2012考研数学二真题及参考答案

合集下载

2012年全国硕士研究生入学统一考试数学二试题及答案解析

2012年全国硕士研究生入学统一考试数学二试题及答案解析

2 0 0 1
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
(10)计算
lim
x→∞
n

1
1 + n2
+
22
1 +
n2
+…+
n2
1 +
n2

= ________。
π
【答案】:
4
【解析= 】:原式
∑ lim
n→∞
1 n
n i=1
1+= 1ni 2
∫= 1 dx
0 1+ x2
arc= tan x 1 0

(A)


2

1
1

(B)


1

2
2

(C)


1
2
2

(D)


2
1
【答案】:(B)
1 0 0
1 0 0
【解析】:
Q
=
P

1
1
0

,则
Q
−1
=

−1
1
0

P
−1

0 0 1

2012研究生考试数学二真题及答案

2012研究生考试数学二真题及答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C )必要非充分条件.(D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0n a >,则1n n a ∞=∑为正项级数,S n =a 1+a 2+…a n 为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1n n a ∞=∑收敛是充要条件。

故选A(4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D)【解析】:2sin k x k e I e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k e I e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数学二答案真题解析

2012考研数学二答案真题解析

∫ = 16
πθ sin
cos θ
(2 cos 2
θ
− 1) cos8
θ

022
2
22
π
π
∫ ∫ = 32 2 sin t cos11 tdt − 16 2 sin t cos9 tdt
0
0
=8−8 35
= 16 15
(19)(本题满分 11 分)已知函数 f (x) 满足方程 f '' (x) + f ' (x) − 2 f (x) = 0 及 f ' (x) + f (x) = 2ex
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
第 3 页,共 11 页
梦想不会辜负每一个努力的人
(10)计算ຫໍສະໝຸດ limx→∞∂z ∂x
+
y2
∂z ∂y
= ________。
【答案】: 0 .
【解析】:因为 ∂z = ∂x
f ′ ⋅ 1 , ∂z = x ∂y
f



1 y2
,所以
x
∂z ∂x
+
y2
∂z ∂y
= 0.
(12)微分方程 ydx + (x − 3y2 )dy = 0 满足初始条件 y |x=1=1 的解为________。
【答案】: x = y2
【解析】: ydx + (x − 3y2 )dy =0 ⇒ dx =3y − 1 x ⇒ dx + 1 x = 3y 为一阶线性微分方程,

【Selected】2012年考研数学二试题及答案.doc

【Selected】2012年考研数学二试题及答案.doc

20GG 年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数()(A)0(B)1(C)2(D)3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。

(iii )注意:如果(1)()lim x f x x→∞不存在;(2)()limx f x a x →∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。

在本题中,函数221x xy x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线). 又211lim lim111x x x y x →∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C.(2)设函数2()(1)(2)()x x n xf x e e e n =---,其中n 为正整数,则(0)f '=()(A)1(1)(1)!n n ---(B)(1)(1)!n n --(C)1(1)!n n --(D)(1)!n n - 【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1x e -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3)设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的()(A )充分必要条件(B )充分非必要条件(C )必要非充分条件(D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有()(A)123I I I <<(B)321I I I <<(C)231I I I <<(D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点:设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdxππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是() (A )12x x >,12y y <(B )12x x >,12y y > (C )12x x <,12y y <(D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y <又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y <因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰()(A )π (B )2 (C )-2 (D )π- 【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)D D f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数 在本题中,11555222sin sin 221(1)(1)()2x xDx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为()(A)123,,ααα(B)124,,ααα(C)134,,ααα(D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=,所以134,,ααα必线性相关.故选C.(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -=() (A)100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题..纸.指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1

A


0
1
a

2012考研数学二真题答案(完整版)

2012考研数学二真题答案(完整版)

