二项式定理的十一种考题解法
二项式定理的十一种考题解法-学习文档
二项式定理的十一种考题解法1.二项式定理: 2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n nn n x C C x C x C x C xn N*+=++++++∈令1,,a b x ==- 0122(1)(1)()n r rn nn n n nn nx C C x C x C x C x n N*-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n nC C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
二项式定理的高考常见题型及解题对策
二项式定理的高考常见题型及解题对策题型一:求二项展开式1.“n b a )(+”型的展开式例1.求4)13(xx +的展开式;2. “n b a )(-”型的展开式例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算c C C C nn n n n n n 3)1( (27931321)-++-+-;解:原式=nnnn n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+题型二:求二项展开式的特定项1.求指定幂的系数或二项式系数(1)求单一二项式指定幂的系数 例4.92)21(xx -展开式中9x 的系数是 ;解:rrrr x x T C )21()(9291-=-+=rr rrx xC )1()21(2189--=x r r x C 3189)21(--令,9318=-x 则3=r ,从而可以得到9x 的系数为: 221)21(339-=-C ,∴填221-(2) 求两个二项式乘积的展开式指定幂的系数例5.(02全国)72)2)(1-+x x (的展开式中,3x 项的系数是 ;填1008。
(3) 求可化为二项式的三项展开式中指定幂的系数 例6.(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;解:36323)1(])1([)21(xx xx xx -=-=-+即20-2. 求中间项例7.(00京改编)求(103)1xx -的展开式的中间项;解:,)1()(310101rrr r xx T C-=-+ ∴展开式的中间项为535510)1()(xx C -即:65252x -。
当n 为奇数时,nb a )(+的展开式的中间项是212121-+-n n n n baC 和212121+-+n n n n baC ;当n 为偶数时,nb a )(+的展开式的中间项是222nnnnb a C 。
3. 求有理项例8.(00京改编)求103)1(xx -的展开式中有理项共有 项;44. 求系数最大或最小项(1) 特殊的系数最大或最小问题例9.(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ; 解:rrrr xT C )1(11111-=-+ ∴要使项的系数最小,则r 必为奇数,且使C r11为最大,由此得5=r ,从而可知最小项的系数为462)1(5511-=-C (2) 一般的系数最大或最小问题 例10.求84)21(xx +展开式中系数最大的项;解:记第r 项系数为r T ,设第k 项系数最大,则有⎩⎨⎧≥≥+-11k kk k T T T T 又1182.+--=r r r CT ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--k k k k k k k k C C C C 2.2.2.2.8118228118 即⎪⎪⎩⎪⎪⎨⎧-≥⨯--⨯--≥--)!8(!!82)!9)!.(1(!82)!10)!.(2(!8)!9)!.(1(!8K K K K K K K k ⎪⎩⎪⎨⎧≥--≥-∴K KK K 1922211解得43≤≤k ,∴系数最大的项为第3项2537x T =和第4项2747x T =。
二项式定理的常见题型及解法特全版
Cxy
3 7
4
4
,和第 5 项
C
二、通项公式的应用
1 .确定二项式中的有关元素
例 4.已知 (
a x 9 9 ) 的展开式中 x 3 的系数为 ,常数 a 的值为 x 2 4
r 3 r 9
解: Tr 1 令
r 9 a x C ( ) 9r ( ) r C9r (1) r 2 2 a 9r x 2 x 2
9 令 18 3x 9, 则 r 3 ,从而可以得到 x 的系数为:
C
3 9
1 21 21 ( ) 3 , 填 2 2 2
(备用题) : (05 年山东卷)已知 (3x
1
3
x
2
) n , n N 的展开式中各项系数和为 128,则展
开式中
1 的系数是( x3
1 的展开式中没有 常数项, 且 2≤n≤8, n N* , .. 3 x
n
分析:本小题主要考查二项式定理中求特定项问题。依题 ( x
1 n ) 对 n N * , 2 剟n 3 x
8 中,
只有 n 5 时,其展开式既不出现常数项,也不会出现与 x 、 x 2 乘积为常数的项。故填 5。 (备用题) (05 年湖北卷) (
C
1
5
11
(1) 5 462
(2) 一般的系数最大或最小问题 例 12.求 ( x
2 x
4
) 8 展开式中系数最大的项;
解:记第 r 项系数为 Tr ,设第 k 项系数最大,则有
Tk Tk 1 Tk Tk 1
又 Tr
C
r 1 8
.2 r 1 ,那么有
二项式定理题型全面总结-有答案(习题课)
1 x
)10 的展开式中是否包含常数项?
