解得 a =﹣4,d=2,∴S =7a + 7 ⨯ 6d =﹣28+42=14. ⎨a + 5d + a + 6d = 14 1 7 1⎩ 1 1故答案为 14.33. -63【解析】根据 S n = 2a n +1,可得 S n +1 = 2a n +1 +1 , 两式相减得a n +1 = 2a n +1 - 2a n ,即 a n +1 = 2a n , 当 n = 1 时, S 1 = a 1 = 2a 1 +1,解得 a 1 = -1, 所以数列{a n }是以-1 为首项,以 2 为公比的等比数列,所以 S 6 = -(1- 26 )1- 2= -63 ,故答案是-63 .34.2【解析】由 a = n 2 ,若对于任意 n ∈ N +,{b } 的第 a 项等于{a }的第b 项,n则b = a = (b )2 ,则b= 1 = (b )2 , b n= (b )2, b n= (b )2 , b n n= (b )2a nb nn114293164lg(b b b b ) lg(b b b b ) 2 2 lg(b b b b )所以b b b b = (b b b b )2 ,所以 1 4 9 16 = 1 2 3 4= 1 2 3 4 = 2 . 1 4 9 16 1 2 3 4 lg(b b b b ) lg(b b b b ) lg(b b b b )1 2 3 41 2 3 41 2 3 435.2nn +1【解析】2S1S ⎧a1 + 2d = 3⎧a = 1设等差数列的首项为a ,公差为d ,由题意有⎪4 ⨯3,解得⎨ 1 ,1 ⎨4a + d = 10 ⎩d = 1⎩⎪12数列的前 n 项和Sn =na1+n (n -1)2d =n ⨯1+n (n -1)2⨯1 =n (n +1)2裂项可得=2= 2(1-1) ,S k k (k +1)k k +1n 1= 2[(1-1) + (1-1) ++ (1-1)] = 2(1-1) =2n所以∑k =1 k2 2 3n n +1n +1n +1.36.1【解析】设等差数列的公差和等比数列的公比分别为d 和q,则-1+ 3d =-q3 = 8 ,求得q =-2 ,d = 3,那么a2b2=-1+ 3= 1 ,故答案为1.237.32【解析】⎧=a1⎪ 3 1-q(1-q3 ) =741-q6由题意可得 q ≠ 1,所以⎨⎪S⎩=a11-q(1-q 6 ) =634两式相除得1-q3= 9, q3 = 8, q = 2, 代入得a =1, a =1⨯ 27 = 25 = 32 ,填32.1 4 8(4)38.5 72015 (3 +n)2n-4【解析】(1)由对折2 次共可以得到5dm⨯12dm,10dm⨯6dm ,20dm⨯3dm三种规格的图形,所以对着三次的结果有:5⨯12,5⨯6,10⨯3;20⨯3,共4种不同规格(单位dm2);2 2,62 ( )故对折 4 次可得到如下规格: 5⨯12 , 5 ⨯ 6 , 5⨯ 3 ,10 ⨯ 3 , 20 ⨯ 3 ,共 5 种不同规格; 4 2 2 4(2) 由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格1 如何,其面积成公比为 2的等比数列,首项为 120 (dm 2),第 n 次对折后的图形面积为⎛ 1 ⎫n -1120 ⨯ ⎪ ⎝ ⎭,对于第 n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想 S n = 120(n +1) ,2n -1设 S =∑ S = 120⨯ 2 + 120⨯ 3 + 120⨯ 4 +L + 120(n +1) ,k =12021 222n -1则 1S =120 ⨯ 2 + 120 ⨯ 3++ 120n + 120(n +1) ,2 2122两式作差得:2n -1 2n 1 S = 240 +120⎛ 1 + 1++ 1 ⎫ - 120(n +1) 2 2 222n -1 ⎪ 2n⎝ ⎭60 ⎛1 - 1 ⎫ 2n -1 ⎪ 120(n +1) 120 120(n +1) 120(n + 3) = 240 + ⎝ ⎭ -= 360 - - = 360 - , 1- 1 2n22n -1 2n 2n240(n + 3) 15(n + 3)因此, S = 720 - = 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -439.0. -10.【解析】等差数列{a n }中, S 5 = 5a 3 = -10 ,得 a 3 = -2, a 2 = -3 ,公差 d = a 3 - a 2 = 1, a 5 = a 3 + 2d = 0 ,由等差数列{a n } 的性质得 n ≤ 5 时, a n ≤ 0 , n ≥ 6 时, a n 大于0,所以 S n 的最小值为 S 4 或 S 5 , 即为-10 .k n。
2017年全国高考文科数学试题及答案
2017年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试文科数学文科数学注意事项:注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一项是符合题目要求的。