2012数二参考答案9、21xx e +; 10、4π; 11、0; 12、2x y =; 13、()1,0-; 14、27- 三、解答题15、解:(I )()00011sin lim limlim 011sin sin sin x x x x x x xa f x x x x x x→→→+-==-=+=+=(II )()00011sin sin lim lim 1lim sin sin sin x x x x x x x x f x a x x x xx →→→+--⎛⎫⎛⎫-=--=+⎡⎤⎪ ⎪⎣⎦⎝⎭⎝⎭ ()()3001sin 16lim lim sin sin x x x x x x x x x x →→-+⎛⎫== ⎪⎝⎭()300161sin lim lim 6x x x f x a x x x x →→-⎡⎤==⎢⎥⎣⎦,所以k=1 16、解:()()()()()2222222222222,10,0x yx y x y x y fx y e xex ex xf x y xe y y+++---+-⎧∂=+-=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩得驻点()()121,0,1,0P P -()()()()()()()()22222222222222222222,21,1,1x y x y x y x y f x y xe e x x x f x y e x y x yf x y xe y y++--+-+-⎧∂=-+--⎪∂⎪⎪∂⎪=--⎨∂∂⎪⎪∂⎪=-∂⎪⎩ 根据判断极值的第二充分条件, 把()11,0,P -代入二阶偏导数B=0,A>0,C>0,所以()11,0,P -为极小值点,极小值为()121,0f e --=-把()21,0P 代入二阶偏导数B=0,A<0,C<0,所以()21,0P 为极大值点,极大值为()121,0f e-=(17)解:1y x '=,设切点坐标(),ln o o x x ,切线方程为()1ln o o oy x x x x -=- 又切线过点(0,1),所以2o x e =,故切线方程为211y x e =+ 切线与x 轴交点为B ()2,0e -所围面积()222011y A e e y dy e ⎡⎤=--=-⎣⎦⎰ 旋转体体积()()2222221122ln 333e V e e xdx e πππ⎡⎤=---=+⎣⎦⎰ (18)解:()()1cos 014401d cos sin 1116cos sin 1cos 14415Dxy d d d t t dt πθπσθρθρθρρθθθθ+-= =+=+=⎰⎰⎰⎰⎰⎰(19)解:(I )'''()()2()0f x f x f x +-=对应的特征方程为220r r +-=,r=-2,r=1所以()212xx f x C e C e -=+把()212xx f x C e C e -=+代入''()()2x f x f x e +=,得到()x f x e =(II )同理,当x<0时,0y ''<可知(0,0)点是曲线唯一的拐点。

考研数学二解析2012

考研数学二解析2012

2012年数学(二)真题解析一、选择题(1) 【答案】(C).【解】由limy=1,得》=1为曲线夕=务匚半的水平渐近线;oo X—12由limy=°°9得乂=1为曲线丿=的铅直渐近线;工-*1x一12|12由lim岂--—=lim―^―-=万,得z=—1不是曲线y=—----吕的铅直渐近线,1—1乞一1工一12x且曲线没有斜渐近线,故曲线y=务匸寸有两条渐近线,应选(C).x一1方法点评:渐近线是频繁考点,曲线的渐近线共有三种,即水平渐近线、铅直渐近线和斜渐近线.若lim/()—A,称;y=A为曲线y=f(.x)的水平渐近线;X-*°°若)=oo,称工=q为曲线》=/(%)的铅直渐近线;若lim=a(H0900)9)—ax~\—b称为曲线y=f{x)的斜渐近线.(2)【答案】(A).[解]方法一由/''(■Z)=e"(e"—2)…(e“一/?)+2(e T一l)e2r(e3j一3)…(e'"―”)十…+n(e x—1)(孑一2)…(e("T“-n+l)e",得厂(0)=(―I)""—1)!,应选(A).方法二由导数的定义得/z(0)=lim)--八°)=lim--------(e2j—2)…(e"*—n)=(—1)"1(n—1)!, x->0X LO x应选(A).(3)【答案】(B).【解】由a”>05=1,2,…)得数列{S”}单调增加,若数列{S”}有上界,由极限存在准则得limS”存在.8令limS”=S,则lima”=limS…—=S—S=0,于是{a”}收敛;fl——►OO fl——►OO JJ—>OO fl—►oo反之,若{a”}收敛,则{S n}不一定有上界,如取a”=2,lima”=2,但limS…=+00,即fl——►-OO fj——►-OO {S”}没有上界,故{S”}有上界是{a”}收敛的充分非必要条件,应选(B).(4)【答案】(D).f2x2【解】由I2—h=sin z d_z V0,得八>/?;J TC「3兀2由13—12=\e"sin x dx〉0,得12<113;J2n而3k 2X 一 7te r sin jc djr ” —2n‘3兀 2e r sin x dr =n*f2x2= e G+x) sin(z + 7t)d^'2tt 2e° sin jc djr +■3k 2e" sin x dx 92x'2tt?(工+兀)•」e sin x dj? 913 — 11 =由【3 一【1"[e ,—e«4]sin_zdz > 0 得八 V 人,于是 I 2<h< 4,应选(D).(5)【答案】(D ).【解】呻〉。