分析:取通项来分析, 常数项即 x 项.
0
Tr 1 C 3 x
r 10
2
10 r
1 x
r
解:根据二项式定理,取a=3x2,b=-
∴
1 x
(3 x
2
r 10 2
1
x
) 的通项公式是
r 20 5r 2
10
12 20 8 12
系数最大的项是第 13项 即C 2 3
10 二项式系数最大的项为第11项,即 C20
所以它们的比是
12 8 12 C20 23 5 7 13 2 3 10 C20 11
20 ( 3 x 2 y ) 例13 在 的展开式中,系数绝对值
最大的项 解:设系数绝对值最大的项是第r+1项,则
n
n
(A) 4
n
(B) 3 4
n
4 (C) 1 3
n
4 1ቤተ መጻሕፍቲ ባይዱ(D) 3
n
题型方法总结 逆向应用公式和变形应用公式要求对公式 结构特征要熟练,特别 n 1 2 2 r r n n ( 1 x) 1 Cn x Cn x Cn x Cn x 遇到计算的题目可先观察系数的特点,看 是否符合二项式展开式的结构特征,从而 考虑是否要构造
r 20 r r r 1 19 r r 1 C 20 3 2 C 20 3 2 r 20r r r 1 21 r r 1 C 20 3 2 C 20 3 2 37 42 r 8 r
3(r 1) 2(20 r ) 2(21 r ) 3r
二项式定理知识点和各种题型归纳带答案
C
15C
4 4
2
43
x
它的系数为 C51C44 2 43 240 。
解法②: ( x2
3x 2) 5
( x 1)5( x 2) 5
(
C
0 5
x
5
C51x 4
C
5 5
)(
C
0 5
x5
C
1 5
x
4
2
C
5 5
2
5
)
故展开式中含
x 的项为
C54
xC
5 5
25
C
4 5
x
2
4
240 x ,故展开式中 x 的系数为 240.
3
3
C
n n
3
n
1
(1 3) n
1
(1 3)n 1 4n 1
Sn
3
3
题型二:利用通项公式求 x n 的系数;
例:在二项式 ( 4 1 3 x2 ) n 的展开式中倒数第 3项的系数为 45 ,求含有 x3 的项的系数? x
解:由条件知
C
n n
2
45 ,即
C
2 n
45 ,
n2
n 90 0 ,解得 n
9(舍去 )或 n 10 ,由
1
4
r
1
,化简得到
9.4
r
C1r2 1 4 r 1
10.4,又
0 r 12 , r
10 ,
展开式中系数最大的项为
T11 ,有 T11
( 1 )12 C1120 410 x10 16896 x10 2
练:在 (1 2 x)10 的展开式中系数最大的项是多少?