1.已知集合A={1,2,3,4}A={1,2,3,4},,B={2,4,6,8}B={2,4,6,8},则,则AB 中元素的个数为中元素的个数为 A .1 B .2C .3D .42.复平面内表示复数(2)z i i =-+的点位于的点位于 A .第一象限.第一象限B .第二象限.第二象限C .第三象限.第三象限D .第四象限.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. .根据该折线图,下列结论错误的是根据该折线图,下列结论错误的是 A .月接待游客逐月增加.月接待游客逐月增加 B .年接待游客量逐年增加.年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳月,波动性更小,变化比较平稳 4.已知4sin cos 3a a -=,则sin 2a =A .79-B B..29-C .29 D .795.设,x y 满足约束条件326000x y x y +-£ìï³íï³î,则z x y =-的取值范围是的取值范围是A .[-3[-3,,0]B .[-3[-3,,2]C .[0[0,,2]D .[0[0,,3]6.函数1()sin()cos()536f x x x p p=++-的最大值为的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为的部分图像大致为A .B .C .D .8.执行右面的程序框图,为使输出S 的值小于9191,则输入的正,则输入的正整数N 的最小值为的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为球的球面上,则该圆柱的体积为 A .pB .34p C .2pD .4p1010.在正方体.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥1111..已知椭圆2222:1(0)x y C a b ab+=>>的左、的左、右顶点分别为右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为的离心率为A .63B .33C .23D .131212.已知函数.已知函数211()2()x x f x x x a ee--+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
17年高考数学真题高考题(3套)
2017年普通高等学校招生全国统一考试全国Ⅰ(文数)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·全国Ⅰ卷,文1)已知集合A={x|x<2},B={x|3-2x>0},则( A )(A)A∩B=(x|x<错误!未找到引用源。
)(B)A∩B=(C)A∪B=(x|x<错误!未找到引用源。
)(D)A∪B=R解析:B={x|3-2x>0}=(x|x<错误!未找到引用源。
),A∩B=(x|x<错误!未找到引用源。
),故选A.2.(2017·全国Ⅰ卷,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )(A)x1,x2,…,xn的平均数(B)x1,x2,…,xn的标准差(C)x1,x2,…,xn的最大值(D)x1,x2,…,xn的中位数解析:标准差衡量样本的稳定程度,故选B.3.(2017·全国Ⅰ卷,文3)下列各式的运算结果为纯虚数的是( C )(A)i(1+i)2(B)i2(1-i)(C)(1+i)2(D)i(1+i)解析:(1+i)2=2i,故选C.4.(2017·全国Ⅰ卷,文4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:不妨设正方形的边长为2,则正方形的面积为4,圆的半径为1,圆的面积为πr2=π.黑色部分的面积为圆面积的错误!未找到引用源。
,即为错误!未找到引用源。
,所以点取自黑色部分的概率是错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数原理、排列与组合
一、选择题
1.(2017·甲卷理·T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
A.12种
B.18种
C.24种
D.36种
【命题意图】考查排列组合的知识,意在考查学生对排列组合概念的理解能力以及计算能力.
【解析】选D.由题意4项工作分配给3名志愿者,分配方式只能为(2,1,1),所以安排方式C·33A=36(种).
有2
4
【误区警示】本题易对排列与组合的误判从而导致计算错误.
二、填空题
2.(2017·浙江高考·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)
【命题意图】本题主要考查排列与组合问题.
C C C C=480种,选2名女生的选法有【解析】由题意可知,只选1名女生的选法有1311
2643
211
C C C=180种,所以选法总数为480+180=660种.
643
答案:660
3.(2017·天津高考理科·T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)
【命题意图】本题考查有条件限制的排列组合问题.
A=120,第二种:四位数中有一【解析】分两种情况:第一种:四位数都不是偶数的个数为:4
5
C C A=960,则共有1 080个.
位为偶数的个数为113
445
答案:1 080
关闭Word文档返回原板块。