2012年考研数学(二)真题

2012年考研数学(二)真题

lim
x
【解析】
x2 x x2 1
lim
1
1 x
x
1
1 x2
1 ,可得有一条水平渐近线 y 1 ;
lim
x1
x2 x2
x 1
lim
x1
2 x2
1
,可得有一条铅直渐近线
x
1;
lim
x1
x2 x2
x 1
lim
x1
(x
x(x 1) 1)(x 1)
lim
x 1
x
x 1
1 2
,可得
x
1 不是铅直渐近线。
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
xn
,证明
lim
n
xn
存在,并求此极限。
22.(本题满分 11 分)。
1 a 0 0
1
A
0 0
1 0
a 1
0 a
,
1 0
设 a 0 0 1
0 。
(1)计算行列式 A 。
(2)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解。
23.(本题满分 11 分)。
1 0 1
A
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x

2012年考研数学二真题和答案

2012年考研数学二真题和答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C ) 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直渐近线22l i m 11x x x x →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。

(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nx f x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。

(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。

反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。

2012年考研数学真题及参考答案(数学二)

2012年考研数学真题及参考答案(数学二)

(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变

2012考研数二真题及解析

2012考研数二真题及解析

2012 年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~ 8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 ....x2x ( 1)曲线yx2 1 (A ) 0(C) 2渐近线的条数为()(B) 1(D) 3( 2)设函数 f ( x) (e x1)(e2 x2) (e nx n) ,其中 n 为正整数,则 f ' (0)( A )( 1)n 1(n 1)! ( B)( C)( 1)n 1n! ( D)( 1)n ( n 1)! ( 1)n n!(3)设a n>0(n=1,2, ),S n=a1+a2+ a n,则数列(s n)有界是数列(a n)收敛的(A) 充分必要条件 .(B)充分非必要条件 .(C)必要非充分条件 .(D)即非充分地非必要条件.( 4)设I kk e x2 sinxdx(k=1,2,3),则有 De(A)I1< I2 <I 3. (B) I2< I2< I3.(C) I1< I3 <I 1, (D) I1< I2< I3.( 5)设函数f (x,y)可微,且对任意x,y都有f ( x, y)> 0,f ( x, y)<0,f(x1,y1)<f x y(x2,y2)成立的一个充分条件是(A) x1> x2, y1< y2. (B) x1> x2, y1>y1.(C) x1< x2, y1< y2. (D) x1< x2, y1> y2.( 6)设区域 D 由曲线y sin x, x , y 1, 围成,则x5 y 1 dxdy ( )2(A)(B)2 (C) 2 (D)0 1 1 (7)设 1 0 ,21,3 1 , 41 其中 c 1, c 2 , c 3 , c 4 为任意常数,则下列向量组线性相关c 1 c 2 c 3 c 4的是( )(A ) 1, 2 , 3 (B ) 1, 2 , 4(C ) 1, 3 , 4 (D ) 2, 3 , 41(8)设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵,且P 1AP 1,P 1,2,3, 2Q 1 2, 2, 3 则Q 1AQ ( )1 1( A ) 2 ( B ) 11 22 2( C ) 1 ( D ) 22 1二、填空题: 9 14 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置上 ....( 9)设 y y( x) 是由方程 x 2 y 1 e y 所确定的隐函数,则 ________。

2012年考研数学(二)真题

2012年考研数学(二)真题

(D) 0 0 1
二、填空题(9—14 小题,每小题 4 分,共 24 分)
9.设 y
d2y y(x) 是由方程 x2 y 1 ey 所确定的隐函数,则 dx2
x0
________。
10.
lim
n
n
1
1 n2
22
1
n2
n2
1
n2
________。
11.设
z
f
2. 【答案】A
【解析】 f (0) (11)(1 2)(1 n) 0 ,则
f
'(0)
lim
x0
y(x) x
y(0) 0
lim
x0
(ex
1)(e2x
2)(enx x
n)
lim
x0
x(e2x
2) (enx x
n)
(1 2)(1 n) (1)n1(n 1)!。
3. 【答案】B
【解析】充分性:因为 an 0 ,所以数列 Sn 单调递增,又因为数列{Sn} 有界,所以数列{Sn}
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
x2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

因此,当1212,x x y y <>必有1122(,)(,)f x y f x y <,故选D (6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y xππ--)(2)(2)()(D C B A【答案】:(D )【解析】: 由二重积分的区域对称性,())(πππ-=-=-⎰⎰⎰⎰-dy y xdx dxdy y xx1sin 522511(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα(C )134,,ααα (D )234,,ααα 【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。

故选(C )(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫⎪⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪⎪ ⎪⎝⎭【答案】:(B )【解析】:100110001Q P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则11100110001Q P --⎛⎫⎪=- ⎪ ⎪⎝⎭,故11100100100110011101101101110100100100120012Q AQ P AP --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪=-=-= ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选(B )。

二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e-+=所确定的隐函数,则dydx=________。