(完整版)二项式定理典型例题解析
二项式定理 概念篇【例1】求二项式(a — 2b)4的展开式. 分析:直接利用二项式定理展开•解:根据二项式定理得 (a — 2b)4=c 0 a 4+c 4 a 3( — 2b)+C 4 a 2( — 2b)2+C 3 a( — 2b)3+C 4 (— 2b)4=a 4 — 8a 3b+24a 2b 2— 32ab 3+i6b 4.说明:运用二项式定理时要注意对号入座,本题易误把— 2b 中的符号“―”忽略【例2】展开(2x -2代2x分析一:直接用二项式定理展开式•解法一:(2x - 32)5=C °(2x)5+c l (2x)4(— q )+C ;(2x)3( — q )2+c 5(2x)2(—与)3+2x2x 2x 2xC 5 (2x)( — 2)4+C ;( — 2)52x 2 2x 2分析二:对较繁杂的式子,先化简再用二项式定理展开解法二:35--和件[C 5 (4x 3)5+C 1 (4x 3)4(— 3)+C 5 (4x 3)3(— 3)2+C 3 (4x 3)2( — 3)3+C 4 (4x 3)( — 3)4 + C 5( — 3)5]荷(1024x 15— 3840x 12+5760x 9— 4320x 6+l620x 3— 243) 32x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件对较复杂的二项式,有时先化简再展开会更简便【例3】在(x — ■ 3)10的展开式中,x 6的系数是 ________ . 解法一:根据二项式定理可知x 6的系数是c 4°.解法二:(x —,3)10 的展开式的通项是 T r+1=C ;0X 10—r ( — 3 )r .令10— r=6,即r=4,由通项公式可知含 x 6项为第5项,即T 4+1=C :0x 6( — . 3 )4=9C 40x 6. ••• x 6的系数为9C :0.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含 x 6这一项系数,而不是求含 x 6的二项式系数,所以应是解法二正确 如果问题改为求含 x 6的二项式系数,解法一就正确了,也即是C :0.说明:要注意区分二项式系数与指定某一项的系数的差异 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项=32x 5— 12Ox 2+180 x135 405+87243 10 .32x=327°=32x 5— 120x 2+180 x 135 405x 4 +8x 7243 32x 10 .式无关,后者与二项式、二项式的指数及项数均有关【例4】已知二项式(3 . x — —)10,3x(1) 求其展开式第四项的二项式系数; (2) 求其展开式第四项的系数; (3) 求其第四项.分析:直接用二项式定理展开式•解:(3..X — -2)10 的展开式的通项是 T r+i =C ;o (3.、x )10—r ( — 2)r (r=o , 1,…,10).3x3x•••第9项为常数项,其值为256说明:二项式的展开式的某一项为常数项, 就是这项不含“变元”,一般采用令通项T r+1中的变元的指数为零的方法求得常数项.【例6】(1)求(1+2x)7展开式中系数最大项; (2)求(1 — 2x)7展开式中系数最大项.分析:利用展开式的通项公式, 可得系数的表达式, 列出相邻两项系数之间关系的不等 式,进而求出其最大值.7!2r7! 2r 1即 r!(7r)!(r 1)!(7 r 1)!7! 2r7! 2r 1r !(7 r)!(r 1)!(7 r 1)!(1)展开式的第 4项的二项式系数为 C ?0=120.(2)展开式的第 (3)展开式的第 2 4 项的系数为 C ;037(— — )3= — 77760.34 项为—77760( x )7十,即一77760 • x .z\.(3 .. x — —)10写成]3 x +(— A): 10,从而凑成二项式定理的形式3x 3x【例5】求二项式(x 2+ 1 )10的展开式中的常数项.2丘说明:注意把 分析:展开式中第r+1项为C ;0(x 2)10—r ( 1)r ,要使得它是常数项,必须使2Jxx ”的指数为零,依据是X 0=1 , x M 0.解:设第r+1项为常数项,则 Eg 2)102053r 1 r人 52(一)r (r=0, 1,…,10),令 20 —r=0,2 2••• T9=C 80(1)8=45 256解:(1)设第r+1项系数最大,则有C 72r (C r 1?r 1 C 72r ( C r 1?r 1系数最大项为 T 6=C 7 25X 5=672X 5.(2)解:展开式中共有 8项,系数最大项必为正项,即在第一、三、五、七这四项中取得•又因(1 - 2x)7括号内的两项中后两项系数的绝对值大于前项系数的绝对值, 故系数最大值 必在中间或偏右,故只需比较C 4( 2)4C 3T 5和T 7两项系数的大小即可-C6( 2)6 =4C >1, 所以系数最大项为第五项,即 T 5=560X 4.说明:本例中(1)的解法是求系数最大项的一般解法, (2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁 .【例7】(1+2x)n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大 的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C ;j (2x)5, T 7=C 6 (2X )6,依题意有。
(完整版)二项式知识点+十大问题+练习(含答案),推荐文档
3Sn Cn1 3 Cn2 32 Cn333 Cnn 3n Cn0 Cn1 3 Cn2 32 Cn333 Cnn 3n 1 (1 3)n 1
Sn
(1 3)n 3
1
4n 1 3
题型二:利用通项公式求 xn 的系数;
例:在二项式 ( 4 1 3 x2 )n 的展开式中倒数第 3 项的系数为 45 ,求含有 x3 的项的系数? x
(a
1)n
2
(a
1) n
(
)
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数
n
Cn2 取得最大值。
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 ,
n1
Cn 2 同时取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是
Cn0 , Cn1, Cn2 ,, Cnr ,, Cnn. 项的系数是 a 与 b 的系数(包括二项式系数)。
4.常用的结论:
令 a 1,b x,
(1 x)n Cn0 Cn1 x Cn2 x2 Cnr xr Cnn xn (n N )
解:由条件知
C n2 n
45 ,即 Cn2
45 ,n2
n
90
0 ,解得 n
9(舍去)或
n
10
,
由
Tr 1
C1r0
(
x
1 4
)10r
(
x
2 3
)
r
C x r
10r 2 r 43
10
,由题意 10 r 4
二项式定理题型
二项式定理题型一、求二项展开式中的特定项1. 题目- 求二项式(2x - (1)/(x))^6展开式中的常数项。
2. 解析- 根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,对于(2x-(1)/(x))^6,a = 2x,b=-(1)/(x),n = 6。
- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r。
- 化简T_r + 1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。
- 要求常数项,则令x的指数6-2r = 0,解得r = 3。
- 把r = 3代入通项公式中,可得常数项为C_6^32^6 - 3(-1)^3。
- 计算C_6^3=(6!)/(3!(6 - 3)!)=(6×5×4)/(3×2×1)=20。
- 所以常数项为20×2^3×(-1)=-160。
二、求二项展开式的系数和1. 题目- 已知二项式(1 + 2x)^n,设(1 + 2x)^n=a_0+a_1x + a_2x^2+·s+a_nx^n,求a_0+a_1+a_2+·s+a_n的值。
2. 解析- 令x = 1,则(1+2×1)^n=(1 + 2)^n=3^n。
- 此时(1 + 2x)^n变为a_0+a_1×1+a_2×1^2+·s+a_n×1^n,即a_0+a_1+a_2+·s+a_n=3^n。
三、二项式系数的性质相关题目1. 题目- 在二项式(x + y)^n的展开式中,二项式系数最大的项是第5项和第6项,求n的值。
2. 解析- 当n为偶数时,二项式系数最大的是中间一项,即第(n)/(2)+1项;当n为奇数时,二项式系数最大的是中间两项,即第(n + 1)/(2)项和第(n+3)/(2)项。
二项式常见类型及解法
二项式定理高考试题的常见类型及解法1.求展开式中某一项的系数此类问题主要分清某一项的系数与它的二项式系数是否相同.常规解法是利用通项公式r b a C T rr n r n r 先确定,1-+=,再求其系数.例1 ._______)1(58的系数为的展开式中x xx -解:由=-⋅⋅=-228283)1(xxC T 285x .∴ 的系数为5x 28.例2 在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A 、74 B 、121 C 、74- D 、121- 解:由等比数列求和公式得:原式=xx x x x x 9545)1()1()1(1])1(1[)1(---=-----.要求展开式中3x 的项的系数,即求的系数中的45)1(x x -与49)1(x x 中-的系数的差.而的项为中含45)1(x x -4455)1x C T -⋅⋅=(=45x ,49)1(x x 中含-的项为 45495)1x C T -⋅⋅=(=4126x .∴在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是1211265-=-.例3 在112⎪⎭⎫ ⎝⎛-x x 的展开式中,5x 的系数为________.解:1121111111111111)2()2(-----+-=-=r r r rrr r xC xx C T , 令5112=-r ,8=r ,所以5x 的系数为1320)2()2(311381111811-=-=---C C .例4 在72)x的展开式中,2x 的系数中________(用数字作答).解:7237777771)2()2(-----+-=-=r r r r rr r x C xx CT ,令2723=-r , 6=∴r ,所以2x 的系数为14)2(67767-=---C .2.展开式中的某一项此类问题的常规解法是直接利用通项公式求解. 例5 73)12(xx -的展开式中常数项为 ( )A 、14B 、14-C 、42D 、42- 解: 设展开式中第1+r 项为常数项,则r rr r xx C T )1()2(7371-=-+=2)7(3772)1(r r r rr xC ---⋅⋅-.令(36,02)7==--r rr 则, 142)1(676=⋅⋅-∴C 所求常数项为,故选(A).例6年全国卷2005(Ⅰ)8)1(xx -的展开式中常数项为________.(用数字作答)解:设展开式中第1+r 项为常数项,则r r r r xx C T )1(881-=-+=r r r x C 288)1(--.令4,028==-r r 则,70)1(484=-∴C 所求常数项为.例7 已知(xx 12-)n的展开式中第三项与第五项的系数之比为143,则展开式中常数项是 ( )(A )-1 (B)1 (C)-45 (D)45解: 2521)1()1(n r rn n r n r n rr n nr xC xx CT -----+-=-=,因为展开式中第三项与第五项的系数之比为143, 143)1()1(4422=--∴----n nn n n n C C , 化简得:05052=--n n ,10=∴n .令02105=-r ,则2=r , 45)1(2102521010210=-∴-⨯--xC所求常数项为.例8 (2x -1x)6展开式中常数项为________. (用数字作答)解: 设展开式中第1+r 项为常数项,则r rr r xx C T )1()2(661-=-+=r r rrxC 236662)1(--⋅⋅-.令0236=-r ,则4=r . 602)1(46464=⋅⋅-∴-C 所求常数项为.3.求展开式中幂指数为整数的项数此类问题的常规解法是将展开式的通项整理,令其幂指数为整数,从而求出项数.例9 123)(x x +的展开式中,含x 的正整数幂的项数共有________.解: 设展开式中第1+r 项的幂为正整数,则r r rr x x C T )()(312121-+==321212rr r x C +-=6612rrxC -.依题意,1206≤≤r r 的倍数,且是,个值共有3r ∴. 即123)(x x +的展开式中,含x 的正整数幂的项数共有3个.例10 243)1(xx +的展开式中,x 的幂指数是整数有 ( )A.3项B.4项C.5项D.6项 解: 设展开式中第1+r 项的幂指数为整数,则rr r r x x C T --+=)()(324241=322424rr r xC --=651224r rxC -.依题意,2406≤≤r r 的倍数,且是,个值共有5r ∴. 即243)1(xx +的展开式中,x 的幂指数是整数有5个,故选C.4.求展开式中某些项的系数和此类问题的常规解法是赋值法. 例11 若)()21(2004200422102004R x x a x a x a a x ∈++++=- ,则++)(10a a )(20a a ++)()(2004030a a a a +++ =_________.(用数字作答)解:令1,00==a x 得,令,得1=x 10a a +2a ++20043a a +++ =1. ∴++)(10a a )(20a a ++)()(2004030a a a a +++=(20030+a 10a a +2a ++20043a a +++ 2004112003)=+⨯=.5.求二项式中参数的值此类问题的常规解法是直接利用展开式的通项公式,根据题意建立方程,求出参数的值. 例12 若在.______80)1(35=-+a x ax ,则的系数为展开式解:展开式的通项rr r r r r x C a ax C T 551)(==+. 令80,33533-==C a x r 的系数为于是.=∴a 2-.例 设常数0a >,42ax ⎛ ⎝展开式中3x 的系数为32,则a =_____。
二项式定理的高考常见题型及解题对策
二项式定理的高考常见题型及解题对策浙江省温州22中学 高洪武 325000二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式----二项式的乘方的展开式。
二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。
掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习,深化作用,又可以为进一步学习概率统计作好必要的知识储备。
所以有必要掌握好二项式定理的相关内容。
二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。
本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。
题型一:求二项展开式1.“n b a )(+”型的展开式例1.求4)13(xx +的展开式;解:原式=4)13(xx +=24)13(x x + =])3()3()3()3([144342243144042C C C C C x x x x x ++++ =)112548481(12342++++x x x x x=54112848122++++xx x x小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。
2. “n b a )(-”型的展开式例2.求4)13(xx -的展开式;分析:解决此题,只需要把4)13(xx -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可。
本题主要考察了学生的“问题转化”能力。
3.二项式展开式的“逆用”例3.计算c C C C nn nn nn n 3)1( (279313)21-++-+-; 解:原式=nn n n n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。
完整版二项式定理十大典型问题及例题
题型一:二项式定理的逆用;
1232nn?1C?C?6?C?6?L?C?6?.例:nnnnn012233nn(1?6)?C?C?6?C?6?C?6?L?C?6与已知的有一些差距,解:nnnnn112n2n123n2n?1?6?L?6C)?C?C??C6??6??6(C??C6L??Cnnnnnnn6111nn0n122n1)(7??6)[(11)?CL?C6??C?(C?6??6????1]nnnn666123n?1nC?3C?9C?L?3C?.练:nnnn
题型三:利用通项公式求常数项;
1102)(x?的展开式中的常数项?例:求二项式x25145511?20r88rrrr210?r?C()T?8r?020?r?x)()?C()T?C(x2,令解:,所以,得10r?110109225622x216)(2x?练:求二项式的展开式中的常数项?x21133rr?6?rrr6?2rrrr620?C?T?(?1)3r?r6?2?0x1)2)?TCC((?1))()?(?(2x解:,令,得,所以6461?6r22x1n2____.?n5)x?(练:若的二项展开式中第项为常数项,则x16n?4?412n2?442n0?12?2nx)(x)C?TC?(.,令解:,得nn5x题型四:利用通项公式,再讨论而确定有理数项;
93x?)x(展开式中的有理项?例:求二项式
3
127?r127?rrrr9?rrx1)CT?C(x)x)?(?(?0?r?9r?3或r?9Z?632,,( ),令得解:9r?19627?r3443C?1)T?(x??84xr?34?时,所以当,,946r27?3339C??x1)T?(?x9r?3?,。当时,9106题型五:奇数项的二项式系数和=偶数项的二项式系数和;
二项式定理九种常见的考查题型归纳
二项式定理常见的题型归纳吴友明 整理题型一:指定项有关的问题 例1.在12)13(xx -展开式中,3-x 的系数为 . 解析:由二项式定理的通项公式得1121212211212(3)(3(1)r r rr r r r rr T C x C x x ----+=⋅⋅=⋅-⋅⋅⋅ 312122123(1)rrrr C x--=⋅-⋅⋅.令31232r -=-可得10r =,即121010103311123(1)594T C x x ---=⋅-⋅⋅=.故3-x 项的系数为594.点评:解决此类问题的一般策略是:先求二项式展开式的通项,再利用化简后的通项与指定项之间的联系求解。
特别题型解题之前先确认题目是求二项式的展开式的系数或二项式的系数,另外二项式的展开式的通项化简时,要注意指数运算的性质的准确运用.练习.若n xx x )1(3+的展开式的常数项为84,则n = .解析:由二项式定理的通项公式得333321()r r n rrr n rr nnT C x C xx---+=⋅⋅=⋅⋅932n rr nC x-=⋅.令9302n r -=可设3,2n k r k ==,其中k N +∈. 故有23384r k kn k k C C C ===,解得3k =.故39n k ==.题型二:有理项有关的问题例2. 二项式24展开式中,有理项的项数共有( )项A. 3B. 4C. 5D. 7 解析:由二项式定理的通项公式得241136424r !2424T ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭rrr r r C x x C x,其中0,1,2,,24r =L , 由题意得364r Z -∈,则0,4,8,12,16,20,24r =,所以共有7个有理项点评: 有理项是指变量的指数是整数(可以是正整数,也可以是负整数和零)的项,所以此类问题的一般解题思路是:先求二项式的展开式的通项,化简后令x 的指数为整数解决问题。
二项式定理各种题型解题技巧
二项式定理1.二项式定理:(a + b)n = cy + 叫+ ••• + cy-r b r + …+ C;:b" (neN*),2.基本概念:①二项式展开式:右边的多项式叫做(a + b)n的二项展开式。
②二项式系数:展开式中各项的系数C:(厂=0,1,2,•••,“).③项数:共(r + 1)项,是关于a与b的齐次多项式④通项:展开式中的第厂+ 1项C;,a n-r b r叫做二项式展开式的通项。
用T r+{ = C;t a''-r b r表示。
3.注意关键点:①项数:展开式中总共有(n +1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(a + b)n与e + a)"是不同的。
③指数:a的指数从"逐项减到0,是降幕排列。
"的指数从0逐项减到〃,是升幕排列。
各项的次数和等于④系数:注意正确区分二项式系数与项的系数,二项式系数依次是…,C:,…,C;:.项的系数是d与方的系数(包括二项式系数)。
4.常用的结论:令a = \,b = x y (1 + x)n = C:: + C> + C>2 + …+ C;t x r + …+ C;:x” (neN*)令a = \,b = -x, (1-x)n = C;; -C\x + C>2 _... + + …+ (-1)"C;:x”(neN*)5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C;【= C;;,・・・U②二项式系数和:令a = h = \,则二项式系数的和为C,; + G +…+ C:+…+ C;: = 2",变形式C* + C; +-. + C; + ..•+ C; = 2n -1 o③奇数项的二项式系数和二偶数项的二项式系数和:在二项式定理中,令"=1/ = 一1,则u _C + c: _ C:+…+(_I)”c;: = (I _ = 0,从而得到:C;:+C:+C:・・・+C,7+••• = (?,;+C; +…+ C;E+••• = [><2“ = 2心2④奇数项的系数和与偶数项的系数和:①-②得,q +为4,设第厂+1项系数,从而解出r 来。
二项式定理—十一种考题的解法
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
二项式定理题型及解题方法(可打印修改)
项
C
r n
a
nr
b
r
的二项式系数是组合数
C
r n
,展开式的系数是单项式
C
r n
a
nr
b
r
的
系数,二者不一定相等.
如(a-b)n 的二项展开式的通项是 Tr1 (1)r Cnr anrbr ,在这里对应项的二项式系数都是 Cnr ,但项的
第 2 页 共 12 页
系数是 (1)r Cnr ,可以看出,二项式系数与项的系数是不同的概念.
于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.
设 f (x) (ax b)n a0 a1x a2 x2 L an xn
(1) 令 x=0,则 a0 f (0) bn
(2)令 x=1,则 a0 a1 a2 L an f (1) (a b)n
(1)项数:共有 n+1 项,比二项式的次数大 1;
(2)二项式系数:第
r+1
项的二项式系数为
C
r n
,最大二项式系数项居中;
(3)次数:各项的次数都等于二项式的幂指数 n.字母 a 降幂排列,次数由 n 到 0;字母 b 升幂排列,
次数从 0 到 n,每一项中,a,b 次数和均为 n;
3.两个常用的二项展开式:
C51(4x3 )4 (3)
C52 (4x3 )3 (3)2
C53 (4x3 )2 (3)3
C54 (4x3 )(3)4
C55 (3)5 ]
1 (1024x15 3840x12 5760x9 4320x6 1620x3 243) 32 x10
32x5 120x2 180 135 405 243 . x x4 8x7 32x10
二项式定理题型种种及解析
二项式定理题型种种及解析
二项式定理主要应用在排列组合概念上,可以求解给定n个物体,选择m个物体排列组合成一组并且可以重复计算出选择不同个数的物体组合的数量。
二项式定理考题主要有以下几种:
一、从n个元素中取m个元素的所有可能性
这种考题的关键就在于搞清楚n个元素中取m个元素的所有可能性有多少种。
二项式定理可以游刃有余的解决这种题目,前提条件是没有重复的元素选择。
具体的求解方法是运用二项式定理:Cnm=n(n-1)(n-2)…(n-m+1)/m!
二、从n个元素中取m个元素的组合数
二项式定理也可以求解从n个元素中取m个元素的组合数,它可以求出在选取不需要重复元素的情况下,挑选m个组合的数量。
公式是:组合数=C(n,m)/m!
三、n的阶乘的计算
二项式定理也可以求解n的阶乘,其计算公式是:n!=n(n-1)(n-2) (1)
/2!,也就是二项式定理中NSm=0时的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理的十一种考题解法1.二项式定理: 2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn nn n n x C C x C x C x C x n N *+=++++++∈L L令1,,a b x ==- 0122(1)(1)()n r r n n n n nn n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=L L ,变形式1221r nn nn n n C C C C +++++=-L L 。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n nn n n C C C C C -+-++-=-=L , 从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。
⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;例:12321666 .n n nn n n C C C C -+⋅+⋅++⋅=L 解:012233(16)6666n nn n nn n n C C C C C +=+⋅+⋅+⋅++⋅L 与已知的有一些差距, 练:1231393 .n nnn n n C C C C -++++=L 解:设1231393n nn n n n n S C C C C -=++++L ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-L L (13)14133n n n S +--∴==题型二:利用通项公式求nx 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数?解:由条件知245n n C -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。
练:求291()2x x-展开式中9x 的系数?解:291821831999111()()()()222r r r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r = 故9x 的系数为339121()22C -=-。
题型三:利用通项公式求常数项; 例:求二项式210(x +的展开式中的常数项?解:5202102110101()()2r r rrr r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22rr r r r r r r rr T C x C x x ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx --==,令2120n -=,得6n =.题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或,所以当3r =时,2746r-=,334449(1)84T C x x =-=-,当9r =时,2736r-=,3933109(1)T C x x =-=-。
题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=②将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。
练:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。
解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=Q L ,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462n T C x -+==⋅,611561462T x-+=⋅题型六:最大系数,最大项;例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=Q 解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。
练:在2()n a b +的展开式中,二项式系数最大的项是多少? 解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。
练:在(2nx-的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C =例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b=-的系数最小,43457T C a b=系数最大。
例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n nn C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+Q 1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤Q ,10r ∴=,展开式中系数最大的项为11T ,有121010*********()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1102rr rr T C x +=⋅Q111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤Q ,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x它的系数为1445423240C C =。
解法②:255505145051455555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++⋅⋅⋅+++⋅⋅⋅+故展开式中含x 的项为4554455522240C xC C x x +=,故展开式中x 的系数为240.练:求式子31(2)x x+-的常数项?解:361(2)xx +-=,设第1r +项为常数项,则66261661(1)()(1)rr rr r rr T C xC x x--+=-=-,得620r -=,3r =, 33316(1)20T C +∴=-=-.题型八:两个二项式相乘; 例:342(12)(1)x x x +-求展开式中的系数.解:333(12)(2)2,m m mm m x x x +⋅=⋅⋅Q 的展开式的通项是C C练:610(1(1+求展开式中的常数项.解:436103412610610(1(1m n m nm n m nC x C x C C x --++⋅=⋅⋅展开式的通项为练:2*31(1)(),28,______.nx x x n N n n x+++∈≤≤=已知的展开式中没有常数项且则 解:3431()C C ,n r n r r r n r n n x x x x x---+⋅⋅=⋅展开式的通项为通项分别与前面的三项相乘可得 题型九:奇数项的系数和与偶数项的系数和;例:2006(,,,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当解:2006123200601232006(x a a x a x a x a x +++++L 设=-------① 题型十:赋值法;例:设二项式1)n x的展开式的各项系数的和为p ,所有二项式系数的和为s ,若272p s +=,则n 等于多少?解:若20121)n n n a a x a x a x x=+++⋅⋅⋅+,有01n P a a a =++⋅⋅⋅+,02nn n n S C C =+⋅⋅+=,令1x =得4n P =,又272p s +=,即42272(217)(216)0n n n n +=⇒+-=解得216217()n n ==-或舍去,4n ∴=.练:若的展开式中各项系数之和为64,则展开式的常数项为多少?解:令1x =,则的展开式中各项系数之和为264n=,所以,则展开式的常数项为540=-. 例:200912320092009120123200922009(12)(),222a a a x a a x a x a x a x x R -=+++++∈++⋅⋅⋅+L 若则的值为 解:2009200912120022009220091,0,2222222a a a a a a x a a =+++⋅⋅⋅+=∴++⋅⋅⋅+=-令可得 练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 解:0012345032,11,x a x a a a a a a ==-=+++++=-令得令得 题型十一:整除性;例:证明:22*389()n n n N +--∈能被64整除 证:2211389989(81)89n n n n n n +++--=--=+--由于各项均能被64整除22*389()64n n n N +∴--∈能被整除nx x ⎪⎪⎭⎫ ⎝⎛-13nx x ⎪⎪⎭⎫ ⎝⎛-136n=3336(C ⋅。