【答案】:21yxe + 【解析】:方程21yx y e-+=两端对x求导,有2y dy dy x edx dx-=,所以21ydy xdx e =+ (10)计算22222111lim 12x n nn n n →∞⎛⎫+++=⎪+++⎝⎭…________。

【答案】:4π【解析】:原式11220111lim arctan .141nn i dx x n x i n π0→∞=====+⎛⎫+ ⎪⎝⎭∑⎰ (11)设1ln z f x y ⎛⎫=+ ⎪⎝⎭,其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂________。

【答案】:0.【解析】:因为211,z z f f x x y y ⎛⎫∂∂''=⋅=⋅- ⎪∂∂⎝⎭,所以20.z z x y x y ∂∂+=∂∂ (12)微分方程2(3)0ydx x y dy +-=满足初始条件|x y =1=1的解为________。

【答案】:2xy =【解析】:21(3)03dx ydx x y dy y x dy y+-=⇒=-13dx x y dy y ⇒+=为一阶线性微分方程,所以112133dy dy yy x ey e dy C y dy C y-⎡⎤⎰⎰⎡⎤=⋅+=+⎢⎥⎣⎦⎣⎦⎰⎰31()y C y =+ 又因为1y=时1x =,解得0C =,故2x y =.(13)曲线2(0)y x x x =+<上曲率为2的点的坐标是________。

【答案】:()1,0- 【解析】:将21,2y x y =+=’”代入曲率计算公式,有323/222||2(1)21(21)y K y x ''==='+⎡⎤++⎣⎦整理有2(21)1x +=,解得01x =-或,又0x <,所以1x =-,这时0y =, 故该点坐标为()1,0-(14)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则*BA =________。

【答案】:-27【解析】:由于12B E A =,故**121212||3BA E A A A E E =⋅==, 所以,*31212|||3|3||27*(1)27BA E E ===-=-.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 已知函数11()sin ,x f x x x +=-,记0lim ()x a f x →=(1)求a 的值(2)若当0x →时,()f x a -是kx 的同阶无穷小,求k 【解析】:(1)200011sin lim ()lim(1)lim 11sin x x x x x f x x x x→→→-=-+=+=,即1a = (2),当0x →时,由11sin ()()1sin sin x xf x a f x x x x x --=-=-=又因为,当0x →时,sin x x -与316x 等价,故1()~6f x a x -,即1k =(16)(本题满分10分)求()22,2x y f x y xe +=-的极值。

【解析】:()22,2x y f x y xe +=-,先求函数的驻点. ()(),0,,0x y f x y e x f x y y ''=-==-=,解得函数为驻点为(),0e . 又()()(),01,,00,,01xx xy yy A f e B f e C f e '''==-====-,所以20,0B AC A -<<,故(),f x y 在点(),0e 处取得极大值()21,02f e e =. (17)(本题满分10分)过点(0,1)点作曲线L :x y ln =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 及x 轴围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积。

【解析】: 设切点坐标为()00,ln A x x ,斜率为01x ,所以设切线方程为()0001ln y x x x x -=-,又因为该切线过(0,1)B ,所以20x e =,故切线方程为:211y x e=+ 切线与x 轴交点为()2,0B e - 0(2⎣⎦⎢⎥⎣⎦(2)()()()()()22222222212211221122212ln 38ln 2ln 3842ln 238221333e e e e e V e e xdx e x x xdx e e x x dx e e e πππππππππ⎡⎤=⋅⋅---⎣⎦⎡⎤=--⎢⎥⎣⎦⎡⎤=--+⎢⎥⎣⎦=--=+⎰⎰⎰ (18)(本题满分10分) 计算二重积分⎰⎰Dxyd σ,其中区域D 为曲线()πθθ≤≤+=0cos 1r 与极轴围成。

【解析】:⎰⎰⎰⎰+⋅⋅=Drdr r r d xyd πθθθθσ0cos 10sin cos⎰+⋅⋅=πθθθθ04)cos 1(cos sin 41d22cos )12cos 2(2cos 2sin16820θθθθθπd -=⎰⎰⎰-=220911cos sin 16cos sin 32ππtdt t tdt t5838-=1516= (19)(本题满分11分)已知函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及x e x f x f 2)()('=+1)求表达式)(x f 2)求曲线的拐点dt t f x f y x⎰-=022)()(【解析】:1)特征方程为022=-+r r ,特征根为2,121-==r r ,齐次微分方程()()2()0f x f x f x '''+-=的通解为x x e C e C x f 221)(-+=.再由'()()2x f x f x e +=得21222x x x C e C e e --=,可知121,0C C ==。

相关文档
最新